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1. Introduction

In this paper we present a simple method to define modal logics for
formal grammars. Given a formal grammar, we associate with each rule
an axiom of a modal logic. By this construction, testing whether a word
is generated by a formal grammar is equivalent with proving a theorem
in the logic. First constructions produce multimodal logics possessing
several agents [Ko], but the technique can be applied to construct also
more classical logics with only one modal operator.

Our approach is suggested by a method used in logic programming,
where the analysis or generation of a sentence is transformed to theorem
proving [Co, PW]. Other related work is done by Wolper [Wo], who defines
an extension of the linear temporal logic of programs to include regular
expressions.

2. Minimal grammar logics

We begin with logics that are rather artificial but are closely related
with formal grammars.

The expressions of the minimal grammar logic are constructed of the
following symboles:

VAR  set of propositional variables,

MOD modal alphabet, interpreted as a set of agents,
] modal operator constructors, and

- conditional connective,

where VAR and MOD are nonempty, disjoint sets. The set FOR of the
Jormulas of the minimal grammar logic is defined as follows:

VAR < FOR,
if A, B € FOR then A -+ B € FOR,
if A € FOR and a € MOD then [a]A € FOR.
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The constructions [a], where a € MOD, are called modal operators,
and can be considered as agents. Furthermore, for arbitrary n = 0, a €
MOD, [aa,...a,] is shorthand for [a,][a,]...[a,], and we call it a modal
word.

A type 0 grammar is a quadruple G=(V,T,P,S), where V and T are dis-
joint finite alphabets, S € V, and P is a finite set of pairs (uy), u €
(VUTH*V(VUT)* v € (VUT)* A word x over VU T derives directly
to another word y, x =y, if x and y can be decomposed to x=x'uc”,
y=x'vx"”, where (uyv) € P. The relation derives, x = *y, is the reflexive,
transitive closure of =. The non-reflexive, transitive closure of = is
denoted by =*. The language generated by G is the set L(G) =
w|S=*w, w € T*.

It is well known (see [Sa]) that the membership problem of type 0 gram-
mars, i.e. the question whether a given word is generated by a given gram-
mar, is undecidable. We use this result to construct undecidable
propositional modal logics.

Given a type 0 grammar G=(V,I,P,S), we associate to it a minimal gram-
mar logic L that has the axiom schemes

Al. [u]A — [v]A for all (uy) € P, where A does not contain —, and the
inference rules

R A—B B—C
RI1. transitivity i
A—-C
¢ - A—B
R2. conditional necessitation _—
[a]A—[a]B

In axioms and rules, A, B, and C range over formulas, and “a” ranges
over the modal alphabet.

Under the epistemic interpretation, the axiom Al defines an in-
terdependence between the knowledges of agents. For example
[a][b]A — [c]A can be read as follows: “If a knows that b knows A, then
¢ knows a”.

The notions of a proof and a theorem are defined as usual. A proof
of a formula A from a set S of formulas is a finite sequence of formulas,
each of which is either an axiom or a formula in S or is obtained by a
rule of inference from earlier elements of the sequence. This is denoted
by S;A. A formula is a theorem, S, if it has a proof from the
empty set.



GRAMMAR LOGICS 125

Theorem 2.1. It is undecidable whether a formula of a minimal gram-
mar logic is a theorem.

Proof. Consider a type 0 grammar G=(V,T,P,S). Because the member-
ship problem of type 0 grammars is undecidable, it is sufficient to prove
that +;[ulq— [vlq iff u=(v, where q is a propositional variable.

We shall show first that for any theorems of the form [u]q — [v]q there
is a derivation u = *v. The axioms of L correspond to derivations of
length 1. Assume that [u]q— [w]q is proved from [ulg — [vlg and
[vla—[wlq by RI. By induction hypothesis, u=*v and v="*w, and
consequently u="w. If [a][u]lg— [a][v]lq is proved by R2 from the
theorem [u]q — [v]lq. The assertion au = * av follows directly from the in-
duction hypothesis u = *v.

For the inverse, consider a derivation u = * vxw = vyw, where (xy) €
P. By induction hypothesis, [ulq— [v][x][wlg is a theorem. As
[x][wlq — [yl[wlq is an axiom, by repeated application of R2 we see that
[vI[x][wlq — [v][x][w]q is a theorem. Now [u]q — [v][y][w]q is proved by
an application of Rl.

3. Grammar logics and Thue logics

We shall now prove a similar theorem for more standard propositional
modal logics, which include the classical proposional logic as a sublogic.
We call these logics grammar logics. We study also a special case, where
the rules of the grammar are symmetric. These logics are called Thue
logics.

The alphabet of a grammar logic contains the propositional constant
Jalse L in addition to the symbols of section 2. 1L and propositional
variables are formulas. If A and B are formulas and a € MOD, then
A — B, and [a] A are formulas. The connectives = (negation), v (disjunc-
tion), A (conjunction), and + (biconditional) are introduced as usual :
7A=A— 1, AVB=-AVB, AAB=-(A— - B), and A©B =
(A—=B)A (B—A). The modal operator <a> is defined by
<a>A=-[a]~A.

Consider a type zero grammar G=(V.I,P,S), and denote MOD=V U T.
The grammar logic L is axiomatized as follows. It has the axiom
schemes
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Al. A—=(B—A), (A~ (B~-CQ) »((A—B) »(A—Q),
((Ardl) = LYy A, ‘

A2. [a](A— B) — ([a]A — [a]B) for all a € MOD,

A3. [u][w]lq — [v][w]q for (uyv) € P, w € MOD* and q € VAR,

and the inference rules :

A, B
R1. Modus Ponens %
o A
R2. Necessitation
[a]A

The proof and the theorem are defined as in section 2. We also have
the undecidability theorem, but now the proof is less trivial.

Theorem 3.1. It is undecidable whether a formula of a grammar logic
is a theorem.

Proof. Let G=(V,I,P,S) be a type 0 grammar and consider the grammar
logic L, associated with it. We shall show that S = w iff ~,[S]lq =
[w]q, where q is a propositional variable.

Assume first that S="w. If the length of the derivation is 0, then
w=S and I [S]A — [w]A follows from Al by R1. Otherwise assume that
S="w'uw” = w'vw”=w. By induction hypothesis we have
[Slg = [w'][u][w”]q. Because [u][w”]q — [v][w”]q is an axiom, by
repeated application of R2, A2, and R1, we see that — [w’'][u][w”]q —
[w’][v]l[w”]q. The assertion +[S]q — [w]q now follows by Al and RI.

We shall now prove that if ~[Slg — [w]q then S= ;w. We do this
by defining the concept of G-truth — if a formula is G-true then it cor-
responds to a derivation. We shall show that all theorems are G-true,
because the axioms are G-true and the inference rules preserve G-truth.

By the axiomatization of L, we can assume that the formulas do not
contain other connective than —. The context c(p,A) of an occurrence
p of a variable in a formula A is defined as follows:

¢(p,p)=empty,
c(p,A)=c(p,B) (or ¢(p,C)) if A=B — C and p occurs in B (resp. in C),
¢(p,A)=ac(p,B) if A=[a]B.

Intuitively, c(p,A) is the sequence of modalities governing p in A. A
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subformula Mp — Nq, where M and N are modal words and p and q are
variables, is called a pair, and occurrences p and q are paired. If an oc-
currence of a variable is not paired, it is single. A pair Mp — Nq is strict
if p=q and there is no single occurrence r of the same variable such that
¢(r,A)=c(q,A) or c¢(r,A)=c(q,A). The G-truth of a subformula in a for-
mula A is defined recursively:

L is G-false,

variables not occurring in a strict pair are G-false,

a pair Mp — Nq is G-true iff it is strict and c(p,A) = 5c(q,A),

a non-pair subformula B — C is G-true iff B is G-false or C is G-true,
[a]B, containing a connective, is G-true iff B is G-true.

We say that a strict pair gets its G-value by derivation, other subformulas
get their values by definition or by computation (two last lines). A for-
mula A is G-sure iff for all modal words u, [u]A is G-true in [u]A.

We shall now prove by induction on the length of the proof that all
theorems of L, are G-sure.

Al. A= (B—A), (A»(B~C) - (A—B)~> (A-CQ),
((A— L) = 1) — A. All of these are proved in the same way, we choose
the second as an example. The first A is not within a pair because the
right hand side is not of the form Mp with a modal word M and a variable
p. Hence A — B and A — C are not strict pairs. If (B— C) is not a strict
pair, then all of A, B, and C get their values uniformly and the whole
axiom gets the value G-true by a propositional computation. If (B — C)
is a strict pair, the latter B and C are G-false and (A —»B) » (A—C)
becomes G-true, and hence the axiom is G-true. In order to prove the G-
sureness, we have to establish that the addition of a modal word in front
of the axiom does not violate the G-truth. Indeed, a modal prefix can
change the G-truth of some strict pairs, but as it was seen above, the G-
truth of the whole axiom does not depend on the G-truth of the strict pairs.

A2. [a](A— B) — ([a]A — [a]B). If A and B do not form a strict pair,
the axiom is G-true by a classical propositional calculation. If A — B is
a strict pair, also [a]A — [a]B is, and their G-truth depends on the same
derivation. Hence A2 is G-true. G-sureness is seen as above.

A3. [u][w]lq — [v][w]q. The axiom is a strict pair which corresponds
to a derivation of one step, and consequently is G-true. G-sureness is ob-
vious, because arbitrary context can be added.

Modus Ponens. Assume that A and A — B are G-sure. As A is G-sure,
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it gets its value by a computation and therefore it is G-sure in A — B, too.
Therefore also B must be G-sure.

Necessitation preserves G-sureness, because the definition of the G-
sureness requires G-truth in all contexts.

We have proved that all theorems are G-sure. Hence +[Slq— [w]q
implies the G-sureness of [S]q— [w]q, i.e. the existence of a derivation
S = ;w, which was to be proved.

The special form of the axiom A3 does not look nice in comparison
with the other axioms. It remains open whether A3 can be replaced by
the scheme [u]A — [v]A. However, if the rules of the grammar are sym-
metric, i.e. (uv) € P implies (vu) € P, then we can prove the undecidability
with such a scheme. Indeed, if the rules of the grammar are symmetric,
we can have axioms of the form [u]A < [v]A. We have come to what we
call Thue logics.

A Thue system is a pair T=(V,P), where V is a finite alphabet and P
is a finite set of pairs of words over V, i.e. P < V' xV". Define the con-
gruence =, S V' xV" as follows: x=,y iff

@ x=y,
(i) x=x"ux”, y=x'vx”, where (uyv) € P or (vu) € P,
(ii) there is a word z such that x=z and z=y.

The theorem 3.1 holds for Thue systems with the modification A3’ .
[u]A<[v]A for all (uy) € P.

The concepts of T-truth and T-sureness are defined as G-truth and G-
sureness, but now a strict pairs Mp » Nq and Mp+ Nq are Ttrue in a
formula A iff c(p,A)=;c(q,A). It is sufficient to check that A3’ is T
valid in the sense of section 3. This is true because for any paired variables
p and q in A, uc(p,A)m(p,A) = uc(q,A)m(q,A) if and only if
ve(p,A)m(p,A) =,ve(g,A)m(q,A). However, we prefer to state a somewhat
stronger theorem.

Theorems 2.1 and 3.1 do not speak of a particular undecidable pro-
positional modal logic, but tell about the impossibility of a decision
algorithm common to all grammar logics. Indeed, there is an undecidable
logic. We use an undecidability result of algebra.

It was proved by Cejtin [Ce] that the word problem “x=y?” is
undecidable for the Thue system T=([a,b,c,d,e},P), where P consists of
the pairs
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ac=ca, ad=da, bc=cb, bd=db, abac=abace, eca=ae, edb=be.

Using this result, we get
Theorem 3.2 There is an undecidable propositional modal logic.

Proof. The construction is analogous to the one of the previous theorem,
now with Cejtin’s system T. Consider the logic with the following axioms
and rules of inference:

Al. A= (B—A), (A= (B—C) ~ (A—B) > (A—~Q)),
HA> 1) L) =B

A2. [al(A — B) — ([a]A — [a]B)

A3. [u]A+[v]A for all (uy) € P,

R1. Modus Ponens,

R2. Necessitation.

The undecidability now follows from the assertion u=.,v if
+r[u]p<[v]p for an arbitrary propositional variable p. We omit the pro-
of because it is analogous to the proof of Theorem 3.1 and we have already
sketched the change in the proof of A3.

4. Soundness and completeness of Thue logics

Until now we have concentrated in the undecidability of some proposi-
tional modal logics. We shall now prove that the Thue logics are “well-
behaving” logics in the sense that they are complete in terms of Kripke
style semantics.

In the following, we define the semantics of the Thue logics. To define
the meaning of formulas, we shall fix the set of states or worlds, and the
relations between the words corresponding to the modal operators.

Formally, a model is a triple

M = (W, R, | a € MOD)}, m),

where W is a nonempty set of states, for each a in MOD, R, is a rela-
tion on WxW (to be characterized later), and m is the meaning function
mapping each variable a to a subset of W, consisting of those states where
this variable is true.
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Given a model M=(W, R, | a € MOD)J, m), we say that a formula
A is (un)satisfiable in a state w, denote M,w sat A (resp. M,w unsat A),
iff one of the following conditions holds:

(i) M,w unsat 1,

(ii) M,w sat p (p € VAR) if w € m(A) else M,w unsat p,
(iii) M,w sat A — B iff M,w unsat A or M,w sat B,

(iv) M,w sat [a]A iff for all w” such that wR,w’, M,w’ sat B.

The set exty(A)={w | w € M, M,w sat A] is called the extension of A
in M. A formula A is true in a model M, if ext,,(A)=W. A formula A
is valid, = A, iff A is true in all models. A formula A is a logical conse-
quence of a set S of formulas, S = A, iff for every model M and for every
w in M, if Mw sat B for all BE S then M,w sat A. A formula A is
satisfiable iff for some w in W and for some model M of A, Mw sat
A. A set S of formulas is satisfiable in a model M and a state w, Mw
sat S, iff M,w sat A for all A in S. Finally, a set S of formulas is satisfiable
iff M,w sat S for some M and w.

We shall show that if the relations in the models are restricted in a
suitable way, the axiomatization of Thue logics is sound and complete.

Consider any model M=(W, [R, | a € MOD}, m). For the empty
word e, let R, be the identity relation on W, and for any a € MOD and
w € MOD, let R,,=R,'R,, where - refers to the composition of
relations.

Let T=(MOD,P) be a Thue system. We say that a model M=(W,
[R, | a € MOD), m) is a T-model, iff for all (uy) € P, R,=R,. We also
speak of Tsatisfiability, T-validity etc. and use the notation & ; for them.

Theorem 4.1. (Soundness) If + A then = A.

Proof. One can easily check that axioms Al to A3 are Tvalid, and R1
and R2 preserve the T-validity. For example, the Tvalidity [u]A < [v]A is
seen as follows. If M,w does not satisfy [v]A, there is a state w* such that
(ww’) € R, and M,w’ does not satisfy A. Now by R,SR,,
(ww’) € R, and hence M,w does not satisfy [u]A either. By symmetry,
M,w satisfies [u]A <« [v]A.

The converse result, the completeness, states that all valid formulas are
theorems. We prove it by the method of canonical models, following the
guidelines of [HC].
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In order to simplify our reasoning, we use the classical connectives -,
V, etc. such as they were defined in section 3.

A set S of formulas is T-consistent, if there is no finite subset {B,,...,B ]
of S such that +— (B,A...AB,)} = (— A). A set S of formulas is maximal
T-consistent, if it is T-consistent and for any formula A, either A € S
or 7 A € S. The following lemmas are quite obvious:

Lemma 4.1. [HC] Let S be a maximal T-consistent set of formulas. Then
Jor any formulas A and B,

(a) exactly one of A and ~ A isin§,

(b)) AVBES iff AES or BES,

(©) if —1A then AES,

(d) if —tA—Band AES then BES.

Lemma 4.2. (HC] Any T-consistent set S can be extended to a maximal
T-consistent set.
For any set S of formulas and u € MOD", denote

S'={A | [ulA €ES}.

The canonical T-model (W, {R, | a € MOD}, m) is defined as follows:

(1) W is the set of all maximal T-consistent sets of formulas,
(2) for any ww’' € W, (ww’) € R, iff w'Sw’,
(3) for any variable A, m(A)={w | A € w}.

We shall now prove that the canonical model, indeed, is a model:

Lemma 4.3. The canonical T-model M=(W, {R, | a € MOD}, m) is a
T-model.

Proof. We must show that if (uv) € P, then R,=R,. By symmetry, it is
sufficient to prove that R, € R,. Assume (ww') € R,, ie. wEw’. In
order to show the inclusion R, € R,, we must show that (ww’) € R,.
Therefore, for any [u]A € w, we should prove A € w’. If [u]A € w, then
by F.[u]A—[v]A and Lemma 4.1.(d), [v]A € w. A€ w’ now follows
from w' S w'.

The completeness theorem is largely based on the following property
of the canonical model:
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Lemma 4.4. Let M=(W, R, | a € MOD)}, m) be the cononical model of
T. Then for any formula A and any world w € W, Mw sat A iff A € w.

Proof. The Lemma holds for propositional variables, by the definition
of M. We shall prove that if it holds for formulas A and B, then it will
hold for = A, AVB, and [a]A, too.

Consider the formula = A. By induction, M,w sat A iff A € w. Hence,
M,w sat = A iff not M,w sat A iff A & w. But now, by Lemma 4.1.(a),
Agwiff ~"AEw.

By the definition of sat, Mw sat AvB iff M,w sat A or Mw sat B.
By induction hypothesis, M,w sat A or M,w sat B iff A€Ew or BE w,
By Lemma 4.1.(b), this equivalent to AVB € w.

Consider now [a]A. “if”. If [a]A € w then by the definition of R,
A € w’ for all w’ satisfying (ww’) € R,. By induction hypothesis, for
all these w’, Lw’ sat A, which implies M,w sat [a]A.

“only if””, If [a] A & w, then by Lemma 4.1.(a), = [a]A € w. First we shall
show that w"U [— A] is T-consistent. Otherwise there would exist for-
mulas B,,...B, € w* such that (B A..AB,)— A. By the rule of
necessity and by Al, also ~[a](B, A...AB,) — [a]A. By further applica-
tions of Al and propositional calculus, +[a]B,A...A[a]B, — [a]A. But
now, because [a]B; € w, by Lemma 4.1.(d) also [a]A €w would hold,
contradicting — [a]A € w and the T-consistency of w. Hence, w* U [— A]
is T-consistent. Let w’ be a maximal T-consistent set containing it. By
induction hypothesis, M,w " satisfies = A and does not satisfy A. By the
definition of R,. (ww’) € R,. Hence, M,w does not satisfy [a]A.

We are now ready to prove the completeness theorem:

Theorem 4.2. (Completeness) If =1A then +,A.

Proof. If a formula A is T-valid, it is true in all T-models, by Lemma 4.3
especially in the canonical T-model. Assume that A were not a theorem.
Hence, - A is T-consistent. Let w be a maximal T-consistent set contain-
ing - A. By Lemma 4.4, M,w satisfies = A, and consequently cannot
satisfy A, contradicting our assumption.

Remark 4.1. The logics we have introduced are multimodal. The above
proofs remain valid if we replace every a, in MOD=a,,...,a,} by an af-
firmative modality ¢'(J and use the Lemmon correspondence, which
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provides every affirmative modality ¢ with an accessibility relation R”
characterizing g (see Lemmon [Le], pp. 62-63).

5. Conclusion

In this note we have presented a method to define modal logics that
simulate the behaviour of grammars. As a corollary we get a simple proof
for the undecidability of a propositional modal logic. Of course, if more
restricted classes of grammars (eg. regular grammars) are considered, these
logics may be decidable. This methodology is related with the logic gram-
mars (see [Co] and [PW]) that have become popular in logic programm-
ing. However, grammars based on classical logic need predicate calculus,
while in our case propositional calculus was sufficient to get full com-
putational power. Still for the easiness of expression and practical effi-
ciency the introduction of predicates is useful.

We have not considered here the mechanical proof procedures that are
very important in programming,. It will be the matter of future research.
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