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Introduction

A BCK logic is an implicational logic based on modus ponens and the
following axiom schemes.

B ADB.D>.(CD>AD(CDB
C ADBDC).D>.BD(ADO0
K 4D (B> A).

In [1] R.K. Meyer and the author claimed the following result for this logic:

(I) If A D B and C are theorems of BCK logic, then there is a substitu-
tion instance A, D B, of A D B and one C, of Csuch that A4, = C, . B,
is therefore a theorem of BCK logic.

The claim was based on a theorem concerning BCK combinators from
which the authors also drew similar “results” for BCK algebra and Meyer’s
“Fool’s Model for combinatory logic”.

However, A. Wronski has pointed out, in private correspondence, that
the “results” for BCK logic and algebra fail.

It is easy to show, as he points out, that (p D p) D p) D pandg D ¢
are theorems of BCK logic to which the “result” does not apply.

Wronski also points out that the “result” must fail in any logic in which
A D A is provable for arbitrary A asthen(p D p) D p. D .(p D p)
D pand (g O q) DO (g O g) must be theorems.

In this note, we give a weaker version of BCK logic which does satisfy
the above property. The system is in fact one considered by C.A. Meredith
and the result confirms a conjecture of his dating back to 1954.

The theorem for BCK-combinators, on which the result is based, states
that every BCK combinator has a principal functional character or prin-
cipal type scheme (P.I.S.). This theorem (and the result for the Fool’s
Model) is correct, but Hindley has pointed out that its proof in [1] was
not complete. He presents a new proof using lambda calculus in [5]. Below
we give a simpler direct (and new) proof of the theorem.
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A New Proof of Theorem A of [1]

The theorem concerns combinators made up by application from
B, C and K . BCK terms may also include the variables x,, ..., X, ....
Linear BCK terms may contain each of these variables no more than one
each.

B, C and K satisfy the equations:

(B) BXYZ = X(YZ)
(C) CXYZ = XZY
(K) KXY = X.

It is clear that replacing the left hand side of one of these equations
by the right, in a term, shortens the term. If a term can no longer be
shortened in this way, it is in normal form.

We will be interested in a generalised length or “glength” which is also
decreased by the above process.

The glength of a term is obtained by counting 1 for each variable and
3 for each occurrence of B, C and K.

We will show, as part of the proof below, that each linear BCK term
has a type scheme (T.S.).

Type variables a, b, ¢, ... (and type constants — if any) are T.S.s and
if o and B are T.S.s so is Faf.

BCK - T.S.s are generated by the schemes:

(B) + F(FaB)(F(Fya)(Fyg))B
(C) + F(Fo(FBy)(FR(Fay))C
(K) + Fa(FBa)K

and the rule: .
(Fe) FafX, of + B(XY)
Lemma I In the presence of (Fe); (B), (C) and (K) are equivalent to the

rule:

(Fi) If B, ax + B(Yx), where B is a set of statements of the form

@) X);..., @, X, where ax is used at most once in the deduction and x # x;,
then B — FaBY.

Proof (i) By (Fe), Fafx, Fyay, yz - B(x(yz))



CORRECTIONS TO SOME RESULTS FOR BCK LOGICS AND ALGEBRAS 117

S0 Fefx, Fyay, yz + B(Bxyz2)
and 3 uses of (Fi) gives (B).

Similarly the T.S.s for C and K can be derived using (Fe) and (Fi).
(ii) For each step in the proof of B, ax + B(Yx)

of the form B, ax - 8(Yx) —(a)

we prove B, - Faf,Y, —(b)

The initial step of this form must be ax — ax; — Faal is easily ob-
tained as I = CKK.

If (a) is obtained by (Fe) there are two cases.
(I) The previous steps are

B, — F8,8Y, —(0)

and B, ax + 8(Yx)
where B, UB, =B, and BY,Y, = Y.

By the inductive step we have
B, — FaB, Y,
so by (Fe), (¢} and (B) we have (b).

(II) The previous steps are:

B, ax + FBB(Yx)
and B, +~ B8.Y, —(d)
where B, UB,; =B, and CY,Y, = Y,

L

By the inductive step we have
B, — Fa(F8,8)Y,

so by (Fe), (C) and (d) we have (b).
We use the following notation.
F, =1
F..a ..apy = Fa, .. a(FBy).
A term X has a principal type scheme (') (PT.S.)w, relative to the types

assigned to its variables, if all the T.S.s of X (and no extra ones) can be
obtained from w by substituting T.S.s for type variables.

(" For a more detailed definition see HINDLEY and SELDIN [5].
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We now prove a lemma which will lead to the proof of Theorem 1 of [1].

Lemma 1 For any T.S.8 and any linear BCK-term X, whose free variables
are X,,...,X, there exist T.SS ¥,...,vp 0,eeent,, (With 7= 0) such that
ViXien Vi H Faoy oo @,8X

Proof If Xisx, letk=1,n=0,vy,=8.If Xis K, B or C the T.S.s are
given by (K), (B) and (C).

To prove Lemma 1 for general X, we proceed by induction on m the
glength of X. The m = 1 and some m = 3 cases, we have dealt with above.

If m = 2, X=x,x, and then, Fafx,, ax, — B8X.

If m =3 and X is not a combinator, X= x, x, x, or x, (x, x;). In the
former case v, = F,y,v:,8 (v,, v, arbitrary) in the latter vy, =Fy8 and
¥,= Fy;y for some v. In both cases n =0,

If m > 3 X must be composite and we can assume that our result holds
for terms of glength less than m. There are several cases.

Case 1 X=x; Y,,...,Y,, where as X is a linear BCK term, x;, ¥,,... and
Y, have no variables in common. Also Y,...,Y, have glengths < m so we
have for 1=<j=<p, by the induction hypothesis, for some T.S.s
ViV @@ and arbitrary g8;:

.yjlle’".,‘yj'ﬂ" = Fm.ﬁajl ajmmﬂjy:’.
where X)X, aIE the variables in Y.
QU]

Letting F, a; "'“J‘mmBJE S;, we obtain Lemma 1 with v,=F.,S,...5,8
and n = 0.

Case 2 X=BZ. Then X x, ;x.,, = Z(x;,,X,,,) by (B).
Z(x,, X%, -) has glength m — 1, so by the inductive hypothesis for some
TS.8, Vi Viras @reos @y ViXiseos Ve Xir1s VirsXisz + Fos0..0,8(Z

(X1 X 42))-

As there is no duplication or cancellation of terms in the reduction from
XX 1 X q tOt Z(X,, X, ,) it follows by the Subject Expansion Theorem
(Curry and Feys [3] §9C) that the above also holds for Xx,, x,.,..

The lemma then follows by (Fi) with v,.,= e, and v,,,= a,.

Case 3 X=BUZ. Then Xx,,, = U(Zx,,,) by (B).
U(Zx,,,) has glength m — 2, so by the inductive hypothesis for certain
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TS5 Yires Yer1s @aseens @y ViXpseos YisiXunr F Fosi0es,(U(Z 4, 0)
The lemma then follows by the Subject Expansion Theorem and (Fi)
as above,

Case 4 X= BU,,...,Up where p = 3.
In this case X = U(U,, U5)..,U,, which has glength m — 3. We
therefore have v,x,,...,y, - F,a,...,a,8(U,(U,,U5),..,U,) and the Lemma
holds for X as above.

Case 5 X=KZ. Then Xx,,, = Z and Z has glength m — 3. We therefore
have by the inductive hypothesis, adding v,, X,

VXt YestXisr = Fo 10,0082,

As x,,, has T.S. ¥,,,, we can replace Z in the above by KZx, ., by the
Subject Expansion Theorem. The lemma for X then follows by (Fi).

Case 6 X=KU,..U, where p=2.

In this case X = U,U,..U,, which has glength less than m. Also U,
has glength less than m so if the variables of U, are U;,....X; and those
of U,U,..U, are x; X, where (i),.igseenndy) i a perm‘utation of
(1,2,...,k) we have 1by the inductive hypothesis for T.S.s Vi Vi
LI S THON . 2

VoKV X0 Fé,..6.,..U,
Vi, Xi eV Xy Faena,8(UULLU )

q+l

It then follows by the Subject Expansion Theorem that
YiXipeo¥i Xy, - Foay 08X

so that the lemma holds.
The other cases X = CZ, CUZ and CU,..U,(p = 3) are similar to
cases 2, 3 and 4, hence the lemma holds in all cases.

Theorem 1 All BCK-combinators have a principal type scheme.

The Subsystem of BCK logic

The subsystem of BCK logic that we require, for a correct version of
(D), cannot allow the proof of A O A for arbitrary 4 and so cannot have
axiom schemes B, C and K in their full generality. The subsystem will
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therefore, have these corresponding axioms with instead of 4, B and C,
the statement variables p, ¢ and r.

Axioms
B pDg:D>:(rop)D (rog)
C p>(@>dnN'2>g>(E>Dr
K pD(@Dp).

Modus ponens is replaced by condensed detachment, a rule first pro-
posed and used by C.A. Meredith (see Kalman [7] or D. Meredith [8] for
historical details), which can be defined using the notion of “most general
unification” defined below.

If A(p,, ..., p,) is a statement form that has p;, ..., p, as its distinct pro-
positional variables and B(g,, ..., g,,) is a statement form that has g, ...,
4, as its distinct variables, then a most general unificationm of these
statement forms consists of two sequences of statement forms A4,, ..., A
and B,, ..., B, such that:

n

(1) A(A,, ..., A) is identical to B(B,, ..., B,)

(2) the total length (in variables and D s) of 4,, ..., 4
and B,, is minimal.

(3) Given (1) and (2) the number of different variables in
A(A,, ..., A,) is maximal.

B,, ..,

ns

Robinson’s Unification Theorem (page 33 of [9]) shows that if sequences
can be found such that (1) holds then a most general unification exists.
The required rule of inference for our system:

Condensed Detachment 1f A(p,, ..., p,) and B(q,, ..., g,)) D C(g, ..., q.)
are theorems of our logic and g,, ..., g/)are those of the variables
4, - q,, that appear in C(g,, ..., g,) then C(B,, ..., B, is a theorem if
Ay, ..., A, and B,, ..., B, give a most general unification of A(p,, ..., p,)
and B(q,, ..., q,,) and no variables of C(g,, ..., g, other than g,, ..., g,
appear in A, ..., A,.

We call this logic “Condensed BCK-logic”. The result below was first
conjectured by C.A. Meredith.

(3 This Theorem was proved independently by CURRY in [2] the algorithm used in it was,
because of the relation between statements of the implicational logic and the combinators,
foreshadowed by Robinson’s Unification Algorithm.
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Theorem 2 If A D B and C are theorems of condensed BCK logic, con-
densed detachment can be applied to these theorems, and results in the
proof of a substitution instance of B.

Proof For eacht axiom of our logic, there is a corresponding combinator
and this combinator has a PT.S. which can be obtained by replacing each
A D B in the axiom by an appropriate Faf.

The combinator B for example corresponds to the axiom:

PDOqg.D.(ropD(r>dyg

and its PT.S. is F(Fab)(F(Fca)(Fcbh)).

The application of condensed detachment to theorems of the logic cor-
responding to combinators X and Y then corresponds exactly to the opera-
tion of finding the PTS. of the combinator (XY). (See Curry [2] or Hindley
[4]). The fact that this operation can always be performed is proved in
Theorem 1 and it follows that condensed detachment can always be
applied.

This Theorem will also apply to other logics, for example BCI logic,
which has Axiom K replaced by:

Axiom I p D p.
Theorem 2 will in fact hold for any logic with axioms corresponding

to combinators which do not allow duplications.

University of Wollongong MMW. BUNDER
(Australia)
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