A NOTE ON THE SEMANTICS OF MINIMAL INTUITIONISM

José M. MENDEZ

Introduction

Georgacarakos has provided in [1] Kripke-style semantics for the minimal intuitionistic logic, **Im**. As he points out, there are two differences between these semantics and the standard semantics for the full intuitionistic logic, **I**:

- (i) In the canonical model, the set of possible worlds is interpreted as the set of all negation-saturated and absolutely saturated theories. In the canonical model for I, however, each possible world is understood as a negation-saturated theory.
- (ii) The valuation of negative formulae is, according to Georgacarakos, as follows: $\neg A$ holds in possible world a iff A does not hold in every negation-coherent world b such that a. In a, it suffices to require: $\neg A$ holds in a iff a does not hold in every a such that a.

The aim of this paper is twofold:

- (i) We show that the models proposed by Georgacarakos are unnecesarely strong: we interpret canonically possible worlds as minimal intuitionistic theories with certain properties among which consistency (in either of both senses, negation-coherency and absolutely coherency) is not necessarely found. There is, however, at least one negation-coherent world; namely, Im, the actual world.
- (ii) We explain, so we think, Georgacarakos' valuation of negative formulae by providing in the first place a semantics for the positive fragment of intuitionistic logic, and then by introducing negation by means of a falsity constant. Semantics for Im defined with negation as primitive are also provided. Georgacarakos' models are special cases of those we propose.

1. Positive intuitionistic calculus I+

Axioms: A1. $A \to (B \to A)$ A2. $(A \to (B \to C)) \to ((A \to B) \to (A \to C))$ A3. $A \to (A \lor B) / B \to (A \lor B)$ A4. $(A \to C) \to ((B \to C) \to ((A \lor B) \to C))$ A5. $(A \& B) \to A / (A \& B) \to B$ A6. $A \to (B \to (A \& B))$

Rules: Modus ponens (

Modus ponens (If $\vdash A$ and $\vdash A \rightarrow B$, then $\vdash B$).

2. Models for I+

A model structure is a pair $\langle K,R \rangle$ where K is a non-null set and R is a binary relation on K reflexive and transitive. A model is a triple $\langle K,R,\models \rangle$ where $\langle K,R \rangle$ is a model structure and \models is a (valuation) relation from K to the sentences of I+ satisfying the following conditions for all wff A,B and $a,b \in K$

- (i) If Rab and a = A, then b = B
- (ii) $a \vDash A \& B \text{ iff } a \vDash A \text{ and } a \vDash B$
- (iii) $a \vDash A \lor B$ iff $a \vDash A$ or $a \vDash B$
- (iv) $a \vDash A \rightarrow B$ iff for all $b \in K$, if Rab and $b \vDash A$, then $b \vDash B$.

A formula A is valid if $a \models A$ for every $a \in K$ in all models $\langle K, R, \models \rangle$. It is easy to show that I + is semantically consistent, that is, if A is a theorem of I +, then A is valid.

3. Completeness of I+

A theory is a set of formulas of I + closed under modus ponens; that is, a is a theory if whenever $A \to B \in A$ and $A \in a$, then $B \in a$. A theory a is prime if whenever $A \lor B \in a$, then $A \in a$ or $B \in a$. Finally, a is regular if a contains all theorems of I + . Now, we define the canonical model as the triple < tI + ., R = . where tI + . is the set of all prime regular theories; R = . is defined on tI + . as follows: for all $a, b, e \in tI + .$ Rab iff $a \subseteq b$; and $e \in .$ is a relation from $e \in .$ Then, we prove

LEMMA 1. Let $\langle t\mathbf{I}+, R, \models \rangle$ be the canonical model. If $a \in t\mathbf{I}+$, then a (i) is closed under provable entailment, and (ii) is closed under &.

Proof. (i) We prove that if $A \to B$ is a theorem and $A \in a$, then $B \in a$. Suppose $A \to B$ a theorem and let $A \in a$. By the regularity of a, $A \to B \in a$. So, $B \in a$ (a is closed under modus ponens).

(ii) Suppose A, $B \in a$. By A6 and (i), $B \to (A \& B) \in a$; by closure under modus ponens of a, $A \& B \in a$.

LEMMA 2. I+ is prime; that is, if $A \vee B$ is a theorem, then A is a theorem or B is.

Proof. By the surprisingly simple strategy of the canonical metavaluations, R.K. Meyer proves in [2] that a number of logics have the disjunctive property. Among these logics are I+ and I+, f, Im (Cfr. infra).

LEMMA 3. The canonical model is indeed a model.

Proof. By Lemma 2 $t\mathbf{I}$ + is non-null: \mathbf{I} + is a prime regular theory. It remains to prove that the canonical R and \models satisfy the conditions of §2. Now, the canonical R is clearly reflexive and transitive. So, we prove that the canonical \models satisfies the clauses (i)-(iv) of §2. Clause (i) is immediate; clause (ii) easily follows by A5 and A6; clause (iii) by A3 and the fact that all members of $t\mathbf{I}$ + are prime. So, the clause of interest is (iv).

Subcase (I). If $a \models A \rightarrow B$, then for all $b \in tI+$, if Rab and $b \models A$, then $b \models B$.

Proof. Suppose $a = A \rightarrow B$ and (for some $b \in t\mathbf{I}+$) Rab and b = A. It suffices to prove b = B. By definition of $= A \rightarrow B \in A$, $A \rightarrow B \in A$, $A \rightarrow B \in A$, by closure under modus ponens of $A \rightarrow B \in A$. So, $A \rightarrow B \in A$ by definition of $A \rightarrow B \in A$. So, $A \rightarrow B \in A$ by definition of $A \rightarrow B \in A$.

Subcase (II). If $a \not\models A \rightarrow B$, then there is some $b' \in t\mathbf{I} + \text{ such that } Rab'$, $b' \models A$ and $b' \not\models B$.

Proof. Define $b = \{C \mid A \rightarrow C \in a\}$

(i) b is closed under modus ponens
Suppose C → D, C ∈ b. By definition, A → (C → D),
A → C ∈ a.
By A2, A → D ∈ a. Thus, D ∈ b.

- (ii) b is regular Suppose C a theorem. Then $A \to C$ is a theorem by A1. So, $A \to C \in a$ (a is regular). Thus, $C \in b$.
- (iii) $b \models A$ By the regularity of $a, A \rightarrow A \in a$. Thus, $A \in b$ and $b \models A$ by definition of \models .
- (iv) $b \not\equiv B$ Immediate. If $b \models B$, then $a \models A \rightarrow B$ by definitions of b and of \models .
- (v) RabSuppose $C \in a$. By A1, $A \rightarrow C \in a$. So, $C \in b$. That is, $a \subseteq b$. Thus, Rab.

Now we show how to extend b to the required b'. Define X as the set of all theories x such that $b \subseteq x$ and $B \notin x$. By Zorn's Lemma, X has a maximal element b' such that $B \notin b'$. Suppose b' is not prime. Then for some wff C, $D \subset V \subset D \in b'$ but $C \notin b'$ and $D \notin b'$. Define $[b', C] = \{F \mid \exists E(E \in b' \text{ and } (C \& E) \to F \in I+)\}$, $[b', D] = \{F \mid \exists E(E \in b' \text{ and } (D \& E) \to F \in I+)\}$. It is easy to show that [b', C] and [b', D] are closed by modus ponens; on the other hand, it is clear that b' is strictly included in [b', C] and in [b', D]. Thus [b', C] and [b', D] are regular theories. By the maximality of b', $B \in [b', C]$ and $B \in [b', D]$; by definition, $(C \& E) \to B$, $(D \& E') \to B \in I+$, E and E' being formulas in b'.

Now, by elementary properties of & and \vee , $((C \vee D) \& (E \& E')) \rightarrow B \in I+$. So, $B \in b'$ (Cfr. Lemma 1) which is impossible. Therefore, b' is a prime regular theory. Now, Rab' follows by Rab and definition of $R(b \subseteq b')$; $b' \models A$ by (iii) above, and, finally, $b' \not\models B$ by $B \notin b'$ and definition of \models .

We prove

Theorem (Completeness). If A is valid, then A is a theorem of I+.

Proof. Suppose A is not a theorem. Then, $A \notin I+$. So, A is invalid in the canonical model.

4. The logic I+, f

The logic I+, f is a definitional extension of I+. To formulate I+, f we add to the sentential language of I+ the propositional falsity cons-

tant \mathbf{f} , and we define $\neg A = _{DF} A \rightarrow \mathbf{f}$. Then, we note that the following are theorems: $A \rightarrow \neg \neg A$; $(A \rightarrow B) \rightarrow \neg (\neg B \rightarrow \neg A)$; $(A \rightarrow \neg B) \rightarrow (B \rightarrow \neg A)$; $(A \rightarrow \neg A) \rightarrow \neg A$; $(A \rightarrow B) \rightarrow (A \rightarrow \neg B) \rightarrow \neg A$, etc.

5. Models for I+, f

A model for I+, f is a quadruple $\langle K, R, S, F \rangle$ where $\langle K, R, F \rangle$ is a model for I+ and $S \subset K$ satisfying the clause,

(v)
$$a \models \mathbf{f} \text{ iff } a \notin S$$

added to the conditions (i)-(iv) of §2.

We note that $\neg A \rightarrow (A \rightarrow B)$ is invalid. Consider a model $\langle K, R, \vDash \rangle$ with $K = \{a, b\}$, $S = \{a\}$, and let Rab, $b \vDash A$ and $b \nvDash B$. It is clear that $a \vDash \neg A$ and $a \nvDash A \rightarrow B$. So, $a \nvDash \neg A \rightarrow (A \rightarrow B)$.

Now let us define a theory a as inconsistent iff $\neg A \in a$, A being a theorem. The *canonical model* is, then, the triple $\langle t\mathbf{I}+, \mathbf{f}, R, \models \rangle$ where $t\mathbf{I}+, \mathbf{f}, R$ and \models are defined similarly as in §3 and S ($\subset t\mathbf{I}+, \mathbf{f}$) is interpreted as the set of all consistent theories. We note the following

LEMMA 4. Let $\langle t\mathbf{I}+, \mathbf{f}, R, \models \rangle$ be the canonical model, and let $a \in t\mathbf{I}+, \mathbf{f}$. Then, a is inconsistent iff for some wff $A \& \neg A \in a$.

Proof. Suppose a inconsistent. Then, for some theorem A, $\neg A \in a$. But a is regular. Thus, $A \in a$. Therefore, $A \& \neg A \in a$ (Cfr. Lemma 1). Suppose now $A \& \neg A \in a$. As $(A \& \neg A) \rightarrow \neg B$ (B is a theorem) is derivable, $\neg B \in a$.

Now, for proving the completeness of I+, f, we proceed as follows. Given that I+, f is prime (Cfr. Lemma 2), we only have to prove that the canonical \models satisfies clause (v). It is clear that it suffices to prove

for all $a \in tI+$, f, $a \models f$ iff a is inconsistent

So, suppose $a \models f$. By definition of \models , $f \in a$. Now $f \rightarrow (A \rightarrow f)$ (A is a theorem) is a theorem of I+. Thus, $A \rightarrow f \in a$ (Cfr. Lemma 1). So, a is inconsistent. Suppose now a inconsistent. Then $A \rightarrow f \in a$, A being a theorem. But a is regular. So, $A \in a$. By closure under modus ponens, $f \in a$ and, thus, $a \models f$.

6. The minimal intuitionistic calculus Im

The minimal intuitionistic calculus Im is the result of adding the axiom

A7.
$$(A \rightarrow \neg B) \rightarrow (B \rightarrow \neg A)$$

to I+.

7. Models for Im

A model for Im is a quadruple $\langle K, S, R, F \rangle$, where $\langle K, R, F \rangle$ is a model for I+ and $S \subset K$ satisfying the clause,

(vi)
$$a \vDash \neg A$$
 iff for all $b \notin S$
 $b \not\vDash A$ or not- Rab .

We note that, given the semantic interpretation of f in §5, we have

$$a \models A \rightarrow \mathbf{f}$$
 iff $a \models \neg A$

as required.

For proving the completeness of **Im**, we define the canonical model similarily as in §5, and interpret S again as the set of all consistent theories. Then, as **Im** is prime (Cfr. Lemma 2), it only remains to prove

For all $a \in t$ **Im**, $a \models \neg A$ iff for all consistent theories $b \in t$ **Im**, $b \not\models A$ or not-Rab.

Subcase (I). If $a \models \neg A$, then $b \not\models A$ or not-Rab for all consistent $b \in t$ Im.

Proof. Suppose $a \vDash \neg A$ and (for reductio) $b \vDash A$ and Rab (b is consistent). By definitions, $\neg A \in a$, $A \in b$ and $a \subseteq b$. So, $\neg A \in b$. Then, b is inconsistent (Cfr. Lemmas 1, 4) contradicting our hypothesis.

Subcase (II). If for all consistent $b \in t \text{Im } b \not\models A$ or not-Rab, then $a \models \neg A$.

Proof. Suppose a
ot
eq
eg A. We show that there is some consistent $b' \in t$ Im such that $b' \in A$ and Rab'. Define $b = \{C \mid A \rightarrow C \in A\}$. As in subcase (ii) of Lemma 3, it is easy to show that b is a non-null regular theory such that Rab and $b \in A$. Now we extend b to the required b'. Define X as the set of all theories x such that $b \subseteq x$ and $a \cap A \notin x$. By

Zorn's Lemma there is a maximal b' such that $\neg A \notin b'$. It is clear that b' is consistent. If not, $\neg A \in b'$ by the theorem $(B \& \neg B) \rightarrow \neg A$. Further, b' is prime. Suppose it is not. Form as in Lemma 3 the non-null regular theories [b', B] and [b', C]. By the maximality of b', $\neg A \in [b', B]$, [b', C] whence it is easy to show $B \& \neg C \in b'$. By the theorem $(B \& \neg C) \rightarrow \neg (B \lor C)$, $\neg (B \lor C) \in b'$, and, therefore, b' is inconsistent $(B \lor C \in b')$; cfr. Lemma 4). In consequence, b' is a prime regular theory such that $b' \models A$ and Aab'.

Universidad de Salamanca Depto. de Filosofia y Logica José M. MENDEZ

REFERENCES

Georgacarakos, G.N., The semantics of minimal intuitionism, Logique et Analyse, 1982, 383-397.

^[2] Meyer, R.K., Metacompleteness, Notre Dame Journal of Formal Logic, 1976, 501-516.