RELEVANT CONTAINMENT LOGICS
AND CERTAIN FRAME PROBLEMS OF Al

Richard SyLvan

Abstract. Relevant containment logics, which combine relevant logics with
content containment requirements, are motivated and explained. Seman-
tics for some of these logics are introduced and shown to be adequate.
In the light of the semantics the logical theory is improved, and other
directions for elaboration are indicated. Finally, the logics are applied to
one significant part of the vexatious frame problems of A/, and a route
to implementation is suggested.

One many occasions there appears to be a real need for a relevant im-
plication relation which does not introduce or carry superfluous or ir-
relevant information. In an implication connection A — B, B contains
superfluous content if B contains content not represented in A. An im-
plication meets a fight containment requirement if it does not sanction
the introduction of such superfluous content. The standard relevant logics
do not meet such a containment requirement (though they can satisfy other
plausible accounts of containment; see [1], p. 155). They fail it because,
in particular, of principles like Addition, A - Av Band B . A v B,
which tack on disjunctively what may be fresh or extra information.

Nor is an obvious alternative to a relevant logic, a Parry logic, or analytic
implication system, altogether satisfactory. For while such containment
logics, also weakly relevant, do exclude additive expansion, they do not
exclude other types of damaging (and implausible) explosion, notably (but
unsurprisingly given their modal bases) of necessary and of inconsistent
information. (*) For instance, they underwrite implicative explosion in

(") The trouble with Parry logics by no means end there. For a detailed critique of these
logics and their motivation, see [L1], esp. p. 96ff., where such logics are called conceptionist
(and indexed thus).

It needs stressing that standard relevant logics straightforwardly satisfy important contain-
ment requirements, such as that A — B holds true iff the content of B is included in that
of A; see e.g. [11] pp. 216-7.
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such formsas A . A - A, A —~.(A —~ A) > (A — A), ..., in demodalised
systems, or similar chains with antecedents such as A - Bor B —» A
in modalised versions. Nor do they entirely exclude additive effects; for
Addition is available in rule form, thus apparently violating adequacy con-
ditions (as Kielkopf has shown; see further [11] p. 101). Indeed the systems
are worthless for major paraconsistent purposes, since they spread con-
tradictory information everywhere, by virtue of implications such as
A& ~A)&B . B& ~Band(A& ~A)&(BV ~ B) . B& ~ B,
direct consequences of the relevant béte noire, Disjunctive Syllogism,
A & (~ AV B) — B, rightly excluded in main relevant and paraconsistent
logics (cf. Deutsch, p. 139). Since one of B or ~ B holds true, an isolated
contradiction, A & ~ A say, gets spread everywhere (at least where B is
determinate), to arbitrary contradiction B & ~ B.

It looks as if the best of both, relevant and containment logics without
the defects, can be had by combining the two, essentially product-wise.
So result, in one way or another, relevant containment logics. But, as will
emerge, amalgamation is by no means straightforward (especially once
the simple deceptions of modal confines are left behind); and combina-
tions are far from uniquely determined.

1. Reasons for the enterprise and for dissatisfaction with modally-
based approaches, such as analytical implication.

There are systems which satisfy containment requirements, and which,
as a corollary, are relevant; namely, Parry’s system of “analytic implica-
tion” and systems in its vicinity. But though some of these systems have
pleasant properties, such as neat semantics and algebraic analyses, they
nonetheless include a certain amount of junk. The reason for this is that
they amount to restrictions of normal modal logics (or even their
degenerate limit, classical logic), and carry over the junk from these
systems, some of it already exhibited. Other undesirable junk includes
“relevantised” versions of all the noxious paradoxes of implication. By
contrast, the aim of the present enterprise is to start from systems from
which modal and classical junk has a/ready been appropriately removed,
such as certain (deeper) relevant logics, and to add containment re-
quirements in one way or another to such systems.

Put differently, one main raison for proceeding beyond logics like Parry’s
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is that such logics offer inadequate control. For example, Parry’s logic
spreads identity about in a quite profligate way, similarly inconsistency.
A mere filter on strict implication is far from satisfactory; the rot has
already set in extensively with strict implication. As a result, systems like
Parry’s are not particularly useful for several of the main applications
envisaged; and some requisite work has already in effect gone into modi-
fying Parry logics with a view to reducing some of these problems (e.g.
Deutsch, Daniels).

The sorts of applications that have been considered, in one way or
another, or that should be, include these. They fall into two overlapping
groups, roughly:

1. Cases and logics involving circumscribed contexts, where additional
(irrelevant) information is, in some way, inappropriate :

® logics of fiction and stories, where additions are in serious doubt. Ac-
cording to the story story, stories don’t introduce new content (see e.g.
Daniels, pp. 221-2).

® communication networks, and polylogue theory. For communication
and dialogue, like stories upon which they generalise, are characteristically
information circumscribed. (For the many places in polylogue theory
where relevant containment logics tend to enter, see Sylvan.)

* meaning, inclusion of meaning synonymy, analysis analysis. For exam-
ple, even if inclusion-of-meaning theory and Tarski-Davidson meaning-
through-truth theory are respectively rectified by setting the theories on
relevant logic foundations (see [11] for the first and, for the second, Priest
and Crosthwaite), odd puzzles at least remain. For, primarily by virtue
of Addition, relevant logics permit the introduction of superfluous mean-
ing, through such biconditionalsasp<. p& (pVv q), p+=p & (p V q)
& (p V 1)..., etc., where q, 1, ..., may have nothing to do with p. But these
relevantly equivalent expressions don’t have the same meaning. So in par-
ticular a “meaning-giving” T-schema of the form, s is true < p, should
not deliver, s is true <. p & (p V q) & (p V r). By switching to relevant
containment logics (which are derivationally adequate for the purposes
at hand), these difficulties are avoided.

* frame problems. In important respects, frame problems (investigated
in more detail below) typify this whole class of problems.

2. Cases and logics where tight relevance is required, or at least paradoxes
and like puzzles are resolved through such relevance considerations. As
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useful surveys of such cases are available elsewhere (see especially Wein-
gartner and Schurz), there is excuse for even briefer listings:

* doxastic logics, assertion logics, epistemic logics and so forth, where
again superfluous additions are in much dispute. Belief and assertion func-
tors are normally closed under some relevant operations significantly
tighter than implication. A suggestion to toy with, seriously, is that some
at least of the main intensional functors involved are closed under rele-
vant containment.

¢ deontic logics, preference logics, and volitive logics (with operators like
“desires that”, “wishes that”, “feels that™). Again something in contain-
ed in the judgements made, from which something relevant emerges
logically; some relevant commitments are made.

¢ legal reasoning where (Ross’s “paradox”, has some exposure), and rele-
vant reasoning more generally (cf. Bollen for what is to be varied).

® Jogics of explanation and confirmation, where superfluity again
generates several puzzles (see Weingartner and Schurz, whose classical tack-
on resolutions are not however endorsed, for reasons essentially given in
Kielkopf and [11]).

Most of these problems — those that are genuine, that is, for not all
are — can be tackled, in a fairly uniform fashion, through (deep) rele-
vant containment logics. Some admittedly can be dealt with in Parry logics;
but most cannot, so uniformity of treatment would be lost. To be sure,
there are economic advantages that logics in the vicinity of Parry’s do
have, namely that variable inclusion (if that is what is sought) can be
represented within the logics, e.g. through formulae like B —. A — A and
B — B —. A — A. A perhaps surprising feature of relevant logics is that
there is (so it is conjectured) no way of representing such variable inclu-
sion within the logic. It is possible to represent overiap of variables, e.g.
A ®@Biff A — B v.B — A. But to define inclusion in terms of overlap
requires (presumably) what amount to propositional quantifiers, e.g.
C 2 D iff (B) (if B ®@D then B ® C).

To couple inclusion notions with relevant (first order) logics, requires
then further logical apparatus. Specificially, it calls for an appropriate
connective 2, to symbolise inclusion of content or information. This
content-inclusion connective, obtainable perhaps by definition, should —
apart from satisfying expected inclusion conditions such as transitivity
— hold where variable inclusion obtains (buf not necessarily conversely);
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i.e. if the variables of B are included among those of A then A 2 B. Nor,
however, is variable inclusion, though governing 2, always enough for
containment implication, as implication explosion reveals. A good underly-
ing implication connection, such as deep relevant logics furnish but modal
logics do not, is an essential prerequisite.

Relevant containment logics combine then relevant logics with a fur-
ther inclusion requirement, in product fashion. A relevant containment
logic is one which includes an implication — >> which is both relevant
and satisfies tight containment, symbolized through connective 2. Rele-
vant containment — >> accordingly is defined: A — > Biff A - B &
A 2 B. () The inclusion of content concerned would ordinarily be
presented more explicitly through a content function, ¢ say, and an inclu-
sion relation on terms, i.e. A 2 B would expand to ¢(B) » c(A). But for
the present, ¢ functions have conveniently been absorbed. The combined
effect of relevant implication and containment is to peel off such orthodox
principlesas A . AV B, A ». A = A, A <. A V(A &B), etc., prin-
ciples which in many circumstances prove an embarrassment, because they
can introduce superfluous content. For A — > AVB A - A —> A
and the like do not hold. The first of these fails because content inclu-
sion breaks down, as with analytic implication; the second is invalid for
relevant reasons (see the discussion of Mingle in [1] and [11]).

Already a categorematic account of content inclusion — where con-
nectives (and wider context) do not contribute essentially to content —
has been insinuated. But, despite its historical sponsorship, such an ac-
count is in no way dictated, and indeed is decidedly dubious. There are
(out there in aussersein) other, less restrictive and more satisfactory,
theories of content and content inclusion. Content is a determinable with
many determinates, which vary considerably in character and quality.
Nonetheless, the initial logical theory advanced will begin with
categorematic theories of content inclusion; they are places to start from
that have much to offer.

(3 In effect this adapts to relevant settings an old idea revived by Godel (and worked
out by Fine) for Parry’s system Al In essence the idea is ancient, reaching back perhaps
to Boethius but certainly to Abaelard.



16 R. SYLVAN

2. Some details of initial relevant containment logics and their
semantics

To begin with, there is an underlying relevant logic, L say, the carrier
logic, with conventional connective set [, &, Vv, ~] for instance (as in
(11]). Later, the carrier logic may be removed, with implication — sup-
planted by containment connective — >> But, for the present, contain-
ment logic is superimposed upon the carrier logic. This is done by adding
to L, as on the surface in relational logic (), a relation r of the right
type, a two-place connective, with the following features: By virtue of
its grammatical categorisation, where A and B are wff, so is r(A, B). The
chief logical feature required of r is that it enables the definition of a cer-
tain order relation, a (lattice-ordered content) containment relation, 2,
on wff.

Relation 2 is required to be transitive (achieved of necessary by taking
the transitive closure of r) and is variable governed, and it meets ap-
propriate semi-lattice conditions, e.g. it composes fully. Specifically,

2. A2B&B2C—-. ADC.

22. A 2 B where V(A) 2 V(B), with V(A) representing the set of
variables of A.

23. C2A&D2B . C&D > A&B.

24 A2B<. A&B 2 A& A 2 A&B. Scheme 2 4, though dubious
in a relevant setting, supplies the standard lattice linkage, of order with
identity. For it reducesto A 2 B+, A & B = A, where C = D is defined
as (C 2 D) & (D = C). Together with the vital connection

20. A —> B<. A —» B & A 2B, this completes axiomatisation of
the basic initial logic CLI. The axiomatisation admits of much tamper-
ing; for instance (given replacement) the awkward lattice principles of 24
can be broken down into the perhaps more amenable trio A 2 B —.
A&B2A A2B—-. A2A A2A&B —~. A DB

(®) The approach differs from the relational logic of the literature (presented in most
detail in a special issue of Philosophical Studies 36 (1979), which is criticised in [10]). For
here (as in effect in Deutsch) variable-sharing is not taken as a sufficient condition for
relevance, and accordingly transitivity is not abandoned. Furthermore, main paraconsis-
tent purposes are not sacrificed, as in standard relational logics, which like their close relatives
Parry logics, simply tack relations onto irrelevant logics, of strict or classical varieties. Thus
the main objections lodged in [10], pp. 137-8, against relational logics are avoided on the
approach taken here.
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The axiom schemes in 2 can be argued to independently of their role
for the semantical theory (see [12]), But in fact the schemes reflect exact-
ly what is required for a modified equivalence-class completeness proof
on inclusion of content, with contents getting modelled canonically
through equivalence defined classes of wff. But, just as it proves possible
to provide Lindenbaum algebras for logics where appealing equivalence
connections are lacking, so it is possible to provide somewhat messier com-
pleteness proofs where various underwriting schemes in 2 are missing.
Certainly, as we shall see, it is not too difficult to peel off the less convin-
cing semi-lattice linkages imposed in =4. However the conditions are not
demanding by conventional standards, and transitive closures of more
familiar variable-connecting relations r will meet them.

More or less any adequate semantics for the carrier logic L can be us-
ed, so long as it affords a way of separating out regular theories or worlds
or structures, that is those where all theorems of CLI hold. Here we shall
suppose that something like the usual relational frames or model struc-
tures, of form M = <T, O, K, R, *>, for relevant logics are used, with
O <€ K the class of regular situations, and actual situation T in O.

Interpretations on model structures for the carrier logic are also as for
relevant logic (for details see [11]); whether wff A holds at a, symbolised
I(A, a) = 1, is defined for every situation or world a in K. What further
semantical apparatus is required in order to represent content inclusion?
The requisite additional apparatus can be reached in a straightforward
naive fashion. Since, naively, A 2 B holds true just where the content
of A includes that of B, i.e. (A 2 B, T) = 1iff ¢(B, T) < c(A, T), then,
by straightforward world relativisation,

I(A 2 B, a) = 1iff c(B, a) < ¢(A, a), for every a in K.

The (categorematic) content of A at a is in turn governed by (the sum
of) that of its sentential parameters, as follows, for regular situations a
in O:

c(A, a) = c(p;, a) A...A c(p,, ),

where p,, ..., p, are precisely the sentential parameters of wff A. In
regular situations A says what its parameters jointly say. In regular situa-
tions, moreover, the operation A amounts simply to a (semi-)lattice opera-
tion on contents, given for instance by the least upper bound on the content
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structure ordered by 2 (*) (for semi-lattice properties, see Curry,
p. 131ff). For each situation a not in O, c¢(A, a) is assigned content ar-
bitrarily from C(a), the information or content at situation a, subject on-
ly to the restriction that c(A & B, a) = C(A, a) A c(B, a). For such
nonregular situations more general structures than semi-lattices are re-
quired, because at them reflexive and other lattice properties may, like
all logical principles, fail. An appropriate structure at each such a is an
order-structure <C(a), <, A>, or <C(a), A> since order can be defin-
ed in the usual way: for @, §in C(a), @ < Biff @ A B = B. The relation
< is transitive on C(a), composes fully, and satisfies the (definitional)
condition ¢ = fiff a < f & § < «. It follows immediately that
(anB < B &(B < aAp)iff a < . It is an elaborate story for a struc-
ture which underwrites no theses!

To pull all this together, the structure required is given by a functor
C supplying a set C(a) of contents or bits of information, at each situa-
tion a in K, with the set C(a) ordered by < with meet operation A. It
is enough to add C and A to L model structures (m.s.) to obtain CLI m.s. .
Thus a CLI m.s. is a structure <T, O, K, R, * C, A>, with <(C(a), A>
an order-structure for each a in K.

A CLI (mark 1 containment logic) model adds to a CLI m.s. two valua-
tion functions, I(or V) and c. Valuation I, from sentential parameters and
situations to holding values 1(on) and 0(off), subject to a hereditariness
requirement, is as in relevant semantics. The hereditariness requirement
and several of the rules resemble those for intuitionistic semantics.
Hereditariness is extended to include the further connective 2 of CLI;
specially, wherever a < band I(A 2 B,a) = 1thenI(A 2 B, b) = 1.
Valuation c is also from sentential parameters and situations, but maps
to situationally-associated content; i.e. ¢(p, a), with c representing the in-
formation or content of p at a, belongs to C(a). Both I and c are extend-
ed from initial sentential wff to all wff inductively. The evaluation clauses
for I, as applied to connectives &, Vv, ~, —, are just those of relevant
semantics. The further clauses for ¢ are just those already given.

(") As it happens, operations can be taken either as a meet (l.ub.) — more natural for
the intended summation of contents story — or as a join (g.Lb.), how it may look. For all
that is required in the semantics is that A is commutative, associative and idempotent. Then
whether A is a meet or join will depend upon which order is adopted: § 2 yiff yA 8 = B,
or the converse: y € Biff y A f = S.
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3. An outline of soundness and completeness arguments

In the soundness argument, the following properties drawn from rele-
vant semantics much simplify verification of postulates:

I(C — D, T) = 1 iff for every situation a, where I(C, a) = 1 then
I(D, a) = 1. Similarly I(C < D, T) = 1iff for every situation a, I(C, a) =
I(D, a). These connections enable immediate validation of 20, given the
evaluation rule for — > at an arbitrary world simply conjoins those for
— and 2.

ad 21. By the foregoing it suffices to show that where c(B, a) < c(A, a)
and ¢(C, a) < c(B, a) then ¢(C, a) < c(A, a) for arbitrary a in K. But
this is a result of transitivity of < in C(a).

ad 22. Suppose V(A) 2 V(B). Then for a in O, ¢(B, a) = Lc(p,, a) <
Zc(py, @) = c(A, a), where p, ranges over variables of A and py over
those of B and I indicates A summation. Hence, for ain O, I(A 2 B, a)
= 1, whence as T is in O, A 2 B is valid.

ad 23. and 24. By virtue of the simplifying features and the connec-
tion ¢(A & B, a) = c(A, a) A c(B, a), these reduce to order-structure pro-
perties at arbitrary a in K.

Completeness is established through a canonical modelling. To the
canonical m.s. for the carrier logic, defined in a familiar way, are added
further details for C and A. The requisite canonical order-structure is ar-
rived at by adapting standard methods for Lindenbaum algebras. A quasi-
equivalence on wff, 4 is defined for each situation a thus: A a B iff
A=DBea iec iff A2 Bea& B 2 A ea. Then 4 is symmetric and
transitive, and reflexive for @ ¢ O. Let | A |, be the quasi-equivalence
class of A under 4, i.e. {(B: B4 A}. Then C(a) is the class of all these classes,
ie. C(a) = {|A|,: Ais a wff]; and correspondingly |A|,A |B|, =
| A& B|,. By virtue of 23, | A & B |, is suitably independent of the
choice of wff A and B.

® <C(a), A> is an order-structure, for each a in K. Requisite properties
follow from the CLI axiom schemes using connections established below.
Canonical valuations are defined as expected: I(p, a) = 1 iff p ¢ a and
c(p, a) = |p|,, for every sentential parameter p and every situation a.
These interconnections are extended inductively or definitionally to every
wff A involved. The definitional element is the general stipulation, for
anotin O, c(A, a) = | A|,. Then requisite details, beyond those for the
carrier logic (which are as in [I1]), are these:
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* c(A,a) = |A|,, for every wff A and situation a.
The generalising step, for a in O, is as follows, where p,, ..., p, are all
the sentential parameters of A:

c(A, a) = Ec(p, a) by its evaluation rule
=L |pl. , by the given basis
= |pi&..&p,|,, byiterationof [p&q|,=|p|,A |q],
= |&],

It is in this final step that restriction to situations in O is crucial. By 22,
both the following results are derivable: p, & ... & p, 2 Aand A 2 p, &

... & p,. Since a is regular, both those results belong to a. Hence p, &
.. & p, @ A, vindicating the final step.

®* c(A&B,a) = c(A, a) A c(B, a). By the preceding argument and defini-
tion of A.

e J[(A2B a)=1iff A= Bea.
Because of the evaluation rule for 2, it suffices to show c(A, a) < ¢(B, a)
iff A 2 Bea. Now

c(A, a) < c¢(B, a) iff |A|, < |B]|,, as above
iff |B|,A |A|, = |A|, by order-structure definition
iff |[A|, = |A & B|,, by definition of A
iff A a A & B, by canonical definitions, symmetry and tran-
sitivity
iff AD A&Bea& A&B 2 A ea, by canonical definitions
iff A2 Bea, by 24.

The connection also enables validation of hereditariness as regards 2.
For I(A 2 B,a) = 1and a < bsupply A 2 Beaanda S b, which
guarantee A 2 B e b, whence I(A 2 B, b) = 1. And that finishes the
outline of the completeness argument.

As usual, the logical theory can be strengthened by further postulates
and corresponding modelling conditions. Let us consider just one impor-
tant case, that of < replacement, a case which reveals as well just how
precious the basic logical theory CLI is algebraically (e.g. it doesn’t per-
mit replacement of C & C by C everywhere). The replacement rule, SE.
A < B/ D(A) —~ D(B), reduces in the setting of relevant affixing logics
to the cases for 2, ie. to
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2SE.A<B/AD
/C2A . C2B

The corresponding modelling condition, which interconnects valuations
I and ¢, is a trifle curious. It is in effect this: If I(A, d) = I(B, d) for
every d in K, then c(A, a) = c(B, a).

4. Upgrading the logical theory

The logical system CLI presented, while decidedly appealing as regards
the — and — >> theorems it delivers and even more for what is fails, still
has noticeable shortcomings. For it still yields such dubia as A 2 B —.
A 2 A. And though it properly avoids such atrocities as A —. A 2 A,
and worse B —». A 2 A, it does so at a cost in complexity of specially
contrived semantical apparatus. Without that, without substitution of
order-structures for semi-lattices at nonregular worlds, it would validate
those and other noxious results, by virtue of the evaluation rule I(A 2
B, a) = 1 iff c(A, a) < ¢(B, a), whence A 2 A and other lattice themes
would hold at a/l situations supplied. To make requisite room for impossi-
ble situations where lattice linkages fail, a better procedure is to modify
the evaluation rule, for instance as follows:

forain O, I(A 2 B, a) = 1iff ¢(A, a) < c¢(B, a); and otherwise, i.e. for
a in K-O, I(A 2B, a) is assigned arbitrarily, except so far as constraints
like hereditariness are to be met. In short, fora ¢ O, I(A 2 B, a) is treated
like I(p, a), as an initial assignment.

Such an adjustment also enables dubious lattice connections to be
removed, in particular the ungainly = 4. However an obvious way in which
to accomplish this feat — by weakening 21 and 23 to rule forms —
does not prove robust enough to carry the style of completeness argu-
ment so far used. Fortunately an alternative is ready to hand, which averts
difficulties; namely, make the semi-lattice conditions, what they seem to
be, enthymematic. For this purpose, appeal is made to the standard cons-
tant t of relevant logic, with t construed contentwise as a zero-place con-
nective. Constant t, which serves to represent the conjunction of theorems,
satisfies the two way rule: A // t — A. Given t the new semi-lattice con-
ditions are the following enthymematic forms:

t2LL.t&EA2B&B2C~>. A2C,ie A2B&B2C D. A DC,
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where D is an intuitionistic-style connective, defined D O E =pt &
D — E.

t23.t&C2A&C2B—~.C2 A&B.

Note that since t is a theorem, rule analogues are immediately forthcom-
ing. Postulates 22 and 20 of this revised, mark II, containment logic
CLII are as before. An analogue of 24 is no longer required; so far as
such lattice connections are required they can be derived.

Some theorems applied in showing completeness are next recorded.

Tl. A 2 A, by 2 2; whence A — > A.

T2. A&&B =2 A;A&B 2 B, by 2 2.

T3. A) 2 A&t »>. A/ &B 2 A, &B.

For,ast . A/ &B 2 A, from T2, A, 2 A, &t ~. A, & B 2 A,. But,
by T2, t —. A, & B 2 B also; whence by 23, A, 2 A, &t —. A, &
B2 A,&B.

T4. B, 2 B, &t ». A & B, 2 A & B,. Similar to T3.

T5. A, 2 A, &B 2B, &t ». A &B, 2 A, & B,. By T3 and T4.

The model structure is like that for CLI except that <C(a), A> can
now simply revert everywhere regular to more amenable semi-lattice form.
That is, operation A, defined (if you prefer) in C(a) for every a in K, is
within O a semi-lattice operation : commutative, associative and idempo-
tent. Soundness and completeness arguments for CLII vary those given
already for CLI. Soundness is much as before, and verification of t21
will indicate all main points. The previous argument as to 21 will work
when duly restricted to arbitrary a in O. But that a is in O is guaranteed
by the adjunction of t to the antecedents. For by the relevant rule for t,
I(t, a) = 1iff a e O. Furthermore, it is evident why 21 itself, by contrast
with t21, breaks down. For a ¢ O, I(A 2 A, a) can be assigned value
0 when the antecedents are all assigned 1.

For completeness, the definition of | A |, is upgraded, inasmuch as
that, for a e O, standard equivalence-class requirements are now met. For
instance, ast —. A 2 A, & is reflexive at each ain O. Fora¢ O, |A |,
is virtually a Don’t Care: any passable definition will do, as nothing ex-
tradefinitional has to be established. For definiteness let |A |, be
<A, a> for a ¢ O. Other crucial new details concern the canonical modell-
ing of 2, i.e. proof that I[(A 2 B, a) = 1 iff A 2 B ¢ a. For a not in
O, this is a matter of stipulation for initial wff, and hereditariness follows
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in the usual way. Suppose then a is in O. The argument is as before except
for the final step,

A2A&Bea& A&ZB2Acaiff A2 Bea,

which previously applied 24. Suppose now A 2 A& Bea. Asae O,
teaand A & B 2 B ¢ a because all theorems do. But a is closed under
adjunction and provable implication, so by t21, A 2 B € a. Suppose
conversely, A 2 Bea. AsaeO,teaand A 2 A ¢ a, so by t23,
A2A&Bea AlsoasaeO, A& B 2 A ¢a, completing the argument.

With a batch of logics in hand, which yield through one of their primary
implication connections, namely — >», only tight (nonsuperfluous) rele-
vant consequences, we are better prepared for applications to typical pro-
blem areas. Applications to issues which call for removal of A — > A
V B (such as Ross’s “paradox” in deontic logic) are immediate. Let us
consider then a less immediate and much more ambitious application.

5. An application to certain frame problems

The main problem, as often portrayed, consists in suitably confining
the informational and inferential frame of an automaton or suchlike
artefact — in particular, so it can act in requisite time on relevant infor-
mation and not be sidetracked on irrelevant inference-making. The very
general setting of the problem is this: In the course of planning and ac-
ting, an automaton needs both a representation — model or some such
— of its environment and also to be able to update that representation
as circumstances change, for instance because of its own changing posi-
tion and impact on the local environment. Several of the problems in the
bundle of problems that go under the head of “the frame problem” are
then but pointed instances of much more general problems. Such are the
problems of excess information and of requisite pruning of information
bases and restriction of search spaces, and also those problems bound
up with suitable formalisation of nondemonstrative inference. (%)

(®) The many and various problems that now go under the designation “the frame pro-
blem” are distentangled in another paper, “Frame problems of artifical intelligence, relevance
and alternative structures”, typescript, Canberra, 1987.
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But a major problem, sometimes accounted a “control problem”, just
is that of relevance of what is inferred. The logical apparatus of an
automaton typically enables it to make (potentially) infinitely many in-
ferences from the information it has stored. But much of that informa-
tion and many of the inferences it might make will, even if modally valid,
be irrelevant to solving specific issues confronting it. A significant part
of the problem reduces to that of limiting inferences to those relevant to
the issues at hand.

A relevant containment implication which does not allow the iterated
introduction of extraneous material can accomplish much of what is
sought. For such problem-solving situations the automaton’s logic is a
relevant containment one. Thus it does not derive extraneous material,
or waste important time piling up irrelevant consequences of the problem
data. This internal resolution of the logical problem can be contrasted
with Dennett’s external tagging suggestion. Dennett’s designer tried to
teach their newest and best model “the difference between relevant im-
Pplications and irrelevant implications ... and to ignore the irrelevant ones.
So they developed a method of tagging implications as either relevant or
irrelevant to the project at hand” But this robot-relevant-deducer spent
its time listing implications and tagging as irrelevant those it should ig-
nore, when urgent evasive action was required. An automaton programmed
with a relevant containment logic would spend no time on such irrelevant
details. Given relevant inputs (a significant control matter), it would ar-
rive, and arrive directly, only at tightly relevant conclusions.

It is not pretended that such relevant programming would solve “the”
frame problem; of course it does not. But it could chip a worthwhile piece
off one of the conglomeration of problems involved. How then is tight
relevance programming to be implemented; how, in particular, is relevant
theorem proving to be duly mechanised?

A promising approach reformulates relevant containment logics as
subscripted tableaux or natural deduction systems. These systems work
with expressions of the form A_, where A is a wff and index ¢ is a situa-
tional subscript. The tableaux formulation in fact corresponds directly
to an operational reformulation of the semantics, and the natural deduc-
tion and tableaux formulations are effectively transformations of one
another (on both points cf. [11] chapter 11). The idea is that subscripted
tableaux or natural deduction theorem proving procedures can take ad-
vantage of very many of the features already worked out for correspon-
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ding unsubscripted procedures. But that idea has yet to be followed
through; the hard work at work-stations lies ahead. Any relevant workers
about?

Richard SYLVAN
RMB 683 Bungendore
NSW Australia 2621
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