A NOTE ON GROUNDED SENTENCES

Gary P. SHANNON

Kripke develops the idea of grounded sentences in his paper “Outline
of a Theory of Truth” ([1]) (for example, if R is the sentence “The state-
ment ‘snow is white’ is true’’, and S is the sentence “This sentence is true”’,
then R is grounded and S is not grounded). In this note, two informal/in-
tuitive definitions of grounded will be offered for Peano Arithmetic (PA),
and then a formal syntactical definition that somewhat captures the stated
intuition will be given for each. Also, a definition that is based on a restric-
tion of Kripke’s work will be given, and it will be shown that this defini-
tion is equivalent to the two syntactical definitions. The syntactical
definitions do not (and more generally such definitions cannot) fully cap-
ture the intuitive idea of grounded sentences, but they do provide a class
of sentences for a formal language of PA whose groundedness is syntac-
tically determined. One of the values of a syntactically determined class
of grounded sentences is that in any ““definition of truth” for PA one can
use the Tarski schema: “T('S7) < S” for grounded sentences, even though
this schema cannot be used in general.

Let L’ denote a first order formal language for PA whose only func-
tion symbols are the constant symbols 0,1,2,..., and let L be the
language obtained from L’ by adding a relation symbol T (to denote
“truth”). Note that the only terms of L or L’ are variables and the cons-
tant symbols 0,1,2,... For any formula ¢ of L, let o™ denote the numeral
of the Godel number of ¢ (so o™ =i for some n € w). A formula e is
a subformula of ¢ if 0 = eaf where e and f are expressions (possibly empty)
of L (note that ¢ is not a subformula of T(@")).

One informal way of defining “grounded” is to describe a sentence as
grounded if its truth value can be obtained by “unwrapping” the layers/oc-
currences of T until a sentence of L’ is obtained.

Another informal way of describing “grounded” is to define a sentence
as grounded if its truth value can be determined from PA in L’.

For example, T(0 = 07) is grounded by the first informal definition since
“unwrapping” the occurrence of “T” gives a sentence of L’. T(0 = 07)
is grounded by the second informal definition since its truth value can
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be determined from knowing whether or not 0 =0 — that is, its truth
value can be determined from PA in L".

The definitions that follow will be used to partially capture, in a for-
mal setting, these informal definitions.

Definition 1: The depth of a formula ¢ of L, denoted dp(e), is defined
by induction as follows:
(i) dp(e) = 0 iff ¢ is a formula of L’.
(ii) dp(T(e™) = dp(e) + 1
dp(Te) = 1 iff cisaconstant symbol, but ¢ # "™
for any formula « of L.
dp(Tx) = @ for any variable, x.
(iii) dp(~e) = dp(e)
(iv) dp(e —¢) = max(dp(a), dp(e))
(v) dp(vxe) = dp(o)
(For any formula ¢, dp(e) is an ordinal)

Note that although this definition is not well defined for a natural or
informal language, it is well-defined and inductive for the formal language
L (there are languages for which this definition would not be well-defined
— for example, if @ = T("&™) then dp(e) would not be well-defined — but
such an « cannot be defined in the language L). Note also that if the
Godel numbering is known then the depth of a formula can be obtained
in a finite number of steps from the Gédel number of the formula (this
is easier in L than it might be in general since the only terms of L are
variables and the constant symbols 0,1,2,...).

If a formula has finite depth then the depth is an expression of the
number of “nested” occurrences of T. For example, T(0 = 0™) has depth
1, T(T(0 = 07)") has depth 2,...

In terms of depth the first informal definition can be expressed by say-
ing that a sentence is grounded if it has finite depth. Let GS, be the set
of sentences of L whose depth is finite. GS, is then a set of grounded
sentences whose groundedness is syntactically determined.

Definition 2: Define < on {s: ¢ is a formula of L] by « < ¢ iff any of
the following hold:
(i) a=0
(i) e=T(p") and @ < p
(iii) o is a subformula of p and p = ¢
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(iv) There exists a variable x of g, a constant symbol ¢, and
a formula g obtained from ¢ by replacing one or more
occurrences of x by ¢, such that & < p.

The underlying idea of = is that if R and S are sentences then R < S
if, in some sense, the truth value of R is needed to determine the truth
value of S. The definition is given for formulas (this will allow, for exam-
ple, T(S™) < vxTI'(x) — since T(S") < T(x) = vxT(x) (and it will be shown
that < is transitive)) so for parts of the definition the idea of truth value
has no meaning, but for sentences the underlying idea holds ((i) and (iii)
fit this intuitive idea since in a model the truth of a statement is deter-
mined/defined by the truth value of its subformulas; similarly, the exam-
ple of a model shows that ¥xe(x) = o(c) fits this intuitive idea; (ii) fits
this idea since the truth value of R is needed to determine the truth value
of T(R™)). However, the intuitive idea breaks down in that there are
sentences that satisfy the intuitive idea but do not satisfy the definition
of = — for example, RAS SERA(SAQ).

The definition of < will be used to give a formal definition that par-
tially captures the idea of the second informal definition.

Let GS, be the set of sentences S such S £T(S").

GS, is another set of grounded sentences whose groundedness is syn-
tactically determined.

If S £T('S™) then S &R for any sentence R of depth greater than the
depth of S (this can be proven by induction on formulas) (and converse-
ly, if S ZR for any sentence of depth greater than the depth of S, then
certainly S £T(S7)). Therefore, if S £T("S™) then the truth value of S
does not depend on the truth value of any sentence of depth greater than
that of S. Therefore, if S £T(S™) then the truth value of S is determined
by the truth value of sentences of depth < dp(S), and hence (by induc-
tion), the truth value of S can, in some sense, be determined from PA
in L’. Therefore GS, is a set of grounded sentences that satisfy the se-
cond informal definition of grounded.

For example, let R be “The statement ‘snow is white’ is true” and let
S be “This sentence is true!’. To determine whether or not R is true one
only needs to know whether or not snow is white (so the truth value of
R can be determined from the truth value of a sentence of smaller “depth”)
and thus R is grounded. To determine whether or not S is true one needs
to know whether or not ‘S is true’ is true — that is, one needs to know
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“T(S)” — which is (informally) a sentence of “depth’ larger than the
“depth” of S. Therefore S is not grounded. (Neither R nor S have depth
as defined for L, but to the extent that the idea can be applied to these
sentences, the idea does fit).

Proposition: =< is transitive.

Proof: Assume that 8, &, o are formulas such that § <« and a < ¢. It
will be shown that é < g.
If @ = o then clearly 6 < o. If @ < p and ¢ = T(u”) then & < ¢ by
induction on the depth of o. If @ < x and p is a subformula of
o then é < ¢ by induction on ¢ (induction on formulas). If & < p
and g is a substitution instance of ¢ then & < ¢ by induction on
the number of variables in o.

As a result of his theorem on the undefinability of truth ([2]), Tarski
argued that a formal definition of truth should be given in a language
that is not semantically closed (that is, that does not contain semantic
predicates such as “true”, “false”). Given a language L,, Tarski argued
that truth in L, can be discussed in a metalanguage L,. In turn, truth
in L, can be discussed in a metalanguage L,,... This gives a hierarchy of
languages [L,: n € w] such that truth in L, can be completely and for-
mally discussed in L, . This definition of truth does not give a single
truth predicate, but instead a truth predicate at each level. Kripke ([1])
suggested that “true” does not mean “true at the level n” and he has given
an informal theory of truth that has a single, partially defined truth
predicate. Kripke’s construction also contains a hierarchy of languages,
but at each level the definition of truth is an extension of the previous
definition, not a new truth predicate. The definition that follows is based
on a restriction of Kripke’s work. It is an attempt to formalize some of
Kripke’s ideas for the formal language L — and to do so in a way that
is compatible with the ideas and structure of classical two-valued logic.

Definition 3: Let U be an L-structure. For each ordinal , define L, and
Exp(L,) (the expressions of L ) by induction as follows:
@) Ly = (L(S10:8y0), %) = (L', W)
E € Exp(L,) iff E is an expression of L’.
(i) Assume that « =g + 1 and that L,, and Exp(L,) are defined.
L, = (L(5,05), ¥,) where



(iii)

A NOTE ON GROUNDED SENTENCES 311

S« = [cEL: there exists a sentence S € Exp(L,) with ¢ ="8"
such that % = SJ.
S,. = [cEL: there exists a sentence S € Exp(L;) with ¢ =S

such that %; # S} U N =

fc € L: there exists E € Exp(L;) — Sent(L,), with ¢ ="E"]
E € Exp(L,) iff (by induction)
(a) E € Exp(Ly)
(b) E =Tt for some c€ S, ,US,,
(c) E = o(x) and o(c) € Exp(L,) for all constant symbols ¢ of L.
(d) E is any finite sequence of elements of Exp(L,).
A, = S iff (by induction)
(a) ST €S,
(b)) S=Tcand cES,,

S=~Tc and cE€S,,

(c) S= ~R for some R € Exp(L,) such that %_# R
(d) S=R—W for some RW € Exp(L,) and %, ~R, or A, =W
(e) S = vxa(x) and ¥, =ofa] for alla€ | A |
If « is a limit ordinal then L, = (L(S,,,S,,), ¥,) where

Siw=_Y 8.8 = U s,
E € Exp(L,) iff E € Exp(L,) for some 7<a, or E = ¥xe(x) and

o(c) € Exp(L, for all constant symbols ¢ of L, or E is a finite se-
quence of elements of Exp(L,).

A, = S iff A, =S for some 7< &, or S = vxe(x) and U, = ola] for all

aE

RAR

Let GS, be the set of sentences S such that S € Exp(L,).
It will be shown that GS, = GS, = GS,. The following lemma is need-
ed for the proof.

Lemma: If o € Exp(L,) and p = ¢ then p € Exp(L,).
Proof: If e = p then clearly u € Exp(L,). If ¢ =8 and g = T(B™) then

8 € Exp(L,) and thus (by induction on formulas) ¢ € Exp(L,).
If o <8 and 8 is a subformula of g then 8 € Exp(L,) and thus
(by induction on the length of pu),e € Exp(L,).

Assume that ¢ < 8 and that 8 is obtained from p by replacing
one or more occurrences of x by c¢. Then 8 € Exp(L,). To show
that ¢ € Exp(L,) the argument will be by induction on m, the
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number of occurrences of variables in p. If m = 1 then 8 con-
tains no variables and o < 8 on the basis of (i)-(iii) of the defini-
tion of =<, and thus by the previous paragraph and the definition
of Exp(L,), ¢ € Exp(L,). Assume true for m < k and assume
that 8 has k + 1 occurrences of variables. If ¢ < g8 on the basis
of (i)-(iii) of the definition of < then by the previous paragraph
and by the definition of Exp(L,), ¢ € Exp(L,). If ¢ <8 on the
basis of (iv) of the definition of < then ¢ € Exp(L,) by the in-
ductive assumption.

Proposition: GS, = GS, = GS,.
Proof: GS, € GS; by induction on the depth of a sentence.
To see that GS,< GS,, assume S €GS, and suppose that
dp(S) = w — say dp(S) = w + k, k = 0. Then there exist 7,,...,7,
such that for each i, 7,,, = T(7,"), T(7,”) is a subformula of S,
and dp(rp)) =w. Then S=T(7,") =7, =... = 7, = T(x) = T(S").
= is transitive, thus S=T(S™) — which contradicts that
S € GS,. Therefore dp(S) < w, and thus S € GS,. Therefore
GS, € GS,.
Assume S € GS;, and suppose that S = T('S"). S € Exp(L,)
thus there exists n = 1 such that S € Exp(L,), but S & Exp(L,_)).
Since S = T('S7) it follows from Lemma 1 that T('S™) € Exp(L,).
But this implies that S € Exp(L,_,) — a contradiction. Therefore
S£&T(S™) and thus S € GS,. Therefore GS, € GS,.
Therefore GS, = GS, = GS,.

The following shows that a formalization of the Liar’s Paradox is not
an element of any of GS,, GS,, or GS,. Let S be the sentence
vx(o(k,k,x) = ~T(x)) — where k = "Vx(o(yy,x) — ~T(x))", and
a(v,,v,,v,) represents the function whose value at (r(x)7,n) is 7(n) (that
is, informally, ofa,bc] is a theorem of PA iff ¢ is the Godel number of
the formula obtained by substituting b for the free variable in the for-
mula whose Gddel number is a). (S is a sentence such that S & ~T(S")
is a theorem of PA — that is, a formalization of the Liar’s paradox, and
S is not grounded under Kripke’s definition.) S & GS, since dp(S) = «,
and S & GS, since S = T(S™). To see that S & GS,, suppose that S € GS,
— then there exists n such that S € Exp(L,) but S& Exp(L,_,). Then
o(k.k,m) = ~Tm € Exp(L,) for all m € w — in particular o(k,k,T('S™))
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— ~T(T(S™)™) € Exp(L,). Therefore (by Lemma 1), T('S™) € Exp(L,),
and thus S € Exp(L,_,) — a contradiction. Therefore S & GS,.

Let GS = GS, (= GS, = GS;). Theén GS is a set of grounded sentences
whose groundedness can be syntactically determined, and whose
groundedness can be obtained under Kripke’s definition.

It was noted above that S 2T("S™) iff S 2R for any sentence R of depth
greater than the depth of S, and that in this case the truth value of S can,
in some sense, be determined from PA in L’. The idea behind S=R is
that the truth value of R is not needed to determine the truth value of
S. If the idea of grounded is extended to include all sentences S such that
knowing the truth value of S does not require knowing the truth value
of any sentence of depth greater than dp(S), then there are sentences which
satisfy this definition, yet are not elements of GS. For example, every
tautology is true, therefore knowing the truth value of vx(T(x) © T(x))
does not require knowing the truth value of any sentence of depth greater
than the depth of vx(T(x) < T(x)) and hence this ought to be a grounded
sentence. More generally, if the truth value of a sentence is answered by
the first order theory of pure logic, then such a sentence should be taken
to be grounded — since knowing its truth value does not require know-
ing the truth value of any sentence of larger depth. Whether or not vxT(x)
and vx ~T(x) satisfy this extended definition can be argued either way.
On the one hand, vXT(x) does not satisfy the extended definition, since
in order to answer whether or not ¥xT'(x) is true one needs to know whether
or not Tc is true for each constant symbol ¢, and in particular, one needs
to know whether or not T("WXT(x)") is true — but this sentence has depth
greater than the depth of vXT'(x). On the other hand, v¥xT(x) is not true
since T('0 = 17) is not true, and thus it is not necessary to know the truth
value of any sentence of depth greater than the depth of vXT(x) in order
to know the truth value of ¥XT(x), and therefore vXT(x) does satisfy the
extended definition. Similarly, it can be argued that vx ~T(x) satisfies the
extended definition and that vx ~T(x) does not satisfy the extended defini-
tion of grounded. (Or, 3xT(x) and 3x ~T(x) satisfy the extended defini-
tion, therefore ~ axT'(x) and ~ 3x ~T(x) satisfy this definition — and hence
vXT'(x) and vx ~T(x) satisfy it also.)

Another example is given by means of the following : the set of Godel
numbers of sentences in GS is recursive, and hence there exists a formula
Gr(x) such that for any m € w, PA + Gr(m) if m is the Godel number
of a sentence in GS, and PA + ~Gr(m) otherwise. Let R = vx(Gr(x) —
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T(x)) — then R satisfies the extended definition of grounded (since the
truth value of R depends only on sentences of finite depth, yet dp(R) = w)
but R & GS.

The following definition extends GS to a larger set of grounded
sentences, by including some of the sentences indicated above.

Definition 4: GF, is defined by induction as follows:
If ¢ is a formula of L then ¢ € GF, if, and only if, any of
the following hold:
(i) o is a formula of L’.

(ii) ¢ is an instance of a tautology.

(ili) Hpo (o is a theorem of the first order theory of
pure logic for L(T) — where L(T)s the reduct of L
whose only relation symbol is T)

(iv) ¢ = T(7"), for some 7€ GF,
¢ = Tc for some constant symbol ¢ such that ¢ # 7™
for any formula 7 of L.

(v) ¢ is a sentential combination of formulas of GF,.

(vi) o = vxB(x) for some B(x) € GF,

(vii) H o < B for some g € GF,

(viii) ¢ is any of: ¥XT(x), vx ~T(x), vx(Gr(x) — T(x)),
vx(Gr(x) - ~Tx))
Let GS, be the set of sentences S of L such S € GF,.
(Any sentence of finite depth is in GS,, so GS, is an ex-
tension of GS).

Whether or not an arbitrary sentence is in GS, is decidable, and
vx(T(x) < T(x)) € GS, — but intuitively, any theorem of the first order
theory of pure logic for L is grounded, and GS, does not contain all
such sentences (if GS, did contain all such sentences it would not be
decidable whether or not an arbitrary sentence was in GS,). ¥x(Gr(x) —
T(x)) € GS,, but the set of Godel numbers of sentences in GS, is recur-
sive, thus (as for GS) there exists a formula Gr,(x) such that for any
m € w, PA + Gr,(m) if m is the Godel number of a sentence in GS,, and
PA + ~Gr,(m) otherwise. But then vx(Gr,(x) @ T(x)) & GS,.

The idea of Kripke’s construction (that is, the idea used for definition
3) can be used to show that the Tarski schema “T(S") < S” works to define
truth for sentences of GS,. (Instead of starting only with sentences of
L’, include ¥XT(x), ¥x ~T(x), ¥x(Gr(x) — T(x)), ¥x(Gr(x) — ~ T(x)), all
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instances in L of tautologies, and all sentences S such that p,S. Build
as done in definition 3 except that at each level, include all sentences R
such that R < S for some grounded sentence S).

GS, can be extended to a larger class of syntactically determined
grounded sentences, but the extensions are increasingly more complicated,
they are less intuitive, and they cannot contain all grounded sentences.

GS, GS,, and other such extensions give classes of sentences of L
whose groundedness is syntactically determined, and for which “truth”
can be given by Tarski’s schema. To some extent these ideas carry over
to languages that have function symbols other than constant symbols;
but the intuitive ideas are less clear, and the definitions are more com-
plicated. I do not know to what extent these definitions and results hold
for informal or natural languages.
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