THE REAL WORLD: COMPLETENESS
AND INCOMPLETENESS OF A MODAL LOGIC (*)

by Jean PORTE

1. The real world — The original model structures for normal modal
logics, as expounded by Kripke [9], consisted of a triple <G, K, R>
where K was a non-empty set (the ‘‘possible worlds™"), R a binary
relation (the ‘‘accessibility relation’), and G a distinguished element
of K: the ‘“‘real world"’ (or ‘‘actual world’’). A formula was valid if it
was true in the real world for every model (assignment of values)
constructed on any model structure.

Later, already in Lemmon [11], It became apparent that the
distinguished real world played no role in the normal modal systems
(T, S4, etc.). A formula was valid if it was true in every world for
every model constructed on any model structure. Then the model
structures became the “‘frames’ <K,R>.

In a similar way for the non-normal logics studied by Kripke [10]
and Lemmon [12] (S2, E2, etc) the distinguished real world proved
useless, after the introduction of certain ‘‘non-normal worlds’’: a
formula is valid if it is true in every normal world for every model
constructed on any model structure.

Then the distinguished real world all but disappeared from the
literature. A notable exception was Zeman's semantics for Sobo-
cinski's system S4.4: see Sobociriski [21], Zeman [23] and [24] also
Zeman [25] (p. 256) — a “‘real world”’ is singled out and is accessible
only from itself while it has access to all worlds.

S4.4 being a normal logic, it must be complete in a class of frames —
perhaps not simple Kripke-style frames, but in a class of Thomason-
style generalized frames (or, alternatively, of Makinson-style genera-
lized frames) ; see Thomason [22], Makinson [13] or [14] Goldblatt [5]
and [6]. And indeed S4.4 has been characterized by a class of

(*) This paper is the development of a communication to the ‘‘Logic Symposion’’, Pa-
tras, Greece, August 1980. I must thank David Makinson for corrections in the proof of
incompleteness.
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Kripke-style frames, in Georgacarakos [2], with an accessibility
relation which is reflexive, transitive, ‘‘convergent™”, and ‘‘remotely
symmetrical’’ (two new fairly complex conditions). Zeman's seman-
tics (with distinguished real world) is noticeably simpler.

Here, I will study a particular non-normal modal logic (previously
defined in other papers) and prove that:

(i) It has a very simple semantics, being complete in a certain
class of model structure with a distinguished real world.

(i) It is not complete in any class of frames with non-normal
worlds but without real world — the definition of these ‘‘non-normal
worlds’" being allowed to vary along a fairly wide range.

2. The system T* -1t is axiomatized as follows by five axiom schemas
and a rule (the small Latin letters denote wff, the primitive connecti-
ves are negation, ~ |, implication, —, and necessity, L).

Al Ltiftis a PC tautology
A2 L(L(x-»y)— (Lx—Ly))

A3 L(Lx->x) for all
Ad Lxox formulas
A5 Lx-LLx XY
Rl x, x->yly

If A5 is weakened to a rule
R2 Lx/LLx

we get an axiomatization of T (the rule of necessitation is admissible).
If A5 is strengthened to

A6 L(Lx— LLx)

we get an axiomatization of S4 (necessitation is admissible). Then, if
T* is considered as a ‘‘thetic system™’ (i.e. identified to the set of its
theses) we have at once

TcT <S4

And these inclusions are strict: T = T, for AS is not a schema of
theses in T, and T* =+ S4 for A6 is not a schema of theses in T* (proof
in [16], section 9).
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T* was first defined in [15] and [16], where it was called pv o S,. In
these papers several modal systems were defined starting from a very
weak one, S,, by means of two operations, p andv. Tisvo S, and S4
isvovpS, = vovS,. Here I use T* to denote pvo S, for brevity.

This modal logic is not normal, since, (p being a propositional
variable)

—Lp - LLp
~L(Lp -» LLp)

3. Semantics for T* — It will be proved that:

Theorem — The set of theses of T™ is the set of forrﬁulas valid in all
Kripke-style model structure <G, K,R>, with distinguished real
world G, the accessibility of which satisfies the conditions:

(i) every world is accessible to itself;
(ii)) G has access to every other world.

When compared to the usual semantics for T and S4, we see that (i)
states reflexivity of R, while (ii) implies a kind of “‘restricted transiti-
vity™’:

if GRW,; and W; RW, then GRW,.

The proof of completeness will be made by modifying the comple-

teness proofs of T and of S4 in Hughes-Cresswell [8], chapters 5 and
6. Familiarity with this book — here denoted by ‘““HC> will be
assumed.
It will be sufficient to recall that a HC-diagram is but a compact
presentation of a system of Beth tableaux for various worlds in a
model-structure. A formula is said to be ‘*assigned 0’ (respect. *‘1"") if
it is put on the right (respect. left) of a tableau, i.e. if it is given the
value false (respect. true) for the given assignment. A rectangle is a
world with a tentative assignment of values. An explicitely inconsis-
tent rectangle is one in which the tentative assignment proves
impossible, as leading to assign two different values to the same
subformula. A formula is valid if every tentative assignment leads to
an HC-diagram containing an explicitely inconsistent rectangle.

A formula will be said to be T*-valid if it is valid in every model
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structure satisfying conditions (i) and (ii) above. An HC-diagram
proving that a formula is T*-valid will be called a T*-diagram.

It is obvious that every thesis of T* is T*-valid and that detachment
conserves T*-validity. The T*-validity of AS is proved by the
following diagram

o Jmai
W, p Lp

1 0
wo L%

Then every thesis of T* is T*-valid.
It remains to prove the converse. Similar proofs for T and S4 in HC

(pp. 96-102 and 112-115) use two formulas associated with each
rectangle W;:

wj’ =f3; » (ﬁz > e = (P =) .00)
W= 1By — (Lfs > ... - (L oY) )

where [3; ... By are the formula which are initially assigned 1 in W; and
y the (unique) formula which is initially assigned 0 in W; (“initially™
meaning: as the starting points of a Beth tableau).

Now if a formula is T*-valid, there is a diagram in which the
rectangles are disposed in a descending chain:

G(= Wo11), W,, ... W, such as
0] Wi+l R Wj;
(i) if j+n, only W;;; R W;;
(iii) when a subformula, Ly, is assigned 0 in W41, y is initially
assigned 0 in W, ;
(iv) W, is explicitely inconsistent.

We will then consider a new formula associated with each rectangle
Wj H
w = LBy - (UBy— ... (Lig,—vy)...)

with the convention that
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Ligis L...LB ifj>0
S——
J times

LB isfp

e

It results that wy" = wg and w/{; = Wi, = W.,1 = X (the formula
whose validity is being proved).
Moreover, from A5, A2 and PC, it follows

)T+ WJ”HW}”' if j>0

Lemmas 1 and 3 of HC (pp. 97-99), jlemma 7 (p. 113) and the
modified form of Lemma 4 (p. 114), hold for T*, i.e. when we read
“ipt’ instead of i’ or g,

Now we have the:

Chief Lemma: In a rectangle of an HC diagram showing the
T*-validity of a formula x

Fw” if 0<j=sn

o

Ifj = 0, the Lemma results from w}" = wj and Lemma 1. If j> 0 the
lemma is proved by constructing a parallel diagram showing the
T-validity of w{" by initially assigning in W;, W;_,,... W, the same
values as in the T*-diagram for x (plus perhaps supplementary
assignments for certain subformulas). It follows that if W, is explici-
tely inconsistent in the T*-diagram for x, it is as well explicitely
inconsistent in the T-diagram for w".

Proof of the Theorem: Let us consider W, (i.e. the second world,
since W, ,; = G). We get
(P = (B> o> (> Ly) . ) > Wiy (1)
as in HC (p. 113). Now, by the chief Lemma

e
n

F L"By= (L"Ba— ...—> (LB —)-.0)

ar

that is

whence, by necessitation, A2 and PC

whence g LB - (LM By — o> (LB > Ly)..)
bt L3 - (L™ By— ... (L"+l[3k—> Ly)...)
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and, by AS, A2 and PC

L= (LB — ... (L= Ly)...) 2)
From (1) and (2) by detachment

'
Wi

that is =+ X

It remains to deal with the cases when the ‘‘sequence’’ of worlds is
actually a tree —i.e. with what HC calls *‘the t-operators’”. It will be
treated as in HC (p. 114), substituting w"’ for w' (what is possible
because i+ W — wj for j> 0) and i+ for ig, .

As an illustration of the proof of the chief Lemma we may consider
the formula L(p Aq) - LLL(Mp— Mq) — where p Aq is an abbrevia-
tion for —(p— —q) and M an abbreviation for —L — Its T* diagram
is:

= U i )

W, pAgq  LL(Mp- Mq) LL(p Aq)— LL (Mp— Mq)

W, PAgQ  L(Mp— Mq) L(pA@-L(Mp>Mq) (W
Wo Lypta L—polsgl pAGs(—L—po —L—q)

while the T-diagram for wj” is as follows

W, ]Llr(llnfl\cll)—» LL (Mp—- Mq)
0o
1
Wi et phg  LMe-M

WO P /\q —L —p— —L —q
11 o o0 1 1
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4. “Sound”’, “*Complete’’, **‘Determined”’

As the vocabulary is not fixed, I will state explicitly the meaning of
the words used in this paper.

Given a frame, M, a formula is valid if it is true for all models (i.e.
assignment of values in the various worlds belonging to M) construc-
ted on M. Given a class of frames, C, it is valid in C if it is valid in
every frame belonging to C. It is (weakly) invalid in C if it is not valid;
it is strongly invalid in C if it is invalid in every frame belonging to C,
i.e. if for every M C there is model in which the formula is false.

A logic (defined by its set of theses) is sound for a class of frames,
C, if every thesis is valid. It is (weakly) unsound if it is not sound, i.e.
if there is a thesis which is (weakly) invalid in C: it is strongly unsound
if there is a thesis which is strongly invalid in C. — A logic is complete
for C if every valid formula is a thesis. — A logic is determined by the
class of frames C if it is both sound and complete for C.

All the preceding definitions extend to frames containing non-nor-
mal worlds (whatever these may be) by the convention that a formula
is valid if, for all models, it is true in every normal worlds.

5. The non-normal worlds

It will be proved that T* cannot be determined by a class of frames
with non-normal worlds.

If the non-normal worlds are defined as in Kripke [10], the result is
easy. The rule

x / L(Ly »x)

keeps validity in all frames. If we call eligible a logic in which this rule
is admissible (see Schumm [20]), only eligible logics can be defined by
validity in a class of frames. But T* is not eligible, since

T+ Lp %LLp
H+ L(L(p - p) > (Lp—~LLp))

- (if the last formula were a T*-thesis L(Lp »LLp) would also be a
thesis, and T* would be identical with S4).
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In that case it is clear that T* is not complete, and it will be proved
presently that it is not sound.

But “*non-normal worlds"” have been given different (and non-equi-
valent) definitions, for instance in Cresswell [1], (see also Hughes-
Cresswell [8], pp. 286-288), or in Porte [17], section 5.

What can be said about a general concept of non-normal world ?

It seems impossible to encompass within a single sentence all the
manners in which a possible world may be different from a normal
one ; see for instance Cresswell [2] or Georgacarakos [4]. But we can
analyse the classical (Kripke’s) notion of a normal world.

A normal world is characterized by the way an assignment of values
in it is related to the same assignment (the same model) in the
accessible worlds. In a normal world a formula of the form Lx

(i) takes the value “‘true’’, iff x is true in all the accessible worlds

(i) takes the value ‘‘false’, iff x is false in at least one accessible
world.

Non-normal worlds will be defined by rejecting those conditions.

(i) A non-normal world of the first kind (NN1) is a world in which
Lx can be true even though x is false in at least one accessible world.

(ii) A non-normal world of the second kind (NN2) is a world in
which Lx can be false even though x is true in every accessible
worlds.

An NNI1-2 is both an NN1 and an NN2.

Care must be taken for the case when no world is accessible from a
non-normal world. After the preceding definition, it seems that it
could not be an NN 1. But that definition says only that in an NN1 Lx
true is compatible with x false in an accessible world (contrary to what
happens in a normal world); there may be other models in which an
NN1 behaves as a normal world. Particularly, a world in which
formulas of the form Lx may be assigned any value, is an NN1-2.

The non-normal worlds of Kripke [10] are NN2, with the supple-
mentary conditions that no world is accessible from them, and that
every formula beginning by L is assigned the value false.

‘The non-normal worlds of Cresswell [1], for the semantics of SO.5
(sees also Hughes-Cresswell [8], pp. 286-288) are NN1-2, with the
supplementary condition that no world is accessible from them. That
last condition could be suppressed without altering the completeness
proof of SO.5.
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The non-normal worlds of Porte [17] (section 5) are NN1. In Porte
[18] (section 4) the ‘‘non-normal worlds™ are NNI1-2, while the
*‘semi-normal worlds™™ are NN1.

It will be proved now that Tt cannot be determined by a class of
frames which contains any frame with an ‘‘active™ NNI1 or NN2
world ; indeed it is strongly unsound for those classes of frames. An
*‘active’” non-normal world is one which is accessible from a normal
world ; indeed a non active one could be suppressed without changing
the validity of the formulas. Then a frame with ‘‘active’” non-normal
worlds must contain a part of the form:

: diagram 1
.

where W, is normal, W, is either NN1 or NN2, and the dotted arrows
may exist or not exist, leading to/from normal or non-normal worlds.

Then here is the proof of unsoundness of T :

(1) Let W, be NN2, and let us examine the formula LLt, where t is
any classical tautology (for instance p— p). That formula being a
T*-thesis, it ought to be valid, and be assigned the value 1 (“‘true”") in
W;. But diagram | gives the following counter-example:

W, LLt
0 |

W,

diagram 2

(the classical tautologie t is given the value 1 (**true™) in every world,
normal or not).
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Here W, and/or W, may not exist; W; (normal) may be identical
with W, , and W, (non-normal) may be identical with W, - W, or W,
wight as well be identical with worlds of the frame not reproduced on
diagram 2. That covers all possible cases, and diagram 2 shows that
LLt can be assigned the value 0 (*‘false’’) in the normal world W, in a
way that respects the definition of normal worlds and of NN2.

(ii) Let W, be an NN1, and let us examine the formula L(Lf— f),
where f is a classical antilogie (e.g. suppose fis —(p— p)). f will be
assigned the value 0 in every world (normal or not). And L(Lf f),
being a T* -thesis, should be valid, and be assigned the value 1 in W, in
every model. But diagram | yields the following counter example :

W, L (Lf-f)
W, Lf> f

I 00
W, E W,

o

We could easily see, as in the case on NN2, that diagram 3 covers
all possible cases, and that it shows that L(Lf—f) can always be
assigned the value 0 (‘‘false’’) in the normal world W, in a way which
respects the definitions of normal worlds and of NN1.

T* is then strongly unsound for the classes of frames which use
non-normal worlds and then cannot be determined by any of them. —
That has been proved only if a non-normal world is “‘active’”: but if
the non-normal worlds which may be present in a frame are non-ac-
tive, they can be suppressed, the result is a classical Kripke frame,
and is well known that such frames can determine only normal logics.

Remark 1 — As far as T know, T may be complete for certain
classes of frames containing non-normal worlds,...

The only result I have is that it is incomplete when NN1 — respect.
NN2 — are strengthen by the convention a formula of the form Lx is
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always true — respectively: they are always false (Kripke's conven-
tion). ‘
The case of strengthened NN2 has been seen above: rule

x [/ L(Ly— x)

preserves validity, whence it follows that the non-thesis
L(Lt— (Lp— LLp))

is valid.

Similarly, in the case of strengthened NN1, the rule

x/ L{(—=Ly— x) preserves valididy,

whence it follows that the non-thesis
L(—Lf- LLp))

is valid.

Remark 2 — It follows from the result of this section that every
non-normal logic where both LLt and L(Lf— f) are theses cannot be
determined by any class of frames; particularly this is the case for
every non-normal logic stronger that T. What is special for T* is that

it is possible to prove its completeness in a class of model structures
with distinguished real world.

1 Villa Ornano Jean PORTE
75018 PARIS
FRANCE
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