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A MODAL EMBEDDING FOR
PARTIAL INFORMATION SEMANTICS

Juan BARBA EScCRIBA

In [1], a modal embedding of data semantics into the modal logic S4.1 (S4
plus the McKinsey axiom [0 ¢ A= ¢ [JA) is presented. (The same embed-
ding also appears in [2], within a useful overview of the main topics in
partial logics). The existence of maximal points in data models plays an
important role in the proposed embedding. The author says that it would
be interesting to extend such a reduction to the case in which no maximal
point is postulated, and conjectures that the result should be an embedding
into S4. The aim of this paper is to show how the conjectured embedding
can be carried out,

1. Partial information Semantics

We assume a formal propositional language PIL (partial information lan-
guage) whose logical symbols are the unary connectives =, MAY and
MUST, and the binary ones A and —. Partial information models are
structures D = (I, <, |, ), where [#¢, c is a partial order on I, and
= and o are relations between elements of I and propositional variables
which satisfy the following restrictions: for any i €1 and any propositional
variable p it is not the case that both i}=p and i p hold simultaneously, and
for any jE€I such that icj, if=p implies jl=p, and igp implies jgp. D is
a data model iff every maximal chain in the partial ordered set (I, ) con-
tains a greatest element j such that for every p either jl=p or j5p. Such
elements are called maximal elements of D.

Relations |= and o are extended to every wff by the following clauses:

i A iffigA, and i< DA iff iEA.

iFAABIffiEA and iFB, and iJAAB iff i A or igB.
iF A-B iff for all j, icj, j=A only if jEB.

i< A-B iff for some j, icj, jEEA and j5B.

iEFMAY A iff for some j, icj, jEA.

i MAY A iff for all j, icj, not jEA.
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iFMUST A iff for all j, icj, there is some k, jck such that jck and
kEA.

i MUST A iff there is some j, icj, such that for every k, jck implies
k={A.

Notice that if D is a data model, the clauses for MUST are equivalent to
those formulated in [1]:

iEMUST A iff for all maximal j, icj, jFA.
il MUST A iff for some maximal j, icj, i5 A.

We have formulated more general clauses because those in [1] make no
sense when D is not a data model.

2. From information models to modal models

Given amodel D = (I, c, |=, ) we can obtain a modal model M, = (W,
R, V) as follows:

W = {u;: i€I} U {v;: i€1 and for some p neither if=p nor i< p}.

(where, for each i, jE€1, u;, v, are any two different objects and distinct from
u;, v;).R is the reflexive and transitive closure of the set

{(ui’ uj): i;_j} U {(ub vi>» <Vi> ui): View}'
The valuation V is defined by:

V(p, u) = 1iffiAp,
V(p, v)) = 1 iffifgp.

Notice that, given D and M,, for every i€I and every propositional
variable p, if=p iff V(Op, u) = V(Op, v) = 1, and igp iff V(O -p, u)
= V(U -p, v) = 1. In fact, ifp iff for all jE€I such that icj, j=p, iff
V(@p, u) = V(Op, v)) = 1, iff for every wE W such that uRw (or v;Rw:
recall that uRw iff v;Rw) V(p, w) = 1, because w must be either y; or v;,
for some j such that icj, iff V(Op, u) = V(Op, v) = 1. The case igp
is proven in a similar way.
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3. From modal models to partial information models

The relation R in models M, obtained from partial information models D
is reflexive and transitive. Now we show how a partial information model
Dy can be obtained from any modal model M in which R is reflexive and
transitive. Let M = (W, R, V). Define Dy, = (I, <, |, ) as follows:

W=1I
uccv iff uRv '
uf=p iff V(Op, u) = 1, and ugp iff V(O -p, u) = 1.

This definition ensures that for any u, vE€I such that ucv, ufEp implies
vEEp and u=p implies v=p, so that DM is a partial information model.
This follows from the fact that M is a model of the modal logic S4 (because
R is reflexive and transitive), and so OA—-C A is valid. Suppose uf=p
and ucv. Then V(Op, u) = 1, and V(OOp, u) = 1. As ucv, uRv, thus
V(Up, v) = 1 and v[=p. In the same way we can prove that u={p implies
vp.

4. A translation from PIL to ML

By ML we understand a standard modal propositional language whose
logical symbols are =, A, [. The translation proposed here is basically
the same appearing in [1], all differences being purely notational. Notice,
however, that in [1] two different translations A* and A~ are defined for
each sentence A, where, roughly speaking, A* is to be interpreted as the
translation for "A is supported”, and A~ as the translation for "A is re-
jected" (see the claim on p. 234). However, that double translation can be
simplified in view of the samantic clause for the negation operator (M E-A
iff M=| A and M= —A iff M[EA), which makes A~ = (nA)*. So, in the
translation proposed below, T(A) is equivalent to A* (of [1]), while T(—A)
is equivalent to A~. By this method we can avoid the double recursion used
in [1], but, also, it enforces us to include a translation clause for each kind
of negated formula, instead of a single clause for every formula of the form
A,

For each PIL-wff A we define a ML-wff T(A) as follows:

T(p) = Up
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T(-p) = O-p

T(—~-A) = T(A)

T(A AB) = T(A) A T(B)
T(7(AAB)) = T(mA)VT(7B)
T(A-B) = O(T(A)-T(B))
T(—(A-B)) = ¢ (T(A)AT(7B)
T(MAY A) = ©T(A)
T(-MAY A) = 2 O T(A)
T(MUST A) = O 0 T(A)
T(~MUST A) = ¢ OT(~A)

In order to prove the adequacy of this translation we need the following
lemma:

Lemma 1:LetD = (I, c, |, o) and M = (W, R, V) be a partial infor-
mation model and a modal model, respectively, and suppose there is a
function f from W onto I such that for every u, vEW, f(u)=i, f(v)=j,

a) icj iff uRv

b) ifp iff V(Op, u) = 1

¢) idp iff V(O =p, u) =
Then, for every PIL-wff A,

iEA iff V(T(A), u) =

id A iff V(T(2A), u) =
(Notice that, under the hypothesis of the lemma, f(u) = f(v) implies V(Op,
u) = V(Up, v), and V(O —p, u) = V(O p, v). Observe as well that f
isonto I, i.e., for every i€ there is some u €W such that f(u) = i).
Proof: Induction on the complexity of A. When A is p, the lemma is trivial-
ly satisfied. When A is either =B or A A B, the proof is simple. So, let’s
consider only the remaining cases. We shall write u,, v, to represent ele-
ments of W such that f(u) = i, f(v) = i.

- iEB-C iff for all jE€1, if icj and j|=B then j[=C, iff (induction hypo-
thesis plus properties of f, more briefly i.h.) for all u; such that uRu
V(T(B), u) = 1 implies V(T(C), uw) = 1,ie, V(T(B}—»T(C), u) =
iff V(D(T(B)—-rT(C)) u) = 1.

- i§ B=C iff for some j, icj, j|=B and j5 C, iff (i.h) V(T(B), u ;) = 1 and
V(T(=C), u) = 1, where uRu;, iff V(<O (T(B) A T(—C)), u) = 1.

- iEMAY B 1tff0r some j, icj, J|=B iff (i.h.) V(T(B), u) = 1, for some
u;, wRuy, iff V(OT(B), u) = 1.
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- i MAY B: this case follows directly from the former one, because a
simple inspection to the corresponding semantic clauses shows that
iFMAY B iff not i9§MAY B.

- iEMUST B iff for all j, icj, there is some k, jck such that k=B, iff
(i.h.) for all u;, uRuy;, there is some u,, wRuy, such that V(T(B), u) =
L, iff V(O OT(B), u) = 1.

- iffMUST B iff there is some j, icj, such that for all k, jck, k=B, iff
(i.h.) there is some u;, u;Ru;, such that for every u,, uRu,, V(T(—B),
uw) = 1,iff V(OOT(-B),u) = 1. =

Now consider any partial information model D and the corresponding
modal model M;,. Define the function f as follows: f(u;) = i, f(v)) =i, for
each u;,, v;EW. f satisfies the conditions in the hypothesis of lemma 1, so
we can establish the following lemma:

Lemma 2: Given D and M,,,
iEA iff V(T(A), u) = 1
igAiff V(T(0A),u) =1 =

Let’s turn our attention to a modal model M and the corresponding D,,.
As W = I, the identity function defined on W satisfies the conditions of
lemma 1. Thus, we can establish a new lemma, similar to lemma 2:

Lemma 3. given M and D,,,
ufA iff V(T(A), u) = 1
us A iff V(T(mA),u) = 1. =

The following theorem can be easily proven from lemmas 2 and 3:

Theorem 1: A PIL-wff A is valid in the class of all partial information
models iff T(A) is valid in the class of all reflexive and transitive modal
models, i.e. if T(A) is S4-valid.

Proof: Suppose that A is not valid in a model D. By lemma 2 T(A) is not
valid in M. Conversely, if T(A) is not S4-valid, there is a reflexive and
transitive model M in which T(A) is not valid, and by lemma 3, A is not
valid in D,,. =

Let D be a data semantics model. Then, for every i€1 there is some
maximal jE€I such that icj. Take Mp. Let j be a maximal element in D.
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Then, as for all p, either jl=p or j5p, v; does not exist in W, and as there
is no k€I such that jck and j#k, there is no wEW such that u;Rw and
u;# w. If we apply modal bulldozing methods (see [3]) to M, we obtain
a model My, = (W, R, V) such that (W", R") is a partial order such that
every maximal chain contains a greatest element. On the other hand, if M
is a modal model such that (W, R) is a partial order and every maximal
chain in it contains a greatest element, then D,, is a data model. To check
this claim, consider any maximal chain X in W, and let u be its greatest
element. As W = I and vRw iff vew, X is a maximal chain in (I, <), and
u is its maximal element. Moreover, for any p, V(Op, u) = V(p, u) and
V(O —~p, u) = V(—p, u), because u is a reflexive dead end. Thus, if V(p,
u) = 1 then i|=p, and otherwise (if V(—p, u) = 1) igp.

As it is pointed out in [1], the class of all partial orders with greatest
elements for maximal chains characterizes the modal logic S4.1 (S4 +
0 ¢ A-><©A), so that from lemmas 2 and 3 and the remarks above we
can establish the following theorem:

Theorem 2: A PIL-wff is valid in data semantics iff T(A) is valid in the
modal logic S4.1 =

So we have extended the reduction proposed in [1] for data semantics to
the case in which no maximal point is postulated. The result is a reduction
which embeds partial information semantics into S4, keeping the embedding
of data semantics into S4.1 presented in [1].

5. A note on a possible extension of the above translation to quantified
languages

Partial information logic could be extended in order to obtain a quantified
predicate logic. Then, partial information models should be modified in such
a way that an individual domain is assigned to each point in the model (as
well as suitable interpretations for predicates). It seems reasonable to impose
a nested domains condition to the resulting models (as we are dealing with
increasing information stages) and to interpret individual terms as rigid
terms. Then, it is not difficult to extend the method developed above to
obtain a translation from such quantified PIL to a quantified ML with nested
domains, rigid terms and free logic, in a similar way to the translation
presented in [4]. Of course, different options concerning the conditions
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imposed on domains or the semantic clauses for atomic sentences and quan-
tifiers would lead to different kinds of quantified modal logics (see [5] for
a classification of quantified modal logics) and, probably, different transla-
tions. But that goes beyond the aims and scope of this paper.
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