RESOLUTION IN CONSTRUCTIVISM
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1. Introduction

The aim of this paper is to formalize the resolution principle proposed
by J.A. Robinson [15, 16] in the framework of constructive logic. As is
well-known, this method is based on indirect proof. Such a proof, in
general, is not permitted in constructive logic because of its lack of the
excluded middle. Thus, it becomes important to discuss whether the
classical interpretation remains valid for resolution from the viewpoint
of constructivism. Fortunately, one of the constructive logics, called strong
negation system, enables us to give a positive answer to the question under
some restrictions.

We wish to present an interpretation of the resolution principle on the
basis of the strong negation system originating from Nelson [12]. Strong
negation (constructive falsity) is different from intuitionistic (Heyting)
negation. Heyting negation corresponds to the failure of a proof, name-
ly, = A implies the derivability of contradiction from A. Strong nega-
tion, on the other hand, is a constructive negation. For example, there
exist two different interpretations of ~ ¥xA(x). One is the derivability of
absurdity from vxA(x) on the basis of Heyting negation (—). The other
constitutes the effective method for constructing ~ A(n) for some natural
number n on the basis of strong negation (~).

This paper is organized as follows. In section 2, the strong negation
system N is presented. Also, Gentzen-type formulation for N is given in
the tableaux method accommodating resolution principle. Secton 3 in-
cluedes our results such as completeness theorem, embedding theorems,
accommodation theorems. We also discuss the resolution within intui-
tionistic logic H. Finally, we shall mention some problems in our formalism
in connection with logic programming language such as Prolog.

2. Constructive Falsity and its Proof Theory

Strong negation (constructive falsity) was first investigated by Nelson
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[12] in connection with N-realizability, being an analogue of Kleene's recur-
sive realizability [8]. Around the same time, Markov [10] defined Heyting
negation in terms of strong negation and implication. Since then, they
have been followed by many works such as Vorob’ev [18], Rasiowa [14],
Fitch [5], Thomason [17], Prawitz [13], Ishimoto [6], Almukdad and
Nelson [3], Akama [1,2], and others.

The strong negation system (or constructive predicate logic with strong
negation) N is the set of well-formed formulas (wffs) defined in terms
of six logical symbols, namely, &(conjunction), V(disjunction),
D (implication), ~ (strong negation), ¥ (universal quantifier), and 3 (ex-
istential quantifier) with a countably infinite list of parameters and
variables as well as predicate and function symbols by means of ordinary
formation rules.

The Hilbert-version of N is defined as the minimal set of formulas satis-
fying the following axioms:

(A1) = ~AD(ADB),

(A2) ~(ADB)= A&~ B,
(A3) —~(A&B) O ~AV ~ B,
(A4) ~(AVB) = ~ A&~ B,
(A5) ~~A=A,

(A6) F ~VvxA(x) = Ix ~ A(x),
(A7) F ~3IxA(x) = v¥x ~ A(x),

along with the axioms of positive logic being closed under detachment
and the following quantificational rules:

FADB() = —A D vxB(),
— A(f)DB = +3xA() D B.

A =B is an abbreviation for (A D B) & (B D A). Here, H (i) denotes
the provability (validity) in N. (the subscript is surpressed whenever no
ambiguity arises therefrom.) Vorob’ev [18] proposed a constructive pro-
positional logic with strong negation in which intuitionistic and strong
negation both occur as logical symbols. The following extra axioms are
required for his system in addition to the ones for N;

(48) F(ADB) D (AD - B) D A,
(A9) -AD(ADB),
(A10) ~-A=A.
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As mentioned above, Heyting negation could be defined in N in the
following way:
F "A=AD ~A.

This result was also presented in Nelson [12], and Almukdad and Nelson
[3] in the following different from:

F "A=AD(B& ~ B).

Here, we shall justify the above relation between intuitionistic and strong
negations with the next theorem.

Theorem 2.1
2 A=A4D~A

The proof is as follows: =4 D (4 D ~ A4) is clear from (A49). For prov-
ing the converse, we must first prove ~ A D - A4, namely

M- ~ADADA) by positive logic

@)+ ~ADADA) by (A1)

(B)  ~AD((ADA) & (4D~ A) by(), (2), and positive logic
4 r+~AD-A4 by (A48), (3), and positive logic

Next, the proof of (A D ~A) D — A is given as follows:

S HAD~A)DADA) by (4) and positive logic
6) H(ADA) D ((ADA)D~A) by (A48
MNMrFHAD~A)D-A (5), (6), and positive logic

This completes the proof.

We next present the tableaux method for N on the basis of Gentzen’s
well-known sequent calculus. The proposed tableaux method is defined
in terms of a number of reduction rules. In the tableaux method, rules
are successively applied up side down to a formula to be proved.

We introduced a sequent calculus GN corresponding to N. Our pro-
posed system GN is almost same as the ones developed by Almukdad and
Nelson [3] and Vorob’ev [18]; see Akama [2]. Thomason [17] also propos-
ed a similar sequent system. In his system, Vx(A(x)V B) O (VxA(x)V B)(x
is not free in B) is provable. But, unfortunately, it is not provable in N;
see Fitch [5].
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A sequent is the form I'= A where Greek letters T, A etc. denote finite
(possibly empty) sequences of formulas. It is shown that , A iff
ey A, and that if 5y A,..., A, —~B,,.., B, then Iy A, &.& A, D
(B, v .. v B,). Henceforth, we may omit + in the case of sequent
calculus.

The axioms of GN
1) A—A, (2) A, ~A-B

The reduction rules of GN

Thinni e r-a
MnE T, A-A r=a, 4
Contmetion ~TrfwA>d I'-a4,4
! T, A4=4 r-4, A
Interchange ~ r4: B, 40 '~4,4,B6
TS 1B 4, a-6 I-A, B, A, ©
v-) =i h Gy D24 AvE
T, A=A T, B—=A Toa 4B
T, A&B-A A A&
@ T4 Boa C& a4 Toa B
I, vxA(x)—A TI'—=vxA(x)
Sy TIRE NS, e Y it 4
(V=) T, A()—A =v) = Ab)*
3-) _(*) gy ol
T, Ay —~A T—>A®)
St f Sl B A58
' 1oa4 aB-e ©2) T 4o
I""'"A"A F_'A,"-'«—A
T nans G-z a
I, ~A4>5)~A . I-4, ~(ADB)
27 na-b-a C~2) 124 4 1-a ~B
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=) IF,’—:Q(: Vf??% | G~V F—»i,ﬂ z 4 (I:ALVAJ,B)~ B
i
R R
Sl - R

Here * denotes so-called eigenvariable. The formula to which the logical
symbols are introduced by a reduction rule is called principal formula.
Also we can add three axioms for equality to N, namely,

—“a=a
x] =.y1’ reey xn =yn_’f(xl7 seey xn) =f0’1, saey yn)
xl :y-]’ seey xn =yn, R(x]! casy x,,)—’R(y,,..., )’,.)

for each n-ary function symbol f and n-ary predicate symbol R of N.

Theorem 2.2 (Cut-elimination theorem)
FI'—=A, Aand -A, O—-A= T, B6-A, A

This is Gentzen’s well-known result for classical and intuitionistic logic.
We can prove the theorem for GN by transfinite induction on grade and
rank of the uppermost cut; see Akama [2].

Here, we do not give semantics for N. The reader is referred to
Akama [1] for detailed accounts of Kripke semantics for N. Of course,
the above theorem is available by a model-theoretic approach.

3. Resolution as Constructive Proof

At present, resolution principle is considered within a proof system of
classical logic. Namely, the deduction is carried out by two inference rules
of factoring and unification. The empty clause is the only axiom. In other
words, it is based on the rule of double negation elimination in classical
logic making use of the excluded middle.
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We shall show an outline of resolution method. When we want to pro-
ve a formula A in this method, resolution method enables us to derive
an empty clause (i.e. contradiction) from ~ A and the set I' of facts and
rules in classical sense, namely

t=I'U{~A] = contradiction & 't~ ~A4 1).

In the last step, we conclude A by means of the rule of double negation
elimination rule: it is on the basis of the excluded middle.
We here show this important point in Hilbert-style proof as follows:

A= ~A DA @)
—Are~~ADA 3)

In classical logic, we have:
AV~Ar~~ADA 4)

from (2) and (3). This implies the resolution method assumes the exclud-
ed middle.

However, the intuitionist rejects this procedure, for the excluded mid-
dle is not an axiom of intuitionistic logic. Thus, intuitionistic logic is not
appropriate as a basis for resolution. The above procedure, on the other
hand, is possible in strong negation system. For the reader has only to
recall ~ ~A D A is provable in N despote a failure of Av ~A.

The inference mechanism of refutation is similar to the behavior of the
proposed tableaux method GN. This is why we are going to accomodate
resolution to the strong negation system. For so doing, several fundamental
theorems are in order.

Theorem 3.1 (Consistency theorem)
N is consistent.
If inconsistent, + A and — ~ A hold. Suppose the following proof figure.
—A A& ~A~

cur 2=4 = Bl

-

By elimination theorem, we have — —. But, — is not an axiom of GN.
No rule applies to this sequent: a contradiction.
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Theorem 3.2 (Completeness theprem)
El'-A e - I'-A

It is immediate from cut-elimination theorem. Semantical completeness
is also proved by Akama [1] on the basis of Henkin construction. Next
theorem shows an embedding of classical predicate logic C into N.

Theorem 3.3 (Embedding theorem C)
oA =y ~A—

where A does not contain the implication, and all the logical symbols
in ~A- are interpreted constructively.

This theorem is proved by induction on the length of the proof. Also,
N can be embedded into intuitionistic predicate logic H.

Theorem 3.4 (Embedding theorem H)
HIT—=TA & H'—A
where T is a translation analogue to Godel’s defined as below:

TA = A for any atomic A, T(AvB) = TAVTB,
T(ADB) = TADTB, T(=A) = TAD ~A),
T(vxA(x)) = vxT(A(x)).

This theorem is proved by induction on the complexity of translated
formulas.

Now, we are in the position to formulate resolution in N. We assume
the usual terminology in resolution logic. We here call a goal clause the
formula to be proved, namely, conjunction of atomic formulas.

Theorem 3.5 (Accommodation theorem 1)

HIT'U[~Gl— iff \yI'& ~G— where G is a goal clause properly
generalized if it contains free variables, and T is a set of clauses. All the
logical symbols occurring in GN, namely Vv, &, ~, ¥ are interpreted as
symbols in N, and the reduction rules to be applied in GN are restricted
to V— and v—.
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Sufficiency is trivial. The proof of necessity is as follows. It is clear
that I' U [~ G]—iff I' O G or ~ I'VG classically. By embedding theorem
in C, the following can be proved

~(~TvG)~ )]

in GN, where all the logical symbols involved are interpreted as the ones
in constructive logic.
By reduction rule in GN (de Morgan’s law),

& ~G-~(~TvQG) )
which is provable in GN. By cut-elimination theorem, we have:
I'& ~G- 3)

Theorem 3.5 describes the deduction in N for resolution but the last
one step. Next result is a generalization of resolution within constructive
logic.

Theorem 3.6 (Accommodation theorem 2)
ITU[~G]> & 26V ~G and i T'& ~G- = 1+, IT'~G.

This theorem is immediate from cut-elimination theorem and theorem
3.5. By theprem 3.5, we have:

HIT'U{~G] iff i T& ~G— 1)
From the assumption of the excluded middle and —V in GN:

I'-G, ~G ()
Apply the rule & — to the right hand side of (1)

r, ~G— 3)
By cut-elimination theorem, we have:

I, T-G C))

from (2) and (3). From (4), by way of contraction rule, the desired se-
quent is obtained,

I'-G.
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The converse does not present any difficulty. This completes the proof
of theorem 3.6.

The right side of this theorem corresponds the so-called restricted rule
of negation introduction in Fitch [5]. In other words, resolution principle
is interpreted within constructive logic assuming the excluded middle. It
is of interest from a constructive view.

Some type of refutation procedure (e.g. SLD-resolution) can be for-
malized constructively without the excluded middle. An SLD-resolution
is an abbreviation for SL-resolution for Definite clause. As is well-known,
Horn clause is also called a definite clause. Here the definition of SLD-
resolution is in order.

Let T' be a set of Horn clauses and G a goal clause where G is of the
form A, &, ..., &A, (n > 0) each of A, (1 <i<n)is an atom. An SLD-
derivation of T'U {~G] is a finite (or infinite) sequence G,, G, ... (G, =
{~G])) of goal clauses, a sequence d,, d,, ... of variants of clauses in T
(the input clauses of the derivation), and a sequence 8,, 6,, ... of substitu-
tions called most general unifier (mgu). It is assumed that no input clause
d; of a derivation has a variable in common with goal clause G,. Each
non-empty G; has an atom A, (the selected atom). The goal clause G, , ,
is derived from G, and d, with substitution .. Let

G=«A, Ay, ., Ay oy A, (n=1)
with A, as a selected atom, and
d,=A<B, B,, .., B, (m=0)

be an input clause in I' such that A and A, are unifiable, ie. A0=A,0
for some mgu 6. Then, G,,, is

sl i sos s Bl s By By sz 0 A0

called the resolvent of G; and d,. An SLD-refutation is a derivation
whose last goal is an empty clause .
For more information, the reader is referred to Lloyd [9],

Theorem 3.7 (Accommodation theorem 3)

T U{~G]= & ryI'=G.
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Sufficiency is trivial. Necessity is proved as follows. By theprem 3.5,
FpuT & ~ G-

Here we need to prove that — A— iff —— ~A.

Lemma 3.8
FA=iff > ~A

where A is atomic.

‘We can prove this lemma by induction on the length of the proof. Notice
that the proof figure of I' & ~ G— has the following properties due to the
assumptions of SLD-resolution.

(a) All the logical symbols in the proof are restricted to v, &, ~, V.

(b) The proof is carried out only by using the rules v— and v-.

(¢) In the last step of the proof (ie. G,& ~G,~), G, is one of the sub-
formulas in T'.

(d) T is a set of Horn clauses.

The proof is by induction. The inductive steps are carried out without
any difficulty by v— and v—.

In SLD-resolution, there must be a selected literal appearing in the goal
clause and input clause. And theorem 3.7 holds only of a goal clause and
a set of clauses consist of Horn clauses. Hence, the generalization of lem-
ma 3.8 is not possible. In other words, lemma 3.8 does not hold for any
A. To see this, suppose A = BV ~B, it is obvious that ~(BVv ~B)— is
provable in GN. By lemma 3.8, we have:

—-Bv~B 1

Nevertheless, (1) is not provable in N since BV ~B is not a thesis of
N. Lemma 3.9 cannot be extended to the following form, either:

FA-AIff - ~A A 2)
for any set of formulas A. Now, suppose A = A, we have:
AV ~A

from (2), which is not provable in N. Thus, because of such restrictions,
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SLD-resolution enables us to guarantee a constructive proof in the sense
that it is formalized in GN, without the principle of excluded middle.

Theorem 3.9 (Accommodation theorem 4)

If G, = ~G, G,,..,, G, = U is an SLD-derivation, then r, I'&G, - G,.

The proof is by induction on the length of the SLD-derivation. Sup-
pose n = 0, namely G, = ~G then I'& ~G— ~G holds in N since it is
an axiom in N. Induction steps are divided into two parts. The one is
an inference, called factoring, from

Gy: ~AV ~A, V..V ~A V..V ~A (I<si=sm) 4)
d:A vV ~B, v ~B,v ..V ~B,(0=<n) (5)

to resolvent G, of G, and d,. It is proved by cut-elimination theorem
for N.

G =l W ooy ¥ o W s W B ¥ s ¥ B, W iy
V..V ~A, (6)

By inductive hypothesis,

T&Gy=~A, V .. V ~A, V ... V ~A,, (7)
I&G,~A,V ~B, V .. V ~B, (8)

By lemma 3.8 to (8)
r&G,& ~A—~~B, v ..v ~B, 9)
By cut-elimination theorem to (7) and (9)

F&G,»~A,V ~A,V ..V ~A,_|V ~B, V..V ~B,V ~A,,,
V..V ~A, (10)

The other is the procedure of answer substitution by way of unifica-
tion, namely, from

VX, XA (11)
to
Af (12)

where 0 denotes a most general unifer (mgu) substituting for the free
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variables in A, namely x; (1 <i=<k) for suitable terms t, (1 <i < k). By
induction hypothesis, from

T&G, —» vx..xA (13)
and

vx.. XA = Al (14)
we get

T&G,— Af (15)

The last step in SLD-resolution is carried out as regards a complemen-
tary pair such that

Al (16)
and

~Ab a7
Of course, A is an atomic formula. By induction hypothesis,

&G, —+ A and &G, - ~A (18)
hold. From (18) and reduction rule — &

r&G,— A& ~A (19)
By (19) and axiom (20)

A& ~A- (20)

we have a final goal from cut-elimination theorem, namely
I&G,~ @n

This completes the proof.

Finally, we formalize resolution in H as a corollary to the above results.

Theorem 3.10 (Accommodation theorem 5)

RITU{~G] » & 1, T'&- G-
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Theorem 3.11 (Accommodation theorem 6)
HITU(~Gl =+ & -GV~ Gand H,T& G- = H,T-G.

Here, we assume Gentzen’s LJ as a corresponding sequent calculus to
H. These two theorems are proved by the same manner as that described
above.

Theorem 3.12 (Accommodation theorem 7)
HIU{~Gl - e T = -G

In H, the double negation cannot be eliminated for the lack of exclud-
ed middle. Thus, theorem 3.9 fails to hold in H.

4. Discussions

We have presented a constructive proof system for resolution principle
on the basis of strong negation. Our results can be obtained by means
of natural deduction style of proof theory. It is also possible that resolu-
tion is interpreted in normal proof procedure in natural deduction system
for N.

Our system is capable of treating the computation of logic programs
[7,9]. Compare the procedural interpretation of Prolog with the deduc-
tion in tableaux method for N. The similarity is clear from their behaviors.
One of the most challenging topics in logic programming is the problem
of negation. As is well-known, negative information cannot be derived
from a set of clauses in resolution. Thus, negation is implemented as a
meta-rule in Prolog. For example, Clark’s negation as failure rule [4] is
defined as a meta-rule in procedural semantics instead of declarative
semantics for ordinary logic. Interestingly, it has a constructive flavor as
in the case of the so-called finite failure. Its relation to N is worth in-
vestigating. Since such a meta-rule is interpreted only in a procedural way,
it is important to formalize a logical meaning of negation as failure from
the standpoint of constructive logic.

Our ultimate goal is to develop foundations of automated theorem-
proving including logic programming within constructive logic. The results
in this paper seem to be very instructive since resolution principle plays
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an important role in the area. If we succeed in the further research in this
direction, it would be one of the justifications of the adequacy of con-
structive logic for computer science. We believe our theory can be a star-
ting point for such an activity comparable to the one proposed by
Martin-Lof [11].
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