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Abstract

The concern of the following paper is to present a theoretical basis for
a deductive theory for Discourse Respresentation Theory (DRT). DRT
languages have a well-defined syntax and semantics and can be
manipulated deductively. Thus we present hereafter a tableaux calculus
method called box-tableaux method for DRT; furthermore we give a proof
of the consistency and completeness of the method (').

0. Introduction

Discourse Representation Theory (henceforth DRT) is a theory for
natural language discourse proposed by Kamp. The theory intends to cope
with a number of well-known phenomena such as anaphora and events.
DRT assigns to a sentence or a bit of discourse a well-defined object K
called Discourse Representation Structure (DRS). A DRS can be seen as
a representational language for natural language semantics; therefore we
have to face in some way the inferential problem raised by any represen-
tation language — i.e. given DRS’s K and K’, how can we prove the follow-
ing statement : K logically entails K’. The way this statement has been
formulated indicated that the notion of logical consequence can be ap-
plied to DRS’s. This is in fact true since a DRS can be regarded as a variant
of first-order logic; therefore a DRS has a well-defined syntax and seman-
tics, and can be manipulated deductively in appropriate models.

In this paper we shall provide a deductive theory for DRS’s based on
the tableau calculus method. We follow carefully the analytic method of
Smullyan [68] and (analogically) proposed the box-tableau method for
DRS’s. A box-tableau is a tree whose nodes are labeled by atomic for-

(") The work reported here is partly funded by ESPRIT under grant ACORD. We are
grateful to H. Kamp for his comments on this paper, and to F. Guenthner for discussions
on the notion of logical consequence for DRT.
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mulae or their negation and DRS’s (seen as intermediate results). We prove
completeness and consistency of the box-tableaux and provide a variant
of the liberalization rule. '

In Guenther & al [86] a deductive theory for DRS’s based on the tableau
calculus has been investigated. The tableau method used there is a slight-
ly different version of the analytic tableaux of Smullyan in the sense that
only atomic or negated atomic formulae are inserted into the tableau.
Moreover there is no detailed and complete proof of consistency and com-
pleteness of the method.

1. DRT and semantic interpretation

Discourse Representation Theory (henceforth DRT, c¢f. Kamp [81]
assigns to a sentence or a fragment of discourse D a level of representa-
tion (Discourse Representation Structures, DRS’s) distinct from the usual
logical forms (cf. Guenthner [86]). Thus, instead of defining the truth-
conditions of sentences in appropriate models, the DRT account defines
them as DRS’s associated with these sentences. The discourse representa-
tion construction rules work as follows: given a DRS K (associated with
a discourse D) and a fragment S of discourse or a sentence, we generate
anew DRS K’ which corresponds to the continuation of D by S. It turns
out that DRS’s can be evaluated in a model on one hand and handled
deductively on the other hand. Instead of giving the syntax of a fragment
of language, we shall illustrate by a few examples how DRT assigns
representations to discourses.

To (1) A farmer owns a donkey
we assign the following DRS (displayed as a 2-dimensional structure):

2

X y

farmer (x)

donkey (y)
own (X,y)
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At the top level of this structure are objects called Discourse Markers
(namely x and y) which form the Universe of the DRS, and inside the
box are three objects called Conditions (which are conditions on the
discourse markers).

The semantics of (2) is defined (as in model-theoretic semantics) as
follows :

There is an embedding function f such that to a formal representation
corresponds some situation of the world. That is to say, (2) is true in a
model M if there is an embedding function f which maps the universe
of (2) into the universe of M, and if the objects in the range of f satisfy
every condition in (2) i.e. DRS (2) is true if there is a function f which
assigns to x, y the extensions a, b such that a is a farmer, b is a donkey
and a owns b.

It should be noted that in (2), a farmer is treated as follows: we in-
troduce a discourse marker x and a condition farmer(x)
DRT assigns to universally quantified NP’s a rather different representa-
tion, e.g. to

(3) Every farmer who owns a donkey beats it
is assigned the DRS
)

X y z
farmer (x) gy
donkey (v) =

own (xy) beat (x,z)

(4) 1s a DRS whose universe is empty and whose condition is a com-
plex condition of the form K1 = K2 where K1 and K2 are DRS’s (this
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complex condition is also called a splitted DRS, or a universal condition).
K1 is called the antecedent DRS and K2 the consequent DRS.
The truth condition of (4) can be illustrated as follows:

Given the model:

(5) I(farmer) = {John, Peter, Max]
I (donkey) = {Tom, Sam, Junior, Senior}
I (own) = [<John, Tom>, <John, Sam>, <Peter, Junior>,
<Max, Senior>]
I (beat) = {<John, Tom>, <Peter, Junior >, <Max, Senior>)

where I an interpretation, the DRS (4) is not true in this model since John
doesn’t beat the donkey Sam that he owns. So the quantificational inter-
pretaion that the DRT assigns to the indefinite NP a donkey is the universal
quantification. Thus the truth condition for (4) is given along the follow-
ing lines:
(4) is true if every embedding function that verifies the antecedent can
be extended to an embedding function that verifies the consequent.
Finally, a DRS is a pair [U,CON] where U is a (pssibly empty) set of
discourse markers, and CON a set of conditions. We shall first describe
the syntax of the DRT language and then give its semantics.

L1. Syntax of DRT-language

We define below the symbols of the DRT-language; we shall use the
following logical connectives:
TRUE, FALSE
= [for “not”]
V [for “or”]
= [for “implies”]

The three last symbols are called binary connectives and the one before
it is called a unary connective. The first two are 0-ary connectives (or “pro-
positional constants™).

Well-formed pure DRS’s
K(= [UCCON])) is a well-formed pure DRS iff

(i) U = [xl, x2,... xn] where xi is a Discourse Marker
(ii) CON a finite set of conditions Cl,...,Cn each of which is either
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— an atomic condition of the form P* (xI, x2, ... xn) or xi =
xj where xi € U and P" is an n-ary relational symbol.

— a universal condition of the form K/ = K2 where K1 and
K2 are well-formed DRS’s

— a negative condition of the form — K where K is a well-
formed DRS

— adisjunctive condition of the form KJ v K2 where K1 and
K2 are well-formed DRS’s

— a well-formed DRS K”

It will be seen to turn out that the above syntax of DRT is a variant
of the language of LPC (lower predicate calculus, without function sym-
bols): to each DRS corresponds a formula in LPC and conversely (cf sec-
tion 1.2.3 below). The language given here is a one-sorted language in
the sense that there is only one type of discourse marker, while in the
original DRT-language or its extensions (e.g. Kaspar & al [87] DRT-language
is a many-sorted language with various types of discourse markers for
event, time, locative, plural etc... This could easily be made up for, carry-
ing along the sorts in every rule; we shall not, however, burden the reader
with these obvious details.

DRS’s with parameters

Although they can be dispensed with (using only variables, since models

can be defined in Herbrand universes cf Manna [74] — alias canoncial
realizations cf Kreisel & Krivine [71], we shall nevertheless describe DRS’s
with parameters, since the latter are standard stuff in Analytic Tableaux
methods.
K (= [U, CON]) is a DRS with parameters iff CON is defined as in the
pure case, except that the atomic conditions may contain terms (variables
or parameters) instead of variables only. Henceforth all DRS’s are with
parameters, since the pure ones are a particular case of the ones with
parameter.

12. Semantics of DRT-languages

The truth-definition of a DRS can be defined in models, as for the for-
mulae of LPC.
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1.2.1. Pure DRS’s and models

Definition 1

A model M for a pure DRS K (= [U, CON])) is a pair <D, I> where
D is a (non empty) domain of discourse, and I an interpretation function
which (as in the LPC case) associates extensions in D with every n-ary
relational symbol. Let f be a partial function whose domain includes U
and whose range is in D; f is called an admissible embedding of U in D.

The truth definition for a pure DRS is given as follows:

Definition 2
A pure DRS is true with respect to M iff there is an admissible embed-
ding of U in D which satisfies every condition in CON.

The following few lines give the satisfaction conditions for a pure DRS:
Definition 3

f satisfies a pure condition of the form P"(xl, x2,.., xn) iff <f(x1),
f(x2),..., f(xn) > € I(P")

Definition 4
f satisfies a pure condition of the form xi = xj iff f(xi) = f(xj)

We need a new definition before giving the satisfaction definition of com-
plex conditions:

Definition 5

Let X be a set of Discourse Markers (U 2 X), and g and f be partial
functions on U. g is an X-extension of f if g assigns the same values to
all the markers in the domain of f as f does, and in addition g assigns
values to all the discourse markers in X (and more precisely the domain
of g is the union of X and the domain of f).

Definition 6
f satisfies a pure condition of the form KI = K2 iff for every U, ex-
" tension g of f which satisfies K1 there is an Uy, extension h which
satisfies K2.

Definition 7

f satisfies a pure condition of the form - KI iff there is no Uy, exten-
sion g of f which satisfies K1



A TABLEAU CALCULUS FOR DRT 385

Definition 8
f satisfies a pure condition of the form K1 v K2 iff there is an extension
g of f which satifies K1 or K2.

Definition 9
f satisfies a pure condition of the form Kl iff there is an extension g of
f which satisfies K1.

We proceed now to show that there is a direct mapping from DRS’s
to LPC formulae and conversely in the following sense: to any DRS K
corresponds an LPC formula F, and to any well-formed formula F in LPC
corresponds a DRS K. This will give ultimately the semantics of DRT
languages.

1.2.2. Translation of DRS’s into LPC formulae

Given a DRS K = [U, CON] (where U= [xl,...xn}) we associate with
it a formula F, denoted Pr(K), as follows:

F=axl...axn A Pr(C), where A Pr(C) is the conjunction of the
translations of all conditions Ck in CON.

The translations of the conditions are obtained as follows:

(i) Given a condition of the form P"(x1,x2,...xn) its translation
is P"(x1,x2,...,xn).
(ii) The translation of a condition of the form xi = xjis xi = xj.
(iii) Given a condition of the form K1 = K2 where K1 = [Ul,
CONI] and K2 = [U2, CON2] (such that Ul = {x1,x2,...,xn]
and U2 = [yly2,...yp)), its translation is vxl vx2 ... ¥xn
(A Pr(Cl) = 3yl 3y2...3yp A Pr(C2)), where A Pr(Cl) is
the conjunction of the translations of all conditions in CON1
and A Pr(C2) is the conjunction of the translations of all con-
ditions in CON2,
(iv) The translation of - K1 is = Pr(K1); and finally the transla-
tion of K1 v K2 is Pr(K1) v Pr(K2).

Thus, the application of the translation rules above will produce for
DRS (4) the following LPC formula:

(1) (vx)(vy)[(farmer(x) A donkey (y) A beat(xy)) = (3z)(z=x A
beat(x,z))]
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(1) is obtained stepwise as follows:

step 0 K = [{ ],CON] is translated into a formula given by the transla-
tion of CON (since the universe of K is empty).

step 1 CON=[Kl = K2] with K1 = [{x,y},CONI1] and K2=[{z],CON2]
is translated into

(vx)(vy)[farmer(x) A donkey(y) A own(xy)) = (3z)(z=x A beat(xy))]

1.2.3. Translation of LPC formulae into DRS’s

We want now to show that any LPC formula F can be mapped into
a DRS K, denoted Dr(F):

The Mapping Procedure

(i) We begin the mapping procedure by creating a DRS K’ =
[U’, CON’] where U’ and CON’ are empty, and we obtain
K by embedding F into K’ as follows:

Embedding rules

(ii) for F = (3 x1)P, we introduce x1 into U’ and embed the
translation of P into K
(iii) for F = (v x1) P we add to CON" the condition (K1 = K2);
where K1=[{x1},TRUE], and we embed P into K2; TRUE is
true under any interpretation.
(iv) If P is a n-ary relational symbol, we add P into CON’
(v) for P = Q1 A Q2, we embed successively Q1 and Q2 into K’
(vi) for P = QI v Q2 we map QI into a new DRS K1, map Q2
into the new DRS K2 and add the condition K1 v K2 to CON’
(vii) for P = (F1 = F2) we create a complex condition K1 = K2
that we add to CON’; we map respectively F1 into K1 and
F2 into K2.

The following mapping of formulae into DRS’s will illustrate the rules
above:

(2) 3x)[3y)Py = Px]
is translated into the DRS
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(€)

387

y
=
Py Px
The formula
(4) @X)[(vy)(Py = Px)]
is translated into the DRS
()
y
=
TRUE Py Px

We assign to
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(6) (vX)(vy)Py = Px]
the translation

™

TRUE y
TRUE Py

12.4. DRS’s with parameters and models

DRS’s with constants in D

Let D be any domain (non-empty set). We want to define the notion
of DRS’s with constants in D — briefly “D-conditions™.

Definition 10

By an atomic D-condition we mean either an atomic condition of the form
P" (sl,...,sn) or si = sj, where each si is either a variable or an element
of D (note that we do not allow any si to be a paramater) and P is an
n-ary relation symbol.

Having defined the atomic D-conditions, we can then define the set of
all D-conditions by the formation rules given in Section 1.1. Thus a D-
condition is like a DRS with parameters except that it contains elements
of D instead of parameters (*). This includes the “pure” conditions —
those with no parameters and no constants in D — as special cases.

() The notion of D-conditions is close to the notion of indeterminates of situation types
in Situation Semantics theory (Cf Barwise & Perry [83]).
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Definition 11

For any sequence k €D* we define the D-condition CON,,, as the set
of all conditions obtained from those in CON by substituting the sequence
k € D* for the sequence u of all elements of U. The reader will readily
supply an inductive definition of this notion. The set of all closed D-
conditions (*) will henceforth be denoted by BP.

Definition 12 .

Let ¢ be a mapping from the set of parameters () of a set B (of D-
conditions with parameters) into D. For any condition C in B, let C°
mean the result of simultaneously substituting for each parameter ai of
C its image o(ai) under o. We shall say that B is (simultaneously) satisfiable
in D if there exists an interpretation I of the predicates of B and there
exists a “substitution” ¢ mapping the parameters of B into elements of
D such that for any condition C of B, C° is true under 1. Hence a model
is now a triple M = <D, I, ¢>, instead of a pair M = <D, I> in the
pure case. The rest proceeds as above for pure DRS’s.

2. Analytic box-tableaux

2.1. Preliminary definitions

We introduce now an important notion, that of a valid DRS:

Definition 13
A DRS K is valid (°) iff K is true under any interpretation I.

Lemma 1: Let Pr(K) the formula obtained by translating the DRS K into
LPC; given a formula F, denote its tanslation into a DRS by Dr(F). If
a DRS K is true in a model, then Pr(K) is also true in that model; and
conversely. If an LPC formula F is true in a model, then Dr(F) is also

(%) Recall that a D-condition is a condition with constants in D; hence a closed D-
condition is a condition with constants in D, in which no occurrence of variable is free.

(*) The status of parameters, with respect to DRT, is not easy to define. DRT uses only
discourse markers for which we can assign extensions in a model; therefore it should be
convenient to consider parameters as particular discourse markers that never appear in top
of DRS’s (this view has been suggested to us by H. Kamp).

(®) Cf the Conclusion for discussion on the relevance of this notion for the current for-
mulation of DRT.
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true in that model; and conversely. Moreover Dr(Pr(K)) and K are logically
equivalent.
Proof: induction on the definitions. @

Corollary: If a DRS K is valid, so is Pr(K), the LPC formula associated
to K. Conversely given F, a valid formula in LPC, its translation Dr(F)
is a valid DRS in the language of DRT. @

2.2. The method of box-tableaux

Definition 14

A box is either a DRS K = [U, CON] or an element of CON, for some
DRS of that form, or TRUE or FALSE.

A signed box is a box of the form T C, F C (ie C is preceeded by the
symbol T (TRUE), respectively F (FALSE)).

Definition 15

Under any interpretation a signed box T C is called true if C is true, and
Jfalse if C is false. And a signed box F C is true if C is false and false
if C is true.

By the conjugate of a signed box we mean the result of changing the sym-
bol T to F, or Fto T (e.g. the conjugate of F C is T C and conversely).
Moreover F TRUE and T FALSE, resp F FALSE and 7 TRUE are con-
jugate.

BOX-TABLEAUX are a variant of the analytic tableaux of Smullyan. The
idea underlying the box-tableaux system is the following: to prove a DRS
K, we try to falsify K i.e. to find a model for F K.

We shall illustrate by an example:

Suppose we want to prove the DRS K:

K =1[],Kl = K2
Kl = [{], KIl = K12]
K2 = [{}], K21 = K22]
K1l = [{x], Pl

K12 = [y}, Q¥), Ay
K21 = [{x], [P(x), R(x)}]
K22 = [fy}, Q(y), Ay}l
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the following lines give the bax-tableau for K:

(1) FK

(2) F (K1 = K2)

(3) T (K1l = K12)

@) F(I{}, K21 = K22J]
(5) F (K21 = K22)

(6) T P(a)

(M) T R(a)

® Flly, Q) Ayl

(9) F P(a) (10) T [ly), R, A@@Y)]]
X X

comment:

Let’s explain how is contructed the box-tableau, above, for K. At the
top of the tableau is the box F K i.e. we are trying to derive a contradic-
tion from the assumption that K is false. A box of the form F[[ }, CON]
is true if one of the Conditions contained in CON at least is false. So
that in (2) we write that the unique box (K1 = K2) contained in CON
is false.

A box F (K1 = K2) is true if (K1), is true and (K2)s,,, is false. We
denote by (K),, for K = [U, CON] with U = {x1,x2,...,xn}, the result
of simultaneously substituting in CON for each occurrence of xi the in-
dividual parameters ai (where ai, for 1 < i < n, is a new parameter, and
each ai is distinct from all other aj, j < i). We denote by (K)s,,, for K
= [U’, CON], the box K’ = [U’, CON] where CON,, is the result of
simultaneously substituting in CON for each occurrence of xi (which
belongs to U) their substitution parameters ¢i. K1 = [Ul, K11 = K12}],
with Ul = [}; therefore (K1),,, consists in writing the CON of K1 in
the tableau. In this way we obtain line (3); in line (4) we see that (K2),,,,
yields F K2. Lines (5), (6), and (7) are obtained from (4). Now look at
(3); we have two ways of proving that (3) holds, so we add two new bran-
ches to the box-tableau. In the first one we add F (K11),,,, and in the
second T (K12)g,,,. We denote by (K),,,, for K = [{x1,x2,...xn], CON],
the result of simultaneously substituting in CON for each occurrence of
xi the individual parameters ai (where ai may be new or not). The universe
of K11 is {x]; so we substitute for x the existing parameter a.

Now if we look at the first branch we see that (9) is a direct contradic-
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tion of (6) (i.e. (9) is the conjugate of (6)), so we put a corss after 9 to
say that this branch leads to a contradiction. In the second branch we
see that (8) is the conjugate of (13), so this branch leads also to a con-
tradiction and we put after (13) a cross to “close” the branch. Thus (1)
is untenable and therefore K is a true DRS under any interpretation, that
is a valid DRS.

Here is the corresponding analytic tableau:
The translation of the DRS K into LPC yields the logical formula

Pr(K) = [(vx)((P(x) = GEy}QY) A AGYN] = [(YX)[(P(x) A
R() = @GyQG) A Ay

the analytic tableau for Pr(K) is given along the following lines:

1) F [(vx)((Px) = @Q® A A = [(YOI(P(x) A R(x)) =
AVQE) A Axy)]

@) T (vx)((P(x) = AyNQW) A Axy)) from 1
(3) F(vx)(P(x) A R(x)) = @y)Q(y) AN A(xy)) from 1
(4) FP(a) A R@) = @y)QE) A Axy)) from 3
(5) P(a) A R(a) from 4
(6) F(@Ey)Q) A Aay)) from 4
(7) P(a) from 5
(8) R(a) from 5
(9 P(a) = @AyNQY) A Aay)) from 2

(10) F P(a) from 9 (1) @AY)Q(Y) A A(ay)) from 9

X (12) Q(b) A A(a,b) from 11

(13) Q(b) from 12

(14) A(a,b) from 12

(15) F (Q(b) A A(a,b) from 6
(16) F Q(b) from 15 (17) F A(a,b)
from 15
X X

Each branch of the tableau is closed; thus, Pr(K) is a tautology.
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RULES FOR THE BOX-TABLEAUX

Here are the rules for the box-tableaux:

T =K F K
O “Fx TK
@) T (K1 v K2) F (K1 v K2)

TKI | TK2 FKI

FK2
T (K1 = K2) F (Kl = K2) B
3 h K1 = [U1,CON1
) F Dy 1T KDgyn T KDy VPereKI=I ]
F (K2),,

@ TK FK

7 CON,,, F CON,,,

where K is not (1), (2) or (3) and K = [U, CON)].

We explain now some notations in the rules above:
For K = [U,CON] we define:

F Ky T®on .
F CON,,, T CON,, with a any sequence of parameters
F Ky T (K)yy ; .

F CON,, T CON,, with proviso

‘We denote by u/a the substitution for the sequence u of the sequence of
parameters a, where u is the sequence of all elements of U. By CON,,
we denote the substitution of u by a in every condition contained in CON.

Provisio:
The sequence a must be a sequence of new distinct parameters

And finally we define:

T CON,y F CON, . T, o35
T le/U F le/ul...l F Cnf/U Where CON - [C ’ C ,...,Cl'l}
T Cny,y

(where £ is one of 3, S, v)
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F (K)sy T (K)sy
FK’ TK’
Where K’ = [U’,CON,,,]
Given a universe U and its substitution set S (i.e. the set consisting of s

such that s is substituted for u in U), we denote by Kg,, the result of

substituting s for u in every condition of CON which contains an occurence
of u.

UNIFIED NOTATION :

We shall now introduce a unified notation as for analytic tableaux; for
every box « of the form
T =K, F -K, F(K1 v K2), F (Kl = K2) we define the two sub-boxes
al and a2 as follows:

ifa =T K then al = FK and a2 = FK
ife = F K thenal = TK and a2 = TK
ife = F(K1VK2) thenal = FKI1 and a2 = FK2
ifae = F(KI1 = K2) thenal = TKIl and &2 = FK2

For every box g8 of the form 7 (K1 v K2), T (K1 = K2) we define the
two sub-boxes g1 and B2 as follows:

if 8 = T(Kl vK2) then 81 = TKI1 and 82
if @ = T (K1 = K2) then 81 = FKI and 82

T K2
TK2

I

We call y-box a box of the form F K and é-box a box of the form T
K (K not of the form (1), (2) or (3) above); we denote by y(a) and é(a),
respectively F CON,,, and T CON,,,,.

We observe that under any interpretation e is true iff el and «2 are
both true; that 8 is true under any interpretation iff 81 is true or 82 is
true. vy is true if y(a) = F CON,, is true, ie if for the sequence u of all
elements in U, F CON,, is true for u and a (with proviso).

6 is true if 8(a) = T CON,,, is true, ie if for the sequence u of all
elements in U, T CON,, is true for u and a (any sequence of
parameters). This observation can be extended easily (induction on the
formation rules for DRS’s) to a consistency proof for the box-tableau
method.

Our rules for the box-tableaux can be reformulated as:
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rule A: %
al
a2
._B
rule B: 81182
rule C: ﬁ where a is a sequence of arbitray parameters
rule D: % where a is a sequence of new distinct parameters

Definition 16

A box-tableau for X is an ordered dyadic tree whose points are (occurences
of) boxes which is constructed as follows: we start by placing F K at the
origin. This concludes the first stage. Now suppose we have already con-
cluded the n-th stage; then we proceed as follows : if the box-tableau thus
obtained is closed then we stop. Also, if every non-atomic (in the sense
of Section 1.1) box on every open branch of the box-tableau thus obtained
has been used up, we stop. If neither, then we pick a point P of minimal
level (ie as high up on the three as possible) which has not yet been used
and which appears on at least one open branch and we extend the box-
tableau thus obtained as follows: take every open branch © passing
through the box P and

1) If P is an a, we extend O to the branch (O, al, o2).

2) If Pis a 8, then we simultaneously extend © to the two branches
(e, g1, (8, B2).

3) If Pis a &, then we take the sequence a of the first parameters ai that
are distinct and do not appear on the tree and we extend © to the branch
(O, &(a)) for this a.

4) If Pis a v, then we take the sequence a of the first parameters ai such
that y(a) does not occur on © and we extend © to the branch (0,
v(a), v); ie we add y(a) as an endpoint to © and then we repeat, at
each node, an occurrence of 4.

Having performed acts 1-4 resp, we then declare P to be used, and this
concludes stage n+1 of our procedure. Call a box-tableau obtained in this
way a systematic box-tableau.

A box-tableau is atomically closed whenever each branch contains an
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atomic condition and its conjugate; a tableau is closed when each branch
contains both a box and its conjugate.

3. Consistency and completeness of the box-tableaux method

‘We want to prove the consistency and completeness of the method : any
box B proved by the box-tableau method must be valid and conversely.
We shall give first an indirect proof of this statement.

3.1 Intuitive proof

Consistency : Any box-tableau provable box B is valid. Suppose this were
not true, ie there would be a box B that were box-tableau provable but
not valid. Then by the Corollary to Lemma 1, the LPC formula Pr(B)
would not be valid, hence the analytic tableau with origin F Pr(B) would
not close. Therefore there would exist an open branch on which every for-
mula is simultaneously satisfiable, in particular F Pr(B); hence F
Dr(Pr(B)) = F B.

Completeness: Any valid box B is box-tableau provable. Consider the
box tableau BT(B) for B, ie the closed box-tableau starting with F B con-
structed according to the rules given above. Call the nodes of this box-
tableau = Bj, with x the prefix (T or F) of the box Bj. Forgetting for a
moment about the prefixes, let Pr(Bj) be the formula of LPC correspon-
ding to the box Bj, as explained in section 1.2.3 above. Call nox BT* (B)
the tree (it is no more a box-tableau) we obtain by everywhere substituting
« Pr(Bj) for the = Bj. This tree can be extended (an easy induction on
the box-tableau rules) to an analytic tableau T(Pr(B)) for the formula
Pr(B). Since BT(B) is closed, so is T(Pr(B)) — by an obvious induction
again. By the completeness theorem for analytic tableaux, Pr(B) is a valid
formula, hence B is a valid DRS (and conversely).

To the hapless reader not very familiar with tableau methods all this
might look like some sleight-of-hand trick, so we prove formally com-
pleteness for box-tableaux — a la Smullyan.

3.2 Formal proof

Definition 17
A Hintikka box-set (for an arbitrary domain D) is a set H of conditions
such that the following holf for every @, 8, v, & in the set B” of all clos-
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ed D-boxes (boxes all of whose discourse markers haeve been substituted
for by elements from D):

HO: No box of B® and its conjugate are both in H.

Hl: If « € H, then «l, a2 are both in H.

H2:If 8 € H, then 81 € H or 82 € H.

H3: If ¥y € H, then for every sequence k € D* (k) € H.

H4: If & € H, then for some sequence of distinct elements k € D*
&(K) € H. '

Lemma 2: (Hintikka lemma for box-tableaux): Every Hintikka box-set
H for a domain D is satisfiable in the domain D.

Proof': it is enough to show this for an afomic valuation of the set B?
(as in Smullyan [68], p 47 — mutatis mutandis).

For every atomic box B (a set of conditions either of the form
P"(x1,x2,...,.xn) or xi = xj), give it the value “true” if T B is an element
of H and the value “false” if F B is an element of H; and any one of
these otherwise. Now we show that each element P of H is true under
this atomic valuation, by induction on the degree of P.

If P is of degree 0, it is immediate that P is true under this valuation.
Now suppose P is of positive degree and that every element of H of lower
degree is true. We must then show that P is also true. Since P is not of
degree 0, it is either some o, 8, v, or &.

If it is an « then «l, o2 are both in H (by H1), hence both true (by
induction hypothesis), hence « is true.

If it is a 8, then at least one of 81, 82 is in H (by H2) and hence true,
so @8 is true.

If it is a v, then for every sequence k € D* (k) € H (by H3); but
every y(k) is of lower degree than v, hence true by inductive hypothesis.
Hence y must be true.

If it is a 6, then for some sequence of distinct elements k € D*, §(k) €
H (by H4. Then &(k) is true by inductive hypothesis, hence & is true. @

Definition 18
For any P on a branch © of degree > 0, define P to be fulfilled on ©
if either:

(i) Pis an @, and al, o2 are both on ©;
(ii) Pis a B, and at least one of 81, 82 is on ©;
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(iii) Pisa+, and for every sequence of parameters a, y(a) is on ©;
(iv) Pis a8, and for some sequence of distinct parameters a, §(a)
is on O,

Definition 19

A finished systematic box-tableau is a systematic box-tableau is a
systematic box-tableau that is either infinite or else finite but that cannot
be further extended by continuing the systematic procedure of Defini-
tion 16 (in other words, for each open branch all non-atomic boxes have
already been used).

Theorem 1: For any finished systematic box-tableau, every open branch
is a Hintikka box-set (for the denumerable universe of parameters).
Proof': It is enough to show that every open branch of such a box-tableau
is a Hintikka box-set. The procedure given in Definition 16 is a systematic
one for automatically fulfilling all &, 8 and & formulae that come our
way. As for the y-formulas, when we use an occurrence of a i on a branch
O to subjoin an instance -y(a), the purpose of repeating an occurrence of
v is that we must sooner or later come down the branch © and use this
repeated occurrence, from which we adjoin another instance v(b) and
repeat an occurrence of vy again, which we in turn use again, and so on...
In this way we are sure to fulfill all ¥ formulae (as well as the ¢, 8 and
6 formulae).
Consider now the possibility that in systematically constructing a finish-
ed box-tableau, we may arrive — after a finite number of steps — at a
stage in which the box-tableau is not closed, and yet every non-atomic
point of every open branch has been used. This can obviously happen
only if no y-formulae occur on any open branch. In this case all the yfor-
‘mulae are vacuously fulfilled. Hence in this case every open branch is still
a Hintikka box-set. ®

Theorem 2: In any finished systematic box-tableau BT, every open branch
is simultaneously satisfiable.

Proof: this is an immediate Corollary of Theorem 1 and the Hintikka
lemma for box-tableaux. @

Theorem 3: (Completeness Theorem for Box-tableaux): If a box B is valid,
then B is box-tableau provable — ie there exists a closed box-tableau for
F B. Indeed, if the box B is valid, then the systematic box-tableau for F
B must close after a finite number of steps.
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Proof: Suppose the box B is valid. Let BT(B) be the finished systematic
box-tableau starting with F B. If BT(B) contained an open branch Othen
by Theorem 2 © would be satisfiable; hence F B, being an element of O
would be satisfiable, contradicting the hypothesis that B is valid. Thus
B is box-tableau provable. Concerning the second statement, by Kénig’s
lemma (cf Smullyan [68], p 32), a closed infinite box-tableau is impossi-
ble, because if BT(B) is closed then every branch of BT(B) is of finite
length, hence BT(B) must itself be finite. @

Let us come back, for a moment to the unified notation and rules A-D
of Section 2.2. Under any interpretation in the domain D, the following
facts obviously hold:

Fl: a is true iff al, a2 are both true.
F2: B is true iff at least one of 81, B2 is true.
F3: y is true iff y(k) is true for every sequence k € D*

F4: & is true iff 6(k) is true for some sequence k of distinct elements
of D.

Lemma 3: The following facts hold:

Gl: If a set B of D-conditions is satisfiable and « € B, then
(B, ol, a2} is satisfiable.
G2:If a set B of D-conditions is satisfiable and 8 € B, then at
least one of the two sets (B, 81}, (B, 82] is satisfiable.
G3:If a set B of D-conditions is satisfiable and ¥ € B, then for
every sequence a of parameters, the set {B, y(a)] is satisfiable.

G4: If a set B of D-conditions is satisfiable and 6 € B, and if a
is a sequence of distinct parameters none of which occur in
any element of B, then {B, &(a)] is satisfiable.

Proof': Verification of G4 (the non-obvious case) : There is an interpreta-
tion I of all predicates of B in some domain D and a substitution ¢ of
parameters of B into elements of D, such that for every DRS K =
[U, CON] in B, CON,, is true under I, where k is a sequence of
parameters. In particular, §° is true under I. This is a box with no
parameters but with constants in the domain D and it is of existential
type, call it 81. Since 81 is true under I, there must be at least one sequence
k of elements of D such that 81(k) is true under 1. Now ¢ is defined on
all parameters of (B, 8(a)}, except for the sequence of parameters a. Ex-
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tend o by defining e(a) = k — call this entension ¢* Then ¢* is defined
on all parameters of (B, &(a)]. Clearly, for every box C in B, C°* is the
same expression as C’, so C™* is true under I. And &(a)"* is the same set
of sentences as é,(k), hence 8(a)"* is true under 1. Hence, for every box
Cin B, &(a)}, C* is true under I. Thus the set {B, &a)] is satisfiable. @

Theorem 4: (Consistency Theorem for Box-tableaux) : Every box-tableau
provable DRS K is valid.

Proof: Suppose O is a branch of a box-tableau and that © is satisfiable.
If we extend © by rule A, C, or D then the resulting extension is again
satisfiable (by G1, G3, G4 above resp). If we simultaneously extend © to
the two branches ©1, ©2 by one application of rule B, then at least one
of ©1, O2 is again satisfiable (by G2). Hence any immediate extension
of a box-tableau which is satisfiable (meaning at least one of its branches
is satisfiable) is again satisfiable. Therefore (induction on formation rules)
if the origin of a box-tableau is satisfiable then at least one branch of
the box-tableau is satisfiable and hence open. Hence if a box-tableau closes
then the origin is indeed unsatisfiable; whence the Theorem by con-
traposition. @

Theorem 5: Any closed box-tableau is atomically closed (in the sense of
Definition 16). @

4. Conclusion

The proof procedure for DRS’s we give here is along the lines of
Smullyan. The idea was to exploit the similarity of DRT languages and
logic predicate languages; in particular we show that any DRS K can be
converted into a first-order logic formula P, and conversely.

There is another way of providing a deductive theory for DRT that could
be investigated; it is the Gentzen sequents, since a box in our tableau ap-
proach is a particular case of a block in the Gentzen systems. However
Smullyan gives the proof of completeness for the block tableaux by show-
ing that any block tableau can be converted into an analytic tableau, and
conversely; therefore the completeness proof provided here for the box
tableaux is a more direct proof.

However the limitation of our approach with respect to DRT concerns
the notion of validity, that is not the most prominent notion within the
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current formulation of DRT. DRS’s with discourse markers in top are hard-
ly ever valid, and then only in the extreme case where CON (the set of
conditions) is tautological. More relevant is the notion of logical conse-
quence for DRT, even though logical consequence for DRT (noted |- ;)
is not exactly equivalent to logical consequence (noted |-, ;) for predicate
logic. Given a DRS K’, the extension of K’ with a bit of discourse D
can be seen as deductive process in the sense that, the resulting DRS K
of such an extension, is obtained by proving the following statement :
K’ I-pgrK. So that, when we state K’ |-, K, K in not independent of K,
e.g. A man loves Mary. Mary is a girl. Every man estimates a girl he knows.
I-prr The man who kowns Mary smokes. 1f we can define |- in terms
of |-, then, our approach which makes use of logical consequence or
more precisely of semantic consequence, can, via this equivalence, apply
strictly to DRT as the theory stands.

Definition :

Kl-pgrK” = K+K’ |- o5 K’

where K+ K" is the result of embedding K’ into K. Thus, if we cannot
falsify K+K’ |-, K’, then K+K’ |-, K’ is valid, and in consequence,
Kl-pgr K’ holds.

Therefore, the box-tableau method can be seen as motivated by the goal
of providing a complete positive algorithm for the test of validity (and
therefore, of satisfaction ie truth in some model) that applies to DRS’s,
even though the deductive theory provided here is not directly related to
DRT (an alternative approach is sketched in Sedogbo [86], where we use
a naive deduction technique. Nevetheless, a full deductive theory for DRT
based on logical consequence |-y is still to be explored).

The primary goal of DRT is to deal with complex phenomena such as
tense and anaphora. Needless to say that the DRT language we provide
here a deductive theory for, is a one-sorted language; in other words, much
more work is needed to extend this deductive theory to tense (and more
precisely to event), time and generalized quantifiers.

An important issue we don’t adress in this paper concerns the implemen-
tation of the box tableaux procedure. The advantage of box tableaux is
that a branch can be non-atomically closed. Since the conditions in a box
(or DRS) are linked by an implicit and (the binary connective) which is
commutative, it is hard, in practice, to implement an efficient box tableaux
prover which closes non-atomically. Thus it is more convenient to design
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a box tableaux prover for which branches close atomically (cf Ommani
& Sedogbo [87]).
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