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Abstract

Da Costa’s two conditions for paraconsistency are discussed. It is noted
that condition (I), which requires that arbitrary formulas not be derivable
from inconsistencies, is universally accepted; but (II), which requires
substantial containment of classical logic, is less generally endorsed. In’
particular, it is suggested that (II) be weakened to (II’), which allows
substantial containment of intuitionistic logic as an alternative. It is noted
that J, to J; explicitly or substantively violate (I), leaving only J , for fur-
ther consideration. While J, does not satisfy (II) as well as J, to J s do,
it comes closer to satisfying (II’). However, certain anomalies are pointed
out, e.g. while = 71(A & 71A) is a postulate, > TT(TA & A) and —
“T((A & "TA) & (A & TTA)) are not derivable. Consequently, J, does not
enjoy SE, the property of intersubstitutivity of provable equivalents. It
is investigated whether SE can be secured by extending J,, with the
negative result that the weakest extension of J, enjoying SE is Js. Weaker
versions of SE are proposed, but it is shown that any extension of J , en-
joying these also substantively violates (I). Finally, it is suggested that
weaker systems, ie. subsystems of J,, be investigated.

1. Conditions for paraconsistency

Da Costa and Alves state in [8] that, in general, systems of paraconsis-
tent logic must satisfy the following conditions:
(I) from two contradictory formulas A and 71A, it must not be possi-
ble in general to deduce an arbitrary formula B; and
(IT) such systems should contain most of the schemata and deduction
rules of classical logic that do not interfere with (I).
Although further requirements have occasionally been added for par-
ticular paraconsistent systems (see, for example, [7]), these two conditions
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have consistently operated as the primary guiding principles for da Costa
and his collaborators in the construction of their paraconsistent logics.

However, this approach is not beyond controversy, for while (I) is univer-
sally accepted as a necessary condition for paraconsistent systems, (II)
is less generally endorsed (see, for example, [4], [5] and [11]. Indeed, dis-
sent over (II) is sufficiently widespread that adherence to this condition
has come to be regarded as a distinguishing feature of the Brazilian ap-
proach to paraconsistency (see [11]). Without rehearsing the arguments
of others in detail, a number of grounds for dissatisfaction with (II) are
worth mentioning.

Firstly, da Costa himself notes that this condition is “vague” ([7], p.
498). Certainly, it is not clear exactly what measure of containment of
classical schemata and rules constitutes satisfaction of the condition. But
more significant is the fact that it is not determinative. For it is conceivable
— indeed, this will emerge in later sections — that two different schemata
or rules could be singly but not jointly incorporated into a paraconsis-
tent system without compromising condition (I). In such a case, (II) sug-
gests that one of the pair ought to be incorporated, or at least considered
for incorporation, but no means of deciding between them is suggested.
This indicates that, for (II) to be coherently applied in the construction
of paraconsistent systems, it must be coupled with some account of the
relative merits of competing candidate schemata and rules. One sugges-
tion for such an account will be advanced in Section 5.

A second objection to condition (II) is that it needlessly places on
paraconsistent logics the burden of ensuring that inconsistent theories bas-
ed on these logics sufficiently resemble their classical competitors to be
considered as serious rival theories. For example, it is plausible that in-
consistent set theories (such as those constructed on the basis of the J-
systems in [2]) should sufficiently approximate classically based set theories
for them to be considered to be genuine rival formal models of the same
informal intuitions concerning sets. But it does not follow that this overall
similarity should extend also to the components of the respective theories,
and in particular, to their logical bases.

Finally, even if the general tenor of (II) is accepted, a case still exists
for slightly modifying it. For it is noteworthy that, as a matter of prac-
tice, da Costa and his collaborators consider worth mentioning not only
substantial containment of classical logic, but also containment of intui-
tionistic logic. (For example, Theorem 1 of [1] states that C_, the weakest
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of the C-systems, contains the theorems of the intuitionistic positive
calculus). This practice has led some authors to read into (1) the proviso
that substantial containment of intuitionistic logic is a next-best alternative,
or even a no worse alternative, to substantial containment of classical logic
(see, for example, [4] and [13]). This suggests that condition (II) be
modified as follows: (II’) paraconsistent systems should contain most
of the schemata and deduction rules of classical or intuitionistic logic
that do not interfere with (I).

2. The J-systems and the paraconsistency conditions

The systems J, to J;, introduced by Arruda and da Costa in [2], are
among the early contributions of Brazilian logicians to the paraconsis-
tent logic programme. On the basis of each J,, Arruda and da Costa con-
struct a set theory ZF; in which the postulate of separation occurs
without the restrictions which accompany it in Zermelo-Fraenkel set theory
as a guard against paradox.

It was hoped that the theories ZF,, though containing such paradox-
ical sequents as — 3x(x € x = x & x), would nonetheless prove to be
non-trivial (in the sense that not every sequent is derivable). Unfortunately,
it turned out that A = “1A — B D C is derivable in J, to J; (by
Theorem 1 of [3]), and hence that ZF, to ZF, contain every sequent of
the form — B D C (Theorem 3). A particularly unwanted consequence
(Theorem 4) is that in these theories all sets are identical : > vxvy(x=y).
Moreover, from A = “TA — B D C it is easy to derive A, 1A =+ B
D C, which makes it clear that the systems J, to J; satisfy condition (I)
at most in letter but not in spirit. In fact, J; fails to do even this, as the
sequent A, "TA — B is derivable in this system (Theorem 18 of [2]).

This leaves only J,, the weakest of the J-systems. As far as condition
(I) is concerned, J, fares better than its stronger siblings: A, 1A — B
is not derivable in J, (by Theorem 3 of [2]), noris A, 7TA - B D C
(by Theorem 2 of [3]). It is rather because of its apparent failure to satisfy
(1I) that Arruda and da Costa take their leave not only of the stronger
J-systems, but also of J, (see [3], p. 186).

Certainly, J, fails to contain some classically derivable sequents which
would not obviously interfere with its satisfaction of (I) if they were in-
corporated. For example, it does not contain even all of the theorems of
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positive classical logic, since = ((A O B) D A) D A is not derivable in
J, (by Theorem 3 of [2]). But this constitutes only prima facie evidence
that (I1) is not satisfied; the case is not settled until it is demonstrated
that significant portions of classical logic not contained by J, can be
added without compromising (I). And in any case, (II) is itself open to
question, as noted in Section 1.

Of particular interest in this regard is the suggested replacement of (II)
by the weaker (I1'). For when it comes to containing substantial parts
of intuitionistic rather than classical logic, J, fares somewhat better.
Theorem 1 of [5] shows that the theorems of J,*, the subsystem
generated by only the negation-free postulates of J,, are precisely the
theorems of positive intuitionistic logic; and the conservative extension
result (Theorem 3) of [14] shows that these are precisely the negation-free
theorems of J,.

It is where negation is involved that J, diverges more spectacularly
from intuitionistic logic, possibly to a greater extent than condition (II")
envisages. Some of the intuitionistically derivable sequents involving nega-
tion that are not derivable in J, are listed in Theorem 3 of [2], but one
which is particularly striking, and which would least obviously interfere
with the satisfaction of (I) were it incorporated into J,, is cited in
Theorem 5 of that paper. The (infinite) matrices supporting Theorem 5
are needlessly complex for present purposes, so we restate the result in
question in greater generality, and supply simpler matrices for its proof.

Theorem 1. In J,, the following sequents are not derivable:

- T1((A & T1A) & B);
— 71X, where X is any reassociation and/or permutation of
(A& T1A) & B.

Proof: The following matrices validate the postulates of J,, but in-

validate these sequents when A is assigned the value 0 and B is assigned
the value 1.

=/2|10 1 2|7 vio 1 2
01 2|0 0/0 0 O
0 0 22 110 1 1
0 0 01 210 1 2
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(The values 0 and 1 are designated, and the value of — A is taken to be
the same as that of A).
Even more striking than Theorem 1 is the following.

Theorem 2. In J,, the following sequents are not derivable:

= T(TA & A);
= (A & TA) & (A & TA));
= (A & TTA) V(A & TTA)).

Proof: The following matrices validate the postulates of J;, but in-
validate these sequents when A is assigned the value 0.

=/2|10 1 2 3 4|77 AN&IO 1T 2 3 4 Vo1l 2 3 4
*0 |0 000 41 031334 013 3333
* T 10000 4|2 1 133234 1{3 3333
*2 /0 0 00 4|1 2 /32324 2|13 33133
*3 10000 4|4 3 133334 3|3 3333
4 10000013 4 14 4 4 4 4 413 3 3 3 4

(Only the value 4 is not designated).

The above results provide a number of reasons for dissatisfaction with
J;. Firstly, it is counterintuitive that the sequents of Theorems 1 and 2
are not derivable in J,. This is not because of their underivability per se,
but because the sequent of which they would ordinarily be taken to be
merely syntactic variants, — ~1(A & T1A), is explicitly incorporated as
a postulate. It may be possible to provide a plausible motivation for such
fine discrimination, but no such motivation is to be discerned in the discus-
sion accompanying the construction of the J-systems in [2], nor in the
sequel [3]. In the absence of any illuminating motivation, such fine
discrimination is simply anomalous.

Secondly, it may be that the absence of the (intuitionistically derivable)
sequents of Theorems 1 and 2 from the stock of derivable sequents of
J, constitutes an infringement of (II'). For the following result indicates
that these sequents can be added to J, without endangering the satisfac-
tion of (I).

Theorem 3. In the system formed by adding the sequents of Theorems
1 and 2 to the postulates of J,, the sequents A, TA — B and A, TTA
— B D C are not derivable.
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Proof: The following matrices validate the postulates of J, and the se-
quents of Theorems 1 and 2, but invalidate A, “TA — B when A assign-
ed the value 1 and B is assigned the value 3, and A, 7TA — B D C when
A is assigned the value 1, B is assigned the value 0 and C is assigned the
value 3.

=/ 2 317 AN& IO 1 2 3 23
*0 2 313 0 |01 23 00
*1 2 3|2 I |1 123 11
*2 0 3|1 2 (22 2 3 2 2

3 0 010 3 133133 213

(The values 0 and 1 are designated).

Even if the sequents of Theorems 1 and 2 were added to J,, however,
there is no guarantee that further deficiencies could not be exhibited. In
particular, it is likely that other syntactic variants of = (A & TT1A)
would still prove to be underivable. Obviously, a more systematic strategy
is needed; and this in turn requires that we establish which more general
property is shown by Theorems 1 and 2 to be lacking from J,.

3. J, and the property of intersubstitutivity of provable equivalents

The underivability of the sequents of Theorem 2 in J | is symptomatic
of a more general deficiency, namely, that this system lacks SE, the pro-
perty of intersubstitutivity of provable equivalents. The most natural way
of defining provable equivalence in the J-systems is as follows : two for-
mulas C and D are provably equivalent just in case the pair of sequents
C — D and D — C (abbreviated C « D) is derivable. SE, then, is the
property that, if I' — A is a derivable sequent, B a subformula of some
member(s) of I and/or of A, and C a formula which is provably equivalent
to B, then the sequent obtained by substituting C for some or all occur-
rence(s) of BinI' — A is also derivable. Equivalent in this context is the
property that, if B is a subformula of A, and B and C are provable
equivalent, then so are A and the formula obtained by substituting C for
some or all occurrence(s) of B in A.

Theorem 4. ], does not enjoy SE.
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Proof: Easily derived in J, are the sequents A & TTA — 1A & A and
TA & A — A& TTA. If J, enjoyed SE, then — ~T( 1A & A), the result
of substituting “TA & A for A & 1A in postulate ~1,), would also be
derivable. But this sequent is not derivable, by Theorem 2; hence, J , does
not enjoy SE.

The proof of Theorem 4 illustrates how unsystematically the connec-
tive 71 behaves in J,; two formulas are provably equivalent and yet their
putative negations are not (indeed, one is a postulate while the other is
underivable). Of course, it may be possible to interpret 1 in such a way
that this result is acceptable, but there is nothing in [2] and [3] to indicate
that 7T is to be interpreted even as a special kind of negation, let alone
as something other than negation. Again, in the absence of any such il-
lumination, the behaviour of this connective in J, is simply anomalous.
(In [11]), a similar view is expressed about the behaviour of 71 in the C-
systems of da Costa, which similarly fail to enjoy SE; and in [10], it is
argued that no reasonable conditional or biconditional can be expressed
in the C-systems, again because of their failure: to enjoy SE).

In general, the absence of SE makes it difficult to provide a natural
and uniform interpretation of the connectives of a logic and the relations
thereby definable. Technically, this tends to be reflected in the complexity
of formal semantical and algebraic perspectives (again, see [10] and [11],
and also [9] and [13]).

The desired general strategy for removing the deficiencies of J, ex-
hibited in (at least) Theorem 2, then, is to attempt to secure the property
SE. In [13], the parallel problem of securing SE for the C-systems is adress-
ed, and the respective addition of two rules is proposed. The appropriate
versions of these rules in the present context are:

Rc C— D and ECc _C«D
D - ¢ D - 1C

By Lemma 2 of [14], J, enjoys SE"*, the property of intersubstitutivi-
ty of provable equivalents in negation-free contexts. It follows that, for
any extension of I, (in the same vocabulary), the admissibility of RC or
of EC is sufficient to guarantee SE in full, and the admissibility of EC
is also evidently necessary. (A rule is admissible in a sequent-based system
just in case the system formed by adding that rule is a conservative exten-
sion of, i.. has the same stock of derivable sequents as, the original system.
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Thus, every derivable rule is admissible, but the converse does not generally
hold).

We now investigate the result of respectively adding RC and EC to J,.
That neither rule is admissible in J, follows from Theorem 4; it is to be
expected, therefore, that their addition will strengthen J, in an interesting
way.

The strength imparted by the addition of RC proves to be somewhat
excessive.

Theorem 5. In J, + RC, the sequent A, 1A — B is derivable.

Proof: Application of —,) to postulate 71,) of J, yields 1B —
(A & 71A), from which 7171(A & "1A) — 7171B follows by RC.
Together with A & "TA — 71 71(A & 7TA), which is an instance of 1)),
this yields A & "TA — 7171B by —,). From this, A & 1A — B follows
by 71,) and —;), and from this A, "TA — B is easily derived using &)
and —).

Unfortunately, the addition of the ostensibly weaker EC has precisely
the same result.

Theorem 6. In J, + EC, the sequent A, “TA — B is derivable.

Proof: Application of —,) to postulate ~1,) yields 71(B & "1B) —
“1(A & "TA). A parallel derivation yields the converse, 71(A & T1A) —
“1(B & "1B). From these, EC delivers 71 T(A & 71A) » 7171(B& TIB),
which quickly reduces to A& 1A — B & 71B using 71,), 71,) and —).
An instance of &,) is B & "TB — B, whence —;) yields A & 1A — B.
As in the proof of Theorem 5, this suffices to deliver A, TA — B.

As with J;, the derivability of A, TA - BinJ, + RC and J, + EC
constitutes an explicit violation of condition (I), effectively disqualifying
these systems from contention as paraconsistent logics. In fact, these three
systems are equivalent.

Theorem 7. J, + EC = J, + RC = J,.

Note: In this and subsequent proofs, we will make use of the following
rules and sequent, which are easily shown to be derivable in J,:

r-Co>D A-DDE
ILA—>CDE

Transitivity (of D):
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Permutation of

antecedents: »COWDE,

- D D(C D E)

Restricted modus
ponens (sequent): CCOMDDO>E)>DDE

Restricted modus

ponens (rule): r—-C>5(DD>E)

IC>DDE

The sequent form of restricted modus ponens is shown to be derivable
in J, in [5] (p. 45); from this, —,) and —,) deliver the rule form.

Proof: That J;, + EC is a subsystem of J, + RC is evident, since the
derivability of RC ensures the derivability of the weaker EC. Moreover,
J, + RC is a subsystem of J;, since J, is a subsystem of J, to begin with,
and RC is easily derived in J; as follows. Assume C — D. From this,
“1D, C — D follows by —,). An instance of —,)is 71D — ~1D. But the
last two sequents yield 7D — T1C by postulate —,) of JI,.

To complete the proof of Theorem 7, it suffices to show that J, is a
subsystem of J, + EC, i.e. that those postulates which are added to J,
in the construction of J; are derivable in J;, + EC. These are —,), 71,
and 71).

A, A->B A- B
A— A

Postulate —,) is the rule

This is derived in J, + EC as follows. Assume A, A - B and A —
“1B. Applications of —,) and —,) to the second sequent give A, A —
“1B, which can be combined with the first to yield A, A » B & 7B (see
Theorem 2 of [2]). But B & 1B — 7TA is derivable in J, + EC by
Theorem 6; hence by —;), we get A, A — ~1A. Easily derived by =)
and —,) is 4, "TA — 71A; hence V,) yields A, A v 1A — TTA. Ap-
plications of —,) transform this into A v 71A, A — T1A, from which
A — T1A follows by 1,) and —;). Thus, —,) is derivable in J, + EC.

Postulate 71;) is the sequent 1A, TB — ~1(A V B). This is derived
in J; + EC as follows. Firstly, we have 1A, 7TB,AVB - ( TA & TIB)
& (A v B) by &) and —). By distribution (see Theorem 2 of [2]), we
have ("TA& TTB)& (AVB) — ((TTA& TIB)&A)V (( TA & 71B) & B),
whence 1A, TTB, AV B — ((TTA & TIB) & A) V ((TTA & T1B) & B)
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by —). But (TTA & 71B) & A = A & 1A is easily derived, and (1A
& 71B) & B » A & T1A is derivable in J, + EC by virtue of Theorem
6; hence, we have ((TTA & TTB)& A)V ((TTA& TTB)&B) > A& 1A
by V,), and therefore 1A, 71B, AV B — A & 1A by —,). From 1,),
1A, T1B = T1(A & 71A) follows by —,). From the last two sequents,
the above-derived —,) delivers the desired 7TA, 1B — ~1(A Vv B).

Postulate 71;) is the sequent = (A D B) D ((A D 71B) > 7TA). This
is derived in J, + EC as follows. Firstly, we have A D B, A > 7B —
A D (B & T1B) by &) and &,). But by Theorem 6, B& 1B — 1A is
derivable in J, + EC, and hence sois » (B & 71B) > 1A by D,). By
transitivity, we therefore have A D B, A © 71B — A D 7TA. Easily deriv-
ed using vy) is A D TTA — (A Vv T1A) D TIA, so by —), we get
A DB AD 7B~ (AvV TTA) D TTA. Applying D,) and permuting
antecedents gives > (AV "1A) D ((A D B) D ((A D T1B) D T1A)),
from which Av 7TA = (A D B) D ((A D 71B) D "1A) follows by the
restricted modus ponens rule. The desired ~1,) then follows by 1,) and
—s).

This concludes the proof of Theorem 7.

We note that the proofs of Theorems 6 and 7 do not rely upon the ac-
tual derivability of EC in J; + EC; it suffices merely that this rule is ad-
missible. But the admissibility of EC in any extension of J; is a necessary
condition for SE. We can therefore state the following more general result.

Theorem 8. There is no extension of J, which enjoys SE but which is
weaker than J,.

We conclude that the deficiencies of J, in Theorems 1 and 2 cannot
be remedied by extending this system so as to secure SE without thereby
rendering it too strong to satisfy paraconsistency condition (I). Two alter-
native strategies present themselves: (i) to extend J, so as to secure not
SE but some weaker version of this property which would nonetheless
at least mitigate these deficiencies; and (ii) to explore methods of varia-
tion other than extension. These strategies will be investigated in the next
two sections.

4. J, and weaker versions of the property of intersubstitutivity of pro-
vable equivalents

Two weaker versions of SE suggest themselves, each a restricted variant
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of one of the equivalent statements of SE presented in Section 3. Firstly,
let SE’ be the property that, if A is a theorem (i.e. = A is derivable),
B is a subformula of A, and C is provably equivalent to B, then the for-
mula obtained by substituting C for some or all occurrence(s) of B in A
is also a theorem. SE’ is the property of intersubstitutivity of provable
equivalents in theorems, and its obtaining would at least avoid the defi-
ciencies exhibited in Theorem 2. A second variant is SE”, which is the
property that, if B is a subformula of A, and A(C) is the result of
substituting a formula C which is provably equivalent to B for some or
all occurrence(s) of B in A, then -+ A = A(C) is a derivable sequent.
(C = D abbreviates the formula (C D D) & (D D Q).

Theorem 9. J, does not enjoy SE’.

Proof: As for Theorem 4.

Theorem 10. ], does not enjoy SE”.

Proof: As in the proof of Theorem 4, A & "1A and "1A & A are pro-
vably equivalent in J,. If J, enjoyed SE”, then — 71(A & 1A) =
“1("TA & A) would be derivable. But the matrices of Theorem 2, which
validate the postulates of J,, invalidate this sequent when A is assigned
the value 0; hence, J, does not enjoy SE”.

Theorem 11. Every extension of J, which enjoys SE’ also enjoys SE”,
but not conversely.

Proof: To establish the first part, it suffices to note that A = A is a
theorem of J, for any formula A. If SE’ holds, then any occurrence of
a subformula B of A can be replaced by a provably equivalent formula
C; hence, A = A(C) is also a theorem, and SE” holds.

To establish the second part, it suffices to exhibit an extension of J,
which enjoys SE” but not SE’. Consider the system J,’ constructed by
adding the postulate -~ A = B to J,. Trivially, J,” enjoys SE”. However,
the matrices in the proof of Theorem 2, with the modification that A O B
is assigned the value 0 always, validate the postulates of J,” but continue
to invalidate the sequents of Theorem 2; hence J,’ does not enjoy SE’.

It follows from Theorem 11 that any addition to/of J, which is
necessary to secure SE” is necessary also for SE’. We therefore proceed
to establish which additions are necessary for the weaker property.
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It is easy to verify that the admissibility of the following variant of EC
in any extension of J, is a necessary condition for SE” :

Ce<D

E SR .
€2 == b5 Tc

Moreover, a straightforward inductive argument can be used to establish
that the admissibility of EC D is also sufficient for SE”, since the follow-
ing rules are already derivable in J;:

CeD C+eD i
— B*C=B*D -+ C*B=C*D

where * represents any of the connectives &, V or D.
The admissibility of any of the following rules is evidently also suf-
ficient :

cC—-D

RC 2 - D> C
T T
~C>oD

RC o S
2 ° S 9p > ac

We now consider the systems formed by respectively adding these rules
to J,. In fact, these systems are all equivalent.

Theorem 12. J, + ECD = J,+RCD =J,+ DECD = J,+ DRCD.

Proof: Evidently, J, + EC D is a subsystem of both J, + RC and
J, + D EC D, and both of these are subsystems of J, + D RC 3. We
need only show, therefore, that J, + D RC D is a subsystem of
J, + EC D, ie. that D RC D is derivable in J, + EC D.

By 1,) and —,), we have "1(C & 71C) © (D & 71D) in J,. Apply-
ing EC D yields = 7171(D & 7TD) > 7171(C & 71C), which, using
"1, 713), D)) and transitivity, is easily reduced to > (D & 1D) D
(C & 71C). By &;), D)) and transitivity, this further reduces to —
(D& 71D) o> 71C. Applying D)) to an instance of &,) gives D —
1D O (D & 71D), which together with the preceding sequent, yields by
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transitivity, D = 71D D T1C. Applying D)) gives = D D (71D D
1C).

An instance of V;) is (C D 71C) & (T1C D 71C) = (C v 7IC) D
“1C, which is transformed into C 2> 71C, 7IC O 71C = (CVv 71C) D
“1C by &,;) and —;), and further into 71C > 71C —» (C D 71C) D
((Cv 71C) D T1C) by »p)and D). But > 71C D 71C is derivable by
—)and D)), so =) delivers = (C D 71C) D ((C v 71C) D 71C). Per-
mutation of antecedents transforms this into - (C v 71C) 2 ((C D 71C)
D T1C), from which the restricted modus ponens rule gives C v 71C —
(C > 71C) D TIC. From this, »(C D 71C) D 71C follows by 71,) and
)

We now consider D RC D. Assume — C O D. Together with the se-
quent =+ D D (71D D T1C) derived above, this yields by transitivity,
— C D (71D D T1C). Permuting antecedents gives - 1D D (C D
“1C), which, together with the last sequent of the preceding paragraph,
yields by transitivity, = 1D > 7T1C. Thus, D RC D is derivable in J,
+ EC D.

This concludes the proof of Theorem 12.

Interestingly, J, + EC D also has an equivalent formulation purely
in terms of the postulates of the J-systems.

Theorem 13. Let J 5 be the system formed by adding to J, postulate ~1,)
of J,. ThenJ, + EC D = J,.

Proof: To show that J, + EC D is a subsystem of J,,, it suffices to
derive EC D in the latter system. This is derived as follows. An instance
of postulate 715) is = (C D D) D ((C O 71D) D 71C). Using the
restricted version of modus ponens cited in the proof of Theorem 7, this
is transformed into C D D — (C > 71D) O T1C. Easily derived using
—-), T,)and D,)is = 71D D (C D 71D), whence transitivity yields
C > D— 71D D T1C. But — C D D follows from the premise of EC D
(or of any of the other three rules); whence —) yields the conclusion,
— 71D D T1C. Thus, EC DO is derivable in I, .

To show conversely that J, ; is a subsystem of J, + EC D, it suffices
to derive “15)in J;, + EC D. An instance of &,) is (A D B) & (A D
“1B) - A D (B & 71B), which by &,) and —,) is transformed into
A DB AD 7B~ A D (B& T1B). As in the proof of Theorem 12,
the sequent — (B & "1B) O 71A is derivable in J, + EC D; hence tran-
sitivity yields A D B, A D T1B = A D T1A. Applying D,) gives
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A DB~—(AD T1B) D (A D T1A). Again as in the proof of Theorem
12, = (A O 7TA) D T1A is derivable in J, + EC D, so transitivity
delivers A D B — (A D 7I1B) O 7IA, from which the desired 71,)
follows by D,). Thus, 71,) is derivable in J, + EC D.

This concludes the proof of Theorem 13.

J,; lies between J, and J,, but it is equivalent to neither.

Theorem 14. 1, + J,.

Proof: That postulate “1;) of J,5 is not derivable in J, is shown in
Theorem 3 of [2]. However, the result also follows from the fact that J
enjoys SE”, while J, does not, by Theorem 10 above.

Theorem 15. 1, # J,.

Proof: The matrices in the proof of Theorem 2, as modified in the proof
of Theorem 11, validate the postulates of J, ; but invalidate postulate ~14)
of J, when A and B are both assigned the value 0.

Unfortunately, even though J, + EC D (= J,5) is weaker than J,, it
similarly fails to substantively satisfy paraconsistency condition (I).

Theorem 16. In J, + EC D, the sequent A, "1A — B D C is derivable.

Proof: As in the proof of Theorem 12, = (A & 71A) D (C & 71C) is
derivable in J, + EC D. By &), D,) and transitivity, this yields — (A
& 71A) O C. But —» C D (B D Q) is easily derived using —,), —,) and
D); whence transitivity again yields » (A & 71A) D (B D C). Using
the restricted version of modus ponens cited in the proof of Theorem 7,
this is transformed into A & TA — B D C, from which A, TA — B
D C follows by &,) and —;).

We note that the proofs of Theorems 13 and 16 (and those parts of
the proof of Theorem 12 which they presuppose) do not rely upon the
actual derivability of EC D in J, + EC Dj; it suffices merely that this
rule is admissible. But the admissibility of EC O in any extension of J,
is a necessary condition for SE”. We can therefore state the following
more general result.

Theorem 17. There is no extension of J, which enjoys SE” but which is
weaker than J, ;.
From Theorems 11 and 17, the following is also immediate.
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Theorem 18. There is no extension of J, which enjoys SE’ but which is
weaker than J .

We conclude that even the weaker versions of SE considered in this sec-
tion cannot be secured by extending J, without substantially compromis-
ing its satisfaction of (I). We turn instead to methods of variation other
than extension.

5. Other methods of variation

The obvious alternative to extension is subtraction. In particular, it may
be that systems obtained by deleting some of the postulates of J 1 1€
subsystems of J;, could be shown to either enjoy SE naturally or be
amenable to extension so as to secure this property without infringing
condition (I).

A likely candidate for deletion is postulate 71,). The motivation for
extending J, in the first place was to remove the anomalies exhibited in
Theorems 1 and 2; but these results are anomalous only because J, in-
corporates "1;) — the anomalies might just as well be removed by
deleting this postulate as by adding its variants. The subsystem so ob-
tained would still enjoy SE*, since the rules required to guarantee this
property would not be affected by the deletion of a negation postulate,
and it would also evidently satisfy (I), since the sequents A, 7TA — B
and A, 7TA — B D C would still not be derivable. If, in addition, the
admissibility of RC or EC in this subsystem could be established, then
it would enjoy SE naturally; and even if not, it may be that these rules
could be added without compromising its satisfaction of (I).

Similar considerations apply also to the removal of any of the other
negation postulates of J,. Of course, an obvious constraint on this
strategy of subtraction is condition (II). At first glance, it would appear
that the deletion of any of the postulates of J, would increase the degree
to which (1I) is not satisfied. However, there are several considerations
which indicate that the matter is not so straightforward.

Firstly, there is the suggested replacement of (II) by (I1"). It may be
that the deletion from J, of the intuitionistically underivable postulates
“1,) and 71,) would leave unaffected its stock of intuitionistically
derivable rules and sequents, in which case the satisfaction of (I1’) would
not be diminished. Of course, the subsystem so obtained would fail to
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enjoy SE, since it would still incorporate 71,) but not its variants listed
in Theorem 2; but again it may be that the addition of RC or EC in order
to secure SE would not entail the undesirable consequences of the cor-
responding additions to J,.

Even without resorting to the intuitionistic escape clause of (II’),
however, there are good reasons for not being too concerned by the dele-
tion of some of the negation postulates of J,, especially if this allows the
addition of such a rule as RC without harm to the satisfaction of (I).
This is the case foreshadowed in Section I; we are assuming that, for some
subsystem of J, the addition of a missing negation postulate results in
J,, which satisfies (I), and the addition of RC results in some other
system which also satisfies (I), but the addition of both the postulate and
RC results in J;, which does not satisfy (I). Condition (II) suggests that
one or the other ought to be added, but it does not suggest which.

An argument which weighs heavily in favour of adding RC in this case
is that this addition would guarantee the systematic behaviour of 1, while
the addition of the competing postulate would only result in the un-
systematic behaviour documented in Theorems 1 and 2. This suggests that
RC is more general, or expresses a more fundamental property of nega-
tion, than any of the negation postulates of J,. Certainly, this rule is in-
corporated in a very broad range of logics, including all of the negation
systems of [6] (among them, classical and intuitionistic logic, and
Johansson’s “minimal calculus”), and also all of the main relevant logics
(see [12]). On the other hand, postulates 71,) and 71,) are not so univer-
sally incorporated, which suggests that they express properties of a
somewhat special (and strong) type of negation; and, perhaps more in-
terestingly, (the appropriate versions of) 71,) and 71,) are notably absent
from the C-systems of da Costa.

The widespread inclusion of RC is hardly surprising, for this rule ex-
presses little more than that negation reverses the order of strength among
propositions : the weaker a proposition, the stronger is its rejection or
denial; and the stronger the proposition, the weaker its denial. Indeed,
it is difficult to see how a connective not conforming to this rule can be
interpreted as negation at all, rather than as some more enigmatic func-
tor. These considerations apply also to the weaker EC; indeed, this rule
expresses the even less arresting precept that a logic which identifies two
propositions should not distinguish between their denials. Again, it is dif-
ficult to see how a connective which does not conform to this rule can
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be interpreted as anything other than a very selective type of negation,
if as negation at all. ‘

The considerations expressed in this section indicate that an investiga-
tion into the subsystems of J,, augmented by RC or EC if required, is
well warranted. Accordingly, a detailed investigation is undertaken in [15]
and [16].
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