CORRECTIONS TO SOME RESULTS FOR BCK LOGICS AND ALGEBRAS

M.W. BUNDER

Introduction

A BCK logic is an implicational logic based on modus ponens and the following axiom schemes.

$$\underline{\mathbf{B}} \quad A \supset B . \supset . (C \supset A) \supset (C \supset B)$$

$$\underline{\mathbf{C}} \quad A \supset (B \supset C) . \supset . B \supset (A \supset C)$$

$$\underline{\mathbf{K}} \quad A \supset (B \supset A).$$

In [1] R.K. Meyer and the author claimed the following result for this logic:

(I) If $A \supset B$ and C are theorems of **BCK** logic, then there is a substitution instance $A_1 \supset B_1$ of $A \supset B$ and one C_1 of C such that $A_1 = C_1 \cdot B_1$ is therefore a theorem of **BCK** logic.

The claim was based on a theorem concerning **BCK** combinators from which the authors also drew similar "results" for **BCK** algebra and Meyer's "Fool's Model for combinatory logic".

However, A. Wronski has pointed out, in private correspondence, that the "results" for **BCK** logic and algebra fail.

It is easy to show, as he points out, that $((p \supset p) \supset p) \supset p$ and $q \supset q$ are theorems of **BCK** logic to which the "result" does not apply.

Wronski also points out that the "result" must fail in any logic in which $A \supset A$ is provable for arbitrary A as then $(p \supset p) \supset p$. $\supset .$ $(p \supset p) \supset p$ and $(q \supset q) \supset (q \supset q)$ must be theorems.

In this note, we give a weaker version of **BCK** logic which does satisfy the above property. The system is in fact one considered by C.A. Meredith and the result confirms a conjecture of his dating back to 1954.

The theorem for **BCK**-combinators, on which the result is based, states that every **BCK** combinator has a principal functional character or principal type scheme (P.T.S.). This theorem (and the result for the Fool's Model) is correct, but Hindley has pointed out that its proof in [1] was not complete. He presents a new proof using lambda calculus in [5]. Below we give a simpler direct (and new) proof of the theorem.

A New Proof of Theorem A of [1]

The theorem concerns combinators made up by application from **B**, **C** and **K** . **BCK** terms may also include the variables $x_1, ..., x_n ...$. Linear BCK terms may contain each of these variables no more than one each.

B, C and K satisfy the equations:

- **(B)** $\mathbf{B}XYZ = X(YZ)$
- (C) CXYZ = XZY
- (K) $\mathbf{K}XY = X$.

It is clear that replacing the left hand side of one of these equations by the right, in a term, shortens the term. If a term can no longer be shortened in this way, it is in *normal form*.

We will be interested in a generalised length or "glength" which is also decreased by the above process.

The glength of a term is obtained by counting 1 for each variable and 3 for each occurrence of **B**, **C** and **K**.

We will show, as part of the proof below, that each linear **BCK** term has a *type scheme* (T.S.).

Type variables a, b, c, ... (and type constants – if any) are T.S.s and if α and β are T.S.s so is $\mathbf{F}\alpha\beta$.

BCK - T.S.s are generated by the schemes:

- (B) $\vdash F(F\alpha\beta)(F(F\gamma\alpha)(F\gamma\beta))B$
- (C) $\vdash \mathbf{F}(\mathbf{F}\alpha(\mathbf{F}\beta\gamma))(\mathbf{F}\beta(\mathbf{F}\alpha\gamma))\mathbf{C}$
- (K) $\vdash F\alpha(F\beta\alpha)K$

and the rule:

(Fe)
$$F\alpha\beta X, \alpha Y \vdash \beta(XY)$$

Lemma 1 In the presence of (Fe); (B), (C) and (K) are equivalent to the rule:

(Fi) If **B**, $\alpha x \vdash \beta(Yx)$, where **B** is a set of statements of the form $\alpha_1 x_1, ..., \alpha_n x_n$ where αx is used at most once in the deduction and $x \neq x_i$, then **B** $\vdash \mathbf{F} \alpha \beta Y$.

Proof (i) By (Fe),
$$F\alpha\beta x$$
, $F\gamma\alpha y$, $\gamma z \vdash \beta(x(yz))$

so
$$\mathbf{F}\alpha\beta x$$
, $\mathbf{F}\gamma\alpha y$, $\gamma z \vdash \beta(Bxyz)$

and 3 uses of (Fi) gives (B).

Similarly the T.S.s for C and K can be derived using (Fe) and (Fi).

(ii) For each step in the proof of **B**, $\alpha x \vdash \beta(Yx)$

of the form
$$\underline{\mathbf{B}}_i$$
, $\alpha x \vdash \beta_i(Y_i x)$ $-(a)$ we prove $\underline{\mathbf{B}}_i \vdash \mathbf{F} \alpha \beta_i Y_i$. $-(b)$

The initial step of this form must be $\alpha \chi \vdash \alpha x$; $\vdash \mathbf{F} \alpha \alpha \mathbf{I}$ is easily obtained as I = CKK.

If (a) is obtained by (Fe) there are two cases.

(I) The previous steps are

$$\mathbf{B}_{j} \vdash \mathbf{F}\boldsymbol{\beta}_{k}\boldsymbol{\beta}_{i}Y_{j} \qquad -(c)$$

and
$$\underline{\mathbf{B}}_k$$
, $\alpha x \vdash \beta_k(Y_k x)$
where $\underline{\mathbf{B}}_k \cup \underline{\mathbf{B}}_i = \underline{\mathbf{B}}_i$ and $\underline{\mathbf{B}} Y_i Y_k = Y_i$.

By the inductive step we have

$$\underline{\mathbf{B}}_k \vdash \mathbf{F} \alpha \beta_k Y_k$$

so by (Fe), (c) and (B) we have (b).

(II) The previous steps are:

$$\underline{\mathbf{B}}_{j}$$
, $\alpha x \vdash \mathbf{F} \boldsymbol{\beta}_{k} \boldsymbol{\beta}_{i} (Y_{j} x)$

and
$$\underline{\mathbf{B}}_k \vdash \boldsymbol{\beta}_k Y_k$$
 $-(d)$ where $\underline{\mathbf{B}}_k \cup \underline{\mathbf{B}}_i = \underline{\mathbf{B}}_i$ and $\mathbf{C}Y_i Y_k = Y_i$

By the inductive step we have

$$\underline{\mathbf{B}}_j \vdash \mathbf{F}\alpha(\mathbf{F}\boldsymbol{\beta}_k\boldsymbol{\beta}_i)Y_j$$

so by (Fe), (C) and (d) we have (b).

We use the following notation.

$$\mathbf{F}_0 = \mathbf{I}$$

$$\mathbf{F}_{n+1}\alpha_1 \dots \alpha_n\beta\gamma = \mathbf{F}_n\alpha_1 \dots \alpha_n(\mathbf{F}\beta\gamma).$$

A term X has a principal type scheme (1) (P.T.S.) ω , relative to the types assigned to its variables, if all the T.S.s of X (and no extra ones) can be obtained from ω by substituting T.S.s for type variables.

⁽¹⁾ For a more detailed definition see HINDLEY and SELDIN [5].

We now prove a lemma which will lead to the proof of Theorem 1 of [1].

Lemma 1 For any T.S. β and any linear **BCK**-term X, whose free variables are $x_1,...,x_k$, there exist T.S.s $\gamma_1,...,\gamma_k$, $\alpha_1,...,\alpha_n$, (with $n \ge 0$) such that $\gamma_1x_1,...,\gamma_kx_k \vdash \mathbf{F}_n\alpha_1 \ldots \alpha_n\beta X$.

Proof If X is x_i , let k = 1, n = 0, $\gamma_1 = \beta$. If X is **K**, **B** or **C** the T.S.s are given by (**K**), (**B**) and (**C**).

To prove Lemma 1 for general X, we proceed by induction on m the glength of X. The m = 1 and some m = 3 cases, we have dealt with above.

If
$$m = 2$$
, $X = x_1 x_2$ and then, $\mathbf{F} \alpha \beta x_1$, $\alpha x_2 \vdash \beta X$.

If m = 3 and X is not a combinator, $X \equiv x_1 x_2 x_3$ or $x_1 (x_2 x_3)$. In the former case $\gamma_1 = \mathbf{F}_2 \gamma_2 \gamma_3 \beta$ (γ_2 , γ_3 arbitrary) in the latter $\gamma_1 \equiv \mathbf{F} \gamma \beta$ and $\gamma_2 \equiv \mathbf{F} \gamma_3 \gamma$ for some γ . In both cases n = 0.

If m > 3 X must be composite and we can assume that our result holds for terms of glength less than m. There are several cases.

Case $1 \ X \equiv x_i \ Y_1,...,Y_p$, where as X is a linear **BCK** term, x_i , $Y_1,...$ and Y_p have no variables in common. Also $Y_1,...,Y_p$ have glengths < m so we have for $1 \le j \le p$, by the induction hypothesis, for some T.S.s $\gamma_{j_1},...,\gamma_{j_{min}}$, $\alpha_{j_1},...,\alpha_{j_{min}}$ and arbitrary β_j :

$$\mathbf{\gamma}_{j_1} \mathbf{\chi}_{j_1}, \dots, \mathbf{\gamma}_{j_{q(j)}} \vdash \mathbf{F}_{m_j} \mathbf{\alpha}_{j_1} \dots \mathbf{\alpha}_{j_{m(j)}} \mathbf{\beta}_j \mathbf{Y}_j$$

where $x_{j_1},...,x_{j_{a(j)}}$ are the variables in Y_j .

Letting $\mathbf{F}_{m_j} \alpha_{j_1} \dots \alpha_{j_{m(j)}} \beta_j \equiv S_j$, we obtain Lemma 1 with $\gamma_i \equiv \mathbf{F}_p S_1 \dots S_p \beta$ and n = 0.

Case 2 X = BZ. Then $X x_{k+1} x_{k+2} = Z(x_{k+1} x_{k+2})$ by (B).

 $Z(x_{k+1}x_{k+2})$ has glength m-1, so by the inductive hypothesis for some T.S.s. $\gamma_1,...,\gamma_{k+2}, \alpha_3,...,\alpha_n, \gamma_1x_1,...,\gamma_{k+1}x_{k+1}, \gamma_{k+2}x_{k+2} \vdash \mathbf{F}_{n-2}\alpha_3...\alpha_n\beta(Z(x_{k+1}x_{k+2})).$

As there is no duplication or cancellation of terms in the reduction from $Xx_{k+1}x_{k+2}$ tot $Z(x_{k+1}x_{k+2})$ it follows by the Subject Expansion Theorem (Curry and Feys [3] §9C) that the above also holds for $Xx_{k+1}x_{k+2}$.

The lemma then follows by (Fi) with $\gamma_{k+1} \equiv \alpha_1$ and $\gamma_{k+2} \equiv \alpha_2$.

Case 3 $X \equiv \mathbf{B}UZ$. Then $Xx_{k+1} = U(Zx_{k+1})$ by (B).

 $U(Zx_{k+1})$ has glength m-2, so by the inductive hypothesis for certain

T.S.s $\gamma_1,...,\gamma_{k+1},\alpha_2,...,\alpha_n, \gamma_1 x_1,...,\gamma_{k+1} x_{k+1} \vdash \mathbf{F}_{n-1} \alpha_2,...,\alpha_n (U(Zx_{k+1})).$

The lemma then follows by the Subject Expansion Theorem and (Fi) as above.

Case 4 $X \equiv \mathbf{B}U_1,...,U_p$ where $p \ge 3$.

In this case $X = U_1(U_2, U_3)...,U_n$, which has glength m-3. We therefore have $\gamma_1 x_1,...,\gamma_k \vdash \mathbf{F}_n \alpha_1,...,\alpha_n \beta(U_1(U_2,U_3),...,U_n)$ and the Lemma holds for X as above.

Case 5 $X \equiv KZ$. Then $Xx_{k+1} = Z$ and Z has glength m-3. We therefore have by the inductive hypothesis, adding $\gamma_{k+1}x_{k+1}$,

$$\gamma_1 x_1, \dots, \gamma_{k+1} x_{k+1} \vdash \mathbf{F}_{n-1} \alpha_2, \dots, \alpha_n \beta Z$$
.

As x_{k+1} has T.S. γ_{k+1} , we can replace Z in the above by KZx_{k+1} by the Subject Expansion Theorem. The lemma for X then follows by (Fi).

Case 6
$$X \equiv \mathbf{K}U_1...U_p$$
 where $p \ge 2$.

In this case $X = U_1U_3...U_p$, which has glength less than m. Also U_2 has glength less than m so if the variables of U_2 are $u_{i_1},...,x_{i_d}$ and those of $U_3U_3...U_p$ are $x_{i_{q+1}},...,x_{i_k}$ where $(i_1,...,i_q,...,i_k)$ is a permutation of (1,2,...,k) we have by the inductive hypothesis for T.S.s $\gamma_{i_1},...,\gamma_{i_k}$ $\delta_1,...,\delta_{r+1},\alpha_1,...,\alpha_n$:

$$\gamma_{i_1} X_{i_1}, \dots, \gamma_{i_q} X_{i_q} \vdash \mathbf{F}_r \delta_1 \dots \delta_{r+1} U_2$$

$$\gamma_{i_{q+1}} X_{i_{q+1}}, \dots, \gamma_{i_r} X_{i_k} \vdash \mathbf{F}_n \alpha_1 \dots \alpha_n \beta(U_1 U_3 \dots U_p)$$

It then follows by the Subject Expansion Theorem that

$$\gamma_{i_1} x_{i_1}, ..., \gamma_{i_k} x_{i_k} \vdash \mathbf{F}_n \alpha_1 ... \alpha_n \beta X$$

so that the lemma holds.

The other cases $X = \mathbb{C}Z$, $\mathbb{C}UZ$ and $\mathbb{C}U_1...U_n (p \ge 3)$ are similar to cases 2, 3 and 4, hence the lemma holds in all cases.

Theorem 1 All BCK-combinators have a principal type scheme.

The Subsystem of BCK logic

The subsystem of BCK logic that we require, for a correct version of (I), cannot allow the proof of $A \supset A$ for arbitrary A and so cannot have axiom schemes B, C and K in their full generality. The subsystem will therefore, have these corresponding axioms with instead of A, B and C, the statement variables p, q and r.

Axioms

$$\underline{\mathbf{B}} \quad p \supset q \cdot \supset \cdot (r \supset p) \supset (r \supset q) \\
\underline{\mathbf{C}} \quad p \supset (q \supset r) \cdot \supset \cdot q \supset (p \supset r) \\
\underline{\mathbf{K}} \quad p \supset (q \supset p).$$

Modus ponens is replaced by condensed detachment, a rule first proposed and used by C.A. Meredith (see Kalman [7] or D. Meredith [8] for historical details), which can be defined using the notion of "most general unification" defined below.

If $A(p_i, ..., p_n)$ is a statement form that has $p_i, ..., p_n$ as its distinct propositional variables and $B(q_1, ..., q_m)$ is a statement form that has $q_1, ..., q_m$ as its distinct variables, then a most general unification of these statement forms consists of two sequences of statement forms $A_i, ..., A_n$ and $B_1, ..., B_m$ such that:

- (1) $A(A_1, ..., A_n)$ is identical to $B(B_1, ..., B_m)$
- (2) the total length (in variables and \supset s) of A_1 , ..., A_n , B_1 , ..., and B_m is minimal.
- (3) Given (1) and (2) the number of different variables in $A(A_1, ..., A_n)$ is maximal.

Robinson's Unification Theorem (page 33 of [9]) shows that if sequences can be found such that (1) holds then a most general unification exists. The required rule of inference for our system:

Condensed Detachment If $A(p_1, ..., p_n)$ and $B(q_1, ..., q_m) \supset C(q_k, ..., q_l)$ are theorems of our logic and $q_k, ..., q_l$) are those of the variables $q_1, ..., q_m$ that appear in $C(q_k, ..., q_l)$ then $C(B_k, ..., B_l)$ is a theorem if $A_1, ..., A_n$ and $B_1, ..., B_m$ give a most general unification of $A(p_1, ..., p_n)$ and $B(q_1, ..., q_m)$ and no variables of $C(q_k, ..., q_l)$ other than $q_k, ..., q_l$ appear in $A_k, ..., A_l$.

We call this logic "Condensed **BCK**-logic". The result below was first conjectured by C.A. Meredith.

⁽²⁾ This Theorem was proved independently by CURRY in [2] the algorithm used in it was, because of the relation between statements of the implicational logic and the combinators, foreshadowed by Robinson's Unification Algorithm.

Theorem 2 If $A \supset B$ and C are theorems of condensed BCK logic, condensed detachment can be applied to these theorems, and results in the proof of a substitution instance of B.

Proof For eacht axiom of our logic, there is a corresponding combinator and this combinator has a P.T.S. which can be obtained by replacing each $A \supset B$ in the axiom by an appropriate $F\alpha\beta$.

The combinator **B** for example corresponds to the axiom:

$$p \supset q . \supset . (r \supset p) \supset (r \supset q)$$

and its P.T.S. is F(Fab)(F(Fca)(Fcb)).

The application of condensed detachment to theorems of the logic corresponding to combinators X and Y then corresponds exactly to the operation of finding the P.T.S. of the combinator (XY). (See Curry [2] or Hindley [4]). The fact that this operation can always be performed is proved in Theorem 1 and it follows that condensed detachment can always be applied.

This Theorem will also apply to other logics, for example BCI logic, which has Axiom K replaced by:

Axiom
$$I p \supset p$$
.

Theorem 2 will in fact hold for any logic with axioms corresponding to combinators which do not allow duplications.

University of Wollongong (Australia)

M.W. BUNDER

REFERENCES

- Bunder, M.W. and Meyer, R.K., "A result for combinators BCK-logics and BCK-algebras", Logique et Analyse Vol. 109 (1985), pp. 33-40.
- [2] Curry, H.B., "Modified basic functionality in combinatory logic", *Dialectica* Vol. 23 (1969), pp. 83-92.
- [3] Curry, H.B. and Feys, R., Combinatory Logic, Vol. 1 Amsterdam North Holland (1958).
- [4] Hindley, J.R., "The principal type-scheme of an object in combinatory logic", *Transactions of the American Mathematical Society* Vol. 146 (1969), pp. 29-60.
- [5] Hindley, J.R., "BCK-combinators and linear λ -terms have types".
- [6] Hindley, J.R. and Seldin, J.P., Introduction to Combinators and λ-Calculus, Cambridge University Press (1986).
- [7] Kalman, J., "Condensed detachment as a rule of inference", Studia Logica Vol. 47 (1983), pp. 443-451.
- [8] Meredith, D., "In memoriam Carew Arthur Meredith (1904-1976)", Notre Dame Journal of Formal logic Vol. 18 (1977), pp. 513-516.
- [9] Robinson, J.A., "A machine-oriented logic based on the resolution principle", *Journal of Association for Computing Machinery*, Vol. 12 (1965), pp. 23-41.