MANY-DIMENSIONAL TOPOLOGICAL MODAL LOGIC

Rainer STUHLMANN-LAEISZ

0. Introduction

In Segerberg (1973) Krister Segerberg develops a semantically
complete calculus for two-dimensional modal logic. This apparatus
enables us to evaluate formulas at models whose possible worlds are
determined by two coordinates. Such formulas are the logical coun-
terparts of ordinary sentences like ‘‘It is the case on January 7" 1985
that tomorrow there will be a jazz festival in New Orleans’’. The truth
value of sentences like this one depends on points in a two-dimensio-
nal manifold of possible worlds, the dimensions here being space and
time. Of course, there are examples with more than two dimensions,
in the simplest cases one only takes into account the three dimensions
of Euclidean space. There is thus a need for many-dimensional modal
logic(1).

Moreover, as Segerberg points out, there is a special need for the
evaluation of formulas within two-dimensional manifolds, whose
dimensions are both of the same sort, e.g. we might want to determine
the truth value of a sentence at two points of time simultaneously.
Take for example the statement *‘It is the case on January 7" 1985 that
there will be a jazz festival tomorrow’’ (S). Since S explicitly refers to
a fixed day, it is quite natural to say that its truth value depends on
that day. But since S also contains the indefinite time indicator
“‘tomorrow’’, its truth value depends on the day after its utterance as
well, and this day differs from January 7" 1985 if, e.g., S is uttered on
January 10" 1985. Thus this statement has to be evaluated at two
points in time simultaneously.

(*) Vide also Gabbay (1976), Snyder (1971) and Stuhlmann-Laeisz (1983). Presumab-
ly, the concept of a truth system from my (1983) needs some improvement, as U.
Nortmann, Géttingen, pointed out to me. But I hope the present argument will do the
job as well.

For a somewhat similar topic vide also Nishimura (1981).
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Obviously, the logical reconstruction of sentences containing defi-
nite or indefinite positional operators like ““here™, “‘tomorrow™’, *“!in
New Orleans’ and ‘‘on January 7™ 1985 concerns ‘‘topological’
logic as well. This type of logic (cf. Rescher and Garson (1968),
Garson (1973)) differs from usual modal logic in the following respect:
We can express within the object language that a formula is true at
some definite point — i.e., in terms of modal logic, in some possible
world — whereas whithin the syntax of modal logic we cannot. On the
other hand, in topological logic we usually have one-dimensional
semantics, i.e. formulas are evaluated at only one point, and this point
is determined by one “‘coordinate’’ alone.

However, the ideas of these two types of logic-can be combined.
Within the following paper I shall develop a n-dimensional topological
logic (for any natural n) which also contains operators working like
Kripke-modalities. — For a special two-dimensional case I shall show
then how to define those operators which Segerberg introduces in
order to construe sentences which contain indicators like ‘‘tomor-
row’’.

The plan of my paper is the following: At first I axiomatically
present a calculus for n-dimensional topological logic and define its
semantics; this system already contains operators working like
Kripke-modalities ; secondly I prove completeness. Finally, I shall
show how to define the Segerberg-operators within a two-dimensional
specialization of many-dimensional topological modal logic.

1. Axioms and Semantics
1.1. Language

[.1.1. Vocabulary: (i) Here we have as logical constants some
functionally complete set of sentential connectives, say — and ; we
have the quantifier V. We further have n operators ¢, ..., ¢,, which
refer to the n dimensions of our logic; the job of these operators will
be explained with the formation rules, as well as the job of n I-place
and n 2-place predicates (N;, R;) will be explained later. Finally, we
have as logical constants n weak Kripke modal operators (F,) and the
identity sign =.— (ii) Nonlogical constants: Corresponding to the n
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dimensions we have n enumerable classes Py, ..., P, of positional

constants t, t', ... . These work syntactically like individual constants

in the predicate calculus. Further we have an enumerable class of

propositional constants p, g, r... .- (iii) Finally, there are n enumera-
’

ble classes V,, ..., V, of positional variables T, t’, ..., which
syntactically work like individual variables.

1.1.2. Formulas: (i) As atomic formulas we have the propositional
constants and for any positional symbols s, s' from dimension i (i.e.:
s,8' €F; UV,) the expressions: N;(s), sR; s’ and s=s'. (If s, s’ P, are
constants and dimension i is that of time, if further s designates 4.30
p.m. on January 7" 1985 and s’ designates 5.30 p.m. on the same day,
then N; (s) might be read as ‘‘within the i-th dimension, i.e. that of
time, it is now 4.30 p.m. on January 7" 1985, and sR;s’ as “*4.30
p-m. on January 7" 1985 is earlier in time than 5.30 p.m. on the same
day™. - (ii) The set W of formulas of n-dimensional topological modal
logic is the smallest set such that: (a) Every atomic formula is in W,
and (b) if A and B are members of W, Tt €V;, tP, then so is any
sentential connexion from A,B and further the expressions V1 A,
@;TA,@; LA and F, A. - (iii) Any formula containing no free variable is
a sentence. - If again dimension i is that of time, T €V; and t €P,, then
if A is a sentence and B contains free 1, ¢; t A reads: ‘*At point t of
dimension i - i.e. at time t — it is the case that A" and correspondingly
vt B: **For some point T of dimension i — i.e. sometimes — it is the
case that B’ (*). F; A would read: ‘‘It has been the case that A",

1.2. Semantics

1.2.1. Structures: A structure for the language of this logic is a

sequence

U=<Dyx...xDy;(k},....,K%):my, ...,m,; R', ..., R"; V> such that:

(i) D is a non-empty class, containing the coordinates of the i-th
dimension. A point in the Cartesian product D, x ... x D, is, from
the standpoint of modal logic, a possible world.

(*) Of course — as in ordinary predicat logic - if t is not free in A, vt A is equivalent
to A. Vide also infra the truth condition for existential statements.
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(i) k€D (K], ..., k) represents (the coordinates of) the actual
world (modal logic) or (topological logic) the ‘‘here and now and
...”" (depending on the number n of dimensions).

(iii) my is a function from P,, the set of positional constants, into the
coordinate set D;.

(iv) R is a 2-place relation on D,. (Earlier than, further behind
than,... .).

(v) Vs a truth value function on PCx D, x ... x D,, where PC is the
set of propositional constants.

1.2.2. The concept of truth: We now state the conditions under which
a sentence A is true for a structure .

U= <D;x..xDy;; (K, ..., k§); my, ..., my; R, ..., R*; V>, marking
this by = A. -

(i) Atomic sentences:

(a) For propositional constants p:
I5 p iff V(p; ki, ... K3) = L.
(b) Fort, t' €P;:
5 N iff my () = K}
LR U iff my ()R my (1)
g t=t iff m(t) = m(t').

(ii) The truth conditions for sentential connectives are ordinarily
defined.

(iii) The truth condition for the existential quantifier: If TV, is a
positional variable from the i-th dimension and if t is, with respect to
some definite enumeration, the first positional constant from P, which
does not occur in formula A, then

iz vT A iff there is a function m;’
from P, to D; such that m;" =, m,

and = Alth].

Um;’fmy|

(U[m;"/my] is the structure which results from U if on substitutes m;’
for m;.)

This truth condition for the existential quantifier makes the positio-
nal constants and variables also semantically work like individual
constants and variables in ordinary predicate calculus.
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(iv) Sentences with an operator ;. For t €P;:

S@itA iff }-:[m ©nd] A.
(U[my (t)/kY] results from U by substituting m (t) for k9.)
(v) The Kripke modal operators F;:

EFEA iff for some kED ;
kR kY and I 1 K
A sentence A is valid (}:A) 1f and only if it is true for all structures.

1.3. Axioms

The following notation of axioms uses some abbreviations, i.e.: A
for 7 v~; F for 1F = (thus A is the universal quantifier and F, the
strong Kripke modal operator corresponding to the weak F,) ; I further
writeqi) (t) for the sequence ¢; t; ..., t;, and Tuse | (1) forg, t, ...q; t;.
Thus, cg (t) A denotes the formula ¢,t,...q,t, A and the formula
G332 Ly 4y A is abbreviatedg (1) A.

I define the set of axioms for n-dimensional topological modal logic
by induction, i.e. at first I list a class of ground axioms and then 1 state
a rule to generate all axioms.

1.3.1. Ground Axioms . Here we have four groups of axioms according
to the fact that we have four types of logical constants: sentential
connectives, the quantifier(s), the Kripke modal operators F, (and F,),
and the specific constants of topological logic: the operators ¢; and
the predicate constants N; and R;. - (i) Since the set of tautologies, i.e.
those sentences which are valid due to the truth conditions for the
sentential connectives alone, is a decidable set, I take, for sake of
simplicity, all tautologies as ground axioms of the first group.— With
formulas A, B we then have as further ground-axioms all sentences of
one of the following types: (ii) Predicate calculus:

(a) ATA > Alth] (T €V, t€EP).
(b) A—> ATA (T EV,).
(c) AMM(A-B)— (ATA > ATB) G EV)).
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(iii) Kripke modal logic: Here we have one type of axiom, i.e. all
sentences

Fi. (A—) B) —> (Fl A—) Fi B).
(iv) Specific axioms for n-dimensional topological logic:

@ @it A gt gitA
(tep, t' €P, i#]).

(b) pit'ptA - @ tA (t,t' €P).

C) pitA — p;t1A (tEP).

(d) g;it(A-B)— (p;tA-g; tB) (t€P).

(e) AMtgpitA @it ATA
(teP, T €V).

() VTN; (@) (Tt V).

(8) Ni() » Ni(t')» t=t" (1, t' €P).

(h) @; tN; (1) (tEP).

(D) Ni(1) > (A—@;tA).

K tv=t-fOr=t (', teph;,eR,
U=t e OU=t k=1,.,n).
U=t qptt =t

) VR < () URY (', €P; t, €P, k= 1,...,n).

t R1 ¥ o i(_P] (t) i@l (t) t' R‘tu

(Ground axioms (k) and (1) express that statements on the identity of
positions as well as statements concerning positional relations hold
independently of any position they might refer to: January 7" 1985 is
earlier than January 8" 1985 if and only if January 7" 1985 is earlier
than January 8" 1985 at any time, at any place, and so on.)

(m) Ni(t') < ¢ (0 §' (1) Ni(t)
(t'eP; 4P, k=1,..,i—1,i+1, ..., n)

(i.e.: Today is January 7" 1985 if and only if at any place (not: at any
time!) it is the case that today is January 7" 1985).

(n) t=t' > (@itA ~q@t'A) (t, t' €P).

The last ground axiom finally states a logical relation between



MANY-DIMENSIONAL TOPOLOGICAL MODAL LOGIC 189

positional statements and statements containing a weak Kripke modal
operator

(0) gitFEA « Vi@ RtrgT A)
(tEPiutEvi)'

(E.g.: It holds at time t that it has been the case that A if and only if
for some point T of time earlier that t it is at T the case that A.).

1.3.2. Axioms: The set Ax of axioms for many-dimensional topologi-
cal modal logic is the smallest set such:

(i) Every ground axiom is in Ax.

(i) If A is a member of Ax, then so are
FFA and g@;tA (t€P,i=1, ..., n).

(iii) If A[t/r] is a member of Ax and if the sentence At A does not
contain the constant t, then AT A is in Ax (t €V,, tEP).

As we will see, this class of axioms together with the derivation rule of
modus ponens is complete for the set of valid sentences. — Note that —
for the sake of simplicity — I did not care for independence within the
system of axioms.

1.4. Soundness

Before dealing with completeness let us establish validity for some
axioms from group (iv). Here I use the notation **A in U™ for i A and
“Ulm, ()" for Um; (0/KS] (LR, i= 1, .... n).

(@ @itg; U Ain U iff Ain U [m (t)] [m (t)]
QU@ tAin U iff Ain U [m(t)][m; (V)]
But since i #j, the structure denoted on the right side of the first
equivalence is the same as that one denoted on the right side of the
second one.

® i tAinU iff ¢;tAinU[m (1)), iff A in Ulm ()], iffg; t A
in U.

(e) Ionly argue for the more difficult case that t P, andt €V,. Let t/
be the first constant from P; which is not in ¢; t A. Then t' +t.
At; tA in U iff for every m,’
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with m" = . m;: @; t A[t'/r] in U [my'/my], iff for every such m,’:
A[t'ft] in U[my'(t)/k}; my"/m;]. And:
@e;itATAiInU iff At A in U[m(t)], iff for every m;" with
m =, m:
A[t'/] in U [m; (/K] ; my'/my].
But since t=+t' we have m;’ (t) = m, (1),
thus U[my" ()/k]; my'/my] =
Um; (/K ; my'/my].
() @ tN; () in U iff  N;(t) in U [my (1)], iff my (1) = my (0).
() If N;(t) in U, then m; (t) = kY. Thus:
@itAin U iff Ain U[m,(1)].
But U[(m, (1)] is U itself.

(o) Let again t' be the first constant from P, which is not in A. Since
@; LF; A is a sentence, A doesn’t contain any free variable. Hence
Akl = A.—

@i tF, Ain Uiff F; A in U[m, (t)], iff for some k €D;: kR m; (t) and
Ain U[K/K] (U[m; (0)] [k/my (0] = UK/K]).
VTRt ~g;tA)in U iff for some m;': m;’ =, m; and
URit ~qt" Ain U[my'/my], iff for some such m;": my’ (') R my (1)
and A in U[m;’ (t')/k!; m;'/mg]. Since t' is not in A, this last
condition is equivalent to the clause: A in U[my’ (t')]. Hence the
truth conditions for both sides of axiom (o) are equivalent: If there
is m;’, such that the condition for the right side is fulfilled, choose
k:=m'(t).
Since my'(t) = m;(t) we then have:
kR'mi(t) and A in U [k/K].- If there is k €D, such that the
condition for the left side is fulfilled, define

vy | Koif =t '
my(t): = m;(t"), otherwise (" <R).
Since kR'my(t) and t# ' we then have: m;’()Rim;’(t') and A in

U [my/(t")].

2. Completeness

In order to prove that our axiom system with the only derivation
rule of modus ponens is complete we need some auxiliary concepts



MANY-DIMENSIONAL TOPOLOGICAL MODAL LOGIC 191

and theorems. Some of these concepts are well known of ordinary
predicate logic, others are very similar to concepts used in Henkin
proofs for the completeness of Kripke modal logic.— At first, we
obviously have the following.

Theorem 1 :
If B is derivable from the premises A, ..., A,, then ¢;tB is derivable
from cpitAlx"' " (pitAn‘

This theorem is due to the fact that we have the axioms
@it(A— B) — (@;tA— @;1B) and the rule: If B is an axiom so is @;tB.
Here the operators ¢;t work like strong Kripke modalities. — Now I
define the property of w-completeness in topological modal logic.

Def. 1:
A set of sentences T is w-complete iff for every P, V, and every

sentence vt A suchthatt €V;:if vt Aisin T, then for some t P, the
sentence A [t/t] isin T.

If we define the concept of a maximal consistent set in the usual
way of sentential logic, then many-dimensional topological logic
behaves like ordinary predicate logic in the respect that every
infinitely extendable (syntactically) consistent set has a Lindenbaum
extension. This is said by

Theorem 2:

If T is syntactically consistent and if every set P, contains infinitely
many constants which are not in T, then there is some maximal
consistent and w-complete T, such that TC T,.

Proof: There is an enumeration A, A,,... of all sentences with the
following property : For every set of variables V,: if vt B is a sentence
witht €V, then there is an A, such that A, = vt Band A, = B[t/1]
for some t €P; which is neither in T not in any of the sentences A, ...,
Ay. With respect to this enumeration one construes a Lindenbaum
extension of T in the usual way:

Ly:=T
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gt = Ly U{A.1}, if this set is consistent,
ik L, otherwise.

b Ak Ly = T
L: k2o Ly .1
Canonical reasoning shows that L is maximal consistent and w-com-
plete. -

As next, for every dimension i and every constant t P,
I define a function Z; t which associates with every maximal consistent
and w-complete set 1" another such set.

Def. 2.
For any set T of sentences:
5tT: = {Alg; tAET}.

Theorem 3.
If T is maximal consistent and w-complete then so is Z;t T.

Proof: (a) If Z;1T is not consistent then there are A,, ..., A,,
B Z; t T such that 1B is derivable from the A,. Hence by theorem 1
and axiom (ivc): -ip; t B is derivable from @; t A,, ... ,@; L A,,. But the
g tA; and g; t B are in T. Thus T would not be consistent.
(b) That>; t T is maximal consistent is a simple consequence of axiom
(iv ¢).
(c) w-completeness: Let vt A be inZ;t T for some t €V;. If there is
not' €P; such that A[t'/t] isinZ; t T, then by maximal consistency for
every t' €P;:
"A[UR] €Zt T, hence; t1A[t' /t] €T. But T is w-complete, hence
(as in ordinary predicate logic) Atg;t1AET (with T€V)). As a
consequence of axiom (iv e) and by maximal consistency of T:
@it AT1AET, hence AtA is in Z;t T, which contradicts the hy-
pothesis.

Q.E.D.

In the following Henkin-proof for completeness we will associate
with every syntactically consistent set T a structure U, which is a
model of T (i.e.: all the sentences in T are true for U). As usual, this
structure will be built up by linguistic entities, and — L being a
Lindenbaum extension of T — the sets £; t L will work as elements of



MANY-DIMENSIONAL TOPOLOGICAL MODAL LOGIC 193

D, i.e. as coordinates of the i-th dimension. It will turn out that a
sentence A is true at a point &, ; L, ..., =, t, L) iff A is a member of
the set =, t; ...X, t, L.— But we still need some theorems.- Due to
axiom (iv a) we obviously have the

Theorem 4 :
If i+j, tEP,, v EP;:
ZitEt T=3t3%tT.

Corollary :

Ifi,, ..., i €{1, ..., n} are mutually distinct and ift, €P @ =1, ...,
k), then for any permutation j,, ..., j of the i,, ..., i:

Tig by 2y 4, T=% 84 .2, 4 T

In what follows T always denotes a maximal and w-complete set of
sentences.

Theorem 5:
For any t, t' €P;:
tT=Zt'T iff 1=t T.

Proof: (a) Sufficiency. The axiom (iv n)
@; LN; (1) is in T, hence
N; (t) is in Z; t T, thus by hypothesis:
N; () €% t' T. But N;(t") is in Z;t' T as well. Hence by axiom (iv g):
t=t'"is in Z;t' T, hence @;t't=t" is in T, thus (by axiom (iv k))
t=t'€T.
(b) Necessity. If t=t" €T, then by maximal consistency and axiom
(iv n):
forany A: g;tA € Tiff ;1" A € T. Hence by definition:
ZitT=Z;t'T.

Q.E.D.

Theorem 6 ;
ZtT=2Z¢T iff Nzt T.

Proof: (a) Since Ni(t) is in Z; t T we at once have sufficiency.
(b) Necessity. We have Ni(t') in Z;t' T. Therefore: If also N,(t) is in
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Z;t' T, we have (by axioms (iv g), (iv k) and definition): t=t' € T.
Hence by theorem 5: Z;t I'= Z;t' T.
Q.E.D.

In what follows I shall use two more abbreviations, i.e.: 1 writei (t)
for the sequence X, t,... ;t;, and I denote the sequence X;t;... 2, t, by

iz(t). ( I'hese sequences, of course, are functions as the ]E t are.)

Theorem 7 :
ForteP: If Ny E T, thenXZ;tT= T.

Proof: If Ni(t) €T, then by axiom (iv i) forall A: A —q;tAisin T.
Hence by def of X; t:
Az tTiffgtAeT,iff A=T.
Thus Z;t'1'= 1.
Q.E.D.

Corollary :
If Ni(t) e I' (i=1,..., n; § €P) then sOT=T.

Theorem 8: . .
If fori=1,....n: 24T =2t T(, t;/y €P), thenZ () T = Z(t")T.

Proof (by induction):
()2, t, T =2, T (by hypothesis).
(ii) Let be kZl nT= kZI (t') T.

+ +

Since Z, 4, T = Z, " T we have by theorem 5: t, =t,' €T. Hence by
axiom (iv k): @ (D4 =t isin T. Hence t, =t is in ».Zl(t) T.
+1 <+

Therefore: g t, Aisin X (1) Tiff @, t," Aisin LZ (t) T (by axiom
k+1 K+ |
(iv n)), hence by def of
S T () T=2Z" 2 ()T
k+ 1 k+1
which, by induction hypothesis, yields X (t) T = Z(t") 1.
K k Q.E.D.
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Let now T be any syntactically consistent set of sentences such that
for every P, there are infinitely many constants t €P, which are not in
I'. Let L be a maximal consistent and w-complete set containing T.
We construe a structure U to the effect, that every sentence A €L is
true for U, hence U is a model for T. As is well known, this procedure
proves completeness. — Construction of U:

(1) The coordinate sets D;. Define
Di: = {21 tLI[EPI}.

(2 ki:=3,°L iff N;(®°) L.
k is well-defined: If N;(t') € L, then t*=t' €L, hence by
{theorem 5:
3L = Z;t'L.— Furthermore by axiom (iv ) and theorem
7K=L

(3) The interpretation functions for positional constants t EP, are the
following ones:
uy ([) . = 2,- tL.

This definition makes all coordinates k; in D;, i.e. all the Z; t L with
tEP;, be designated by some constant in P; (Z; tL is designated by
t€P,). This property of the structure U to be construed here allows
substitutional interpretation for quantified statements, i.e. the follow-
ing equivalence holds (fort €V,):

I VT A iff for some t€P, : = A[th].

I shall use this equivalence tacitly.

(4) The relation R on D; is defined as follows:

S tLRZ UL iff tRit' €L.
We have to show that R' is well-defined. Let be 3;tL = ;t, L and
Zil'L= z,t{L.
Then by theorem 5: t=t, €L and t' ={{ €L. Hence by axiom (iv n):
tR;t" €L iff t; R t; €L. This shows well-definedness.

(5) The truth value function V. With ; €P,(i= 1, ..., n)
E 4L, ....Z,t,L)is a pointin D,y x...x D,.
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Define:
Vp:Z, 4L, ... 2, L) = liff peg (Y L.
By theorem 8, V is well-defined.

I now prove the main theorem.

Theorem 9:

For every sentence A and every point &, t, L, ..., Z,t,L) in
(D;x...D,) .

Aistrue for UZ, ¢, L, ..., 2 t, L iff A€Z ()L (:=2;,...Z,tL).
Here U[Z; 4, L, ..., 2, t, L] results from U by substituting =; t, L. for
k}. Let us abbreviate: U tL] := U, 4, L, ..., Z,t, L].

The theorem is proved by induction. Again I write “*A in U[Z tL]”

instead of %—12 LJ — (a) I start with atomic sentences.

(i) The theorem holds by definition for propositional constants.
() N;(t)inUZtL]iff m(t')=Z;4L

(by def of the concept of truth), iff £;t' L = X, ;L

(by def of m,), iff N; (t') €%, L

(by theorem 6), iff ¢ (t) 1'c'p’ (t) Ny(thEZ; 4, L
i+l

(by axiom (iv m), iff @; § P (1) ic_p' (t) N;(t') L

(by def of ; 1), iff N; (') €2 (1) L
(by the corollary of theorem 4).

(i) Letbet', ' €P. t' =t"in U tL) iff m; (') = my (1), iff S, ' L =
UL ifft' =t e (by theorem 5), 1ff(p (Ot =t € L (by axiom
(v k)) ifft =t €3 (L.

(iv) U R t" in U[S tL] iff m; (V) R my (), iff ' R, ' € L (by def of m;,
Ri), 1ff(p () ' Rjt" € L (by axiom (iv 1)), iff t’ Rt =& 3 (1) L.

(b) For sentential connectives the theorem is shown by canonical
reasoning.

(c) Existential quantification. Let bet €V, and let the theorem hold
for all sentences A[tft] witht €P;. vVt A in U[Z tL] iff for some
t €P
At /] in U[StL], iff for some t, € P A[t/t] € 3 UL (by
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induction hypothesis), iff vt A €3 (t) L (by maximal consistency
and w-completeness of 2 (t) A L).

I now prove the theorem for sentences containing an operator ;.
Let the theorem hold for Aandletbet’ €P.qg; t' Ain U[Z tL] iff
AimnUE 4L, ... .Z 4L, m(t), =, 64 L, ..., 2, t, L] (by
the definition of truth), iff

A e El () Z;t" £ (1) L (by induction hypothesis), iff

Aez;t i‘_YI (t) Z (t) L (by the corollary of theorem 4), iff
i+1
gt A £ 2 WL, iff

ittt AE ii] (1) _ZI (t) L (by axiom (iv b) and since t; € B),
i+

iffp,t' A €3 (1) L.

Sentences containing a weak Kripke modal operator F;: Let the
theorem be true for A. Then it is as well true for any ¢; t' A —as |
have just proved. Furthermore, the theorem is true for all atomic
sentences. Thus we get: F, A in U[Z tL] iff for some t € P;:
St LS4 L and:

AimnUZ, 4L, .. 2 ;4,L, 5L, 2,4, L, ..., 2., L] (by
the def of truth and by def of the coordinate set D), iff for some
t €EP:tRt €L and

A e i‘;:‘ z t ->:| (t) L (by induction hypothesis and by the de-
finition of RY), iff for some t' € P,:

'Rt €S (1) () L and

ptAE i)_Z] (t) _Zl (t) L (by axiom (ivl) and the corollary of
theorem 4), iff (witht € V,):

VieRL gTA) E £ 0 S 0L,

iffg t EAE S (1) = (1) L (by axiom (iv 0)), iff F;A €2 (1) L.



198 R. STHULMANN-LAEISZ

— This finishes the proof.
Q.E.D.

We then have

Corollary 1.
For every sentence A:
ic Aiff A€L.

Proof: By definition:
U=U[Z,L,....Z,th L], where N;(t/) €L (i= 1,..., n). Hence by the

theorem: 5 A iff A ey (t)) L. But by the corollary of theorem 7:
@L=L
Q.E.D.

Now since I'CL we have

Corollary 2 :
For every A 1': 5 A.

Thus we have proved that every syntactically consistent set which
is infinitely extendable has a model. Canonical reasoning shows that
every syntactically consistent set has a model. Thus we have (strong)

completeness for many-dimensional topological modal logic:

If A is a semantical consequence from a set T of premises, then A is
syntactically derivable from T.

3. lhe Segerberg-operators

We now turn to the definition of the operators which Segerberg
introduces in order to solve the problem of sentences which contain
indicators like “‘tomorrow™". To do this, we regard a special case of
n-dimensional topological logic, i.e. the case that n= 2 and D, =
D, = : D. I'hus our class of possible worlds — to adopt the language of
modal logic — is a two-dimensional space, but we have only one set of
coordinates, as we have, e.g., in analytical geometry of the two-di-
mensional plane, where the set of coordinates is the field R of real
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numbers and the plane is represented by the Cartesian ‘‘square’” [R*.
In two-dimensional modal logic of the Segerberg type, the class of
possible worlds is represented by the set of ordered pairs (k, , k;) with
ki, k; €D. If (kq, k,) is some fixed point within D?, it makes sense to
talk — with respect to (k;, k,) — of *“all points on this longitude, i.e.
all points (k,, k) with k=D, or “‘all pojnts on this latitude™’, i.e. all
points (k, k;) with k €D it makes sense to talk of ‘‘the diagonal point
on this longitude™, i.e. the point (k;, k;), as well as to talk of the
“mirror point’’, i.e. (ky;, k). The Segerberg-operators use these
expressions, here they are:(*)

O A — everywhere, A.

(0 A — everywhere on this longitude, A.

B A - everywhere on this latitude, A.

O A - at the diagonal point on this longitude, A.
© A - at the diagonal point on this latitude, A.
& A - at the mirror point, A.

Informally, the truth conditions for these operators are the follow-
ing ones: Let again (k,, k,) €D? be some fixed point, then

O A is true at (k,, ky) iff for

all (k, k"yeD?: A is true at (k, k');

@ A is true at (k,, k) iff for

all (k;, k)eD?: A is true at (k,, k);

and so on, e.g.

& A is true at (k;, ky) iff A is true at ks, ky).

I shall now show how to define these operators within the apparatus
developped so far. — Since n=2 and D, = D,=: D we need within
syntax only one class of positional constants and variables, respecti-
vely, hence let us assume that P, = P, =: Pand V, = V, =: V.
Furthermore we add to the concept of a structure the conditions m, =
m, =: m, and R' = R? =: R (though we don’t talk about that relation
yet). — Now I define the operators by identifying the formulas O A,
M A, etc. with sentences expressed in topological logic which have:
the intended truth conditions.

() Vide Segerberg (1973), p. 81.
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() OA:= AmtAT @it @1’ Al

(2) MA:= VIAT (Ny(1) » @7 @, T A).

(3) BA:=ViAT (Ny(v) » @11 @a1’ A).

4 O A:= VI(Ny(T) »@;T @,TA).

(5) © A: = VI(Ny(1) » ;T @, TA).

6) ®A: = VT VI, (Ny(ty) » Nal®y) » @1 T, @27, A).

Let us see now whether the sentences on the right side have the
intended truth conditions listed above. Let U = <D?; (K?, 9:m; R;
V> be a structure. Then (k{, k9) is the point to which our sentences
® A etc. refer. Denote by U[K,, k,] the structure which results from
U by substituting k; for k} (i = 1, 2). We have to prove then e. g.:® A
in U iff A in U[k3, k] (using once more this notation for . W A)and

M Ain UiffforallkeD: A in U[KY, k].

Remember for the following proofs that A is a sentence, thus A does
not contain any free variable, hence A|[t/t] is always the same as A.

Now let t and t' be the first and the second constant from P which do
not occur in A.

(1) O Ain U iff for all k,, k, €D: A in U [k, k,]

Proof: Let be O A in U, then by def: for all functions m’ such that

m =, m: ¢t et Ain Um'/m]. Now let be k;, k, €D. The
function m’ defined by

kq, if t' =1,
m'(t"): = k,ift"=1t,
m(t"), otherwise

fulfills the condition. Thus ¢, tg,t' A in U[m'/m], hence A in

U[K,, ky ; m'/m], therefore, since t, t' are notin Aand m’ = . m: A in

Uk, k;]. — Let us now have A in U[Kk,, k,] forall k,, k, €D and let be
m’ = . m any function. By hypothesis: A in U[m'(t), m'(t")]. But
since t, t' are not in A, this is the same as A in U[m’(t), m'(t'); m'/m],
which is, by def, equivalent to ¢, tg,t' A in U[m'/m]. Thus: O A in
U.

Q.E.D.

(2) MAinUiffforallkeD: Ain U [k, K|.
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Proof: Let be (I A in U. Then by def: There is a function m’ such
that: m" =m and for all m”: if m" = . m’ then N,(t) » @, tg,t" A in
U[m"/m], which is the same as: n’'(t) = k{ and A in

U[m"(t)/kY, m'(t')/kS ; m"/m], hence for all m": if m’ =,..m, then A in
Uk}, m’(t'); m'/m]. Now let be k €D. The function m’ defined

K, if t' = t,
m’(1"): =1k, if t' = t',
m(t’), otherwise

fulfills the condition. Hence: A in U[K{, k; m"/m]. But since t, t’ are
not in A, this the same as A in U[k{, k].- Let us now have A in
U[K{, K] for all k €D. Define

0 SF ¢ —
m,(t,,):ik =t

m(t"), otherwise.
Let be m” =, m’, hence m’(t) = k7, hence N;(t) in U[m’/m] and A in
U[m'(t), m'(t"); m’/m], hence N;(t) » ¢, tg,t" A in U[m’/m], hence
v (Ny(@) « pt@st’ A) in U

Q.E.D.

(3) B AinUiffforallkeD: Ain U[k, kI].
I'his can be proved likewise as (2).

(4) ® Ain Uiff A in U[K?, K9].

Proof: Let be © A in U. Then by def for some function m’ such that

r

m' =m
Ni(t) » @1 tgt A in U[m'/mj. But this implies m'(t) = k{ and A in
UK, K9]. - If, on the other hand, we have A in U[KY, k?], define
0 [
o ()= ki, if ' = t, .
m(t"), otherwise.

Then we have N;(t) » @, tp,t A in U[m’/m]. Hence
VT (N (1) » @yTt@at A) in U.
Q.E.D.

Likewise one proves

(5) & Ain Uiff A in U[KS, KI].



202 R. STHULMANN-LAEISZ

Finally I show
(6) ® Ain Uiff A in U[KY, kY].

Proof: If ® A in U, then by def: for some function m" such that
m’ =, . m we have N;(t)aN,(t')rp,t'q,t A in U[m'/m]. Hence:
m'(t) = k¢ and m'(t') = k§ and A in U[m"(t'), m"(t); m"/m], which is
the same as A in U[k], k{].-

If, on the other hand, we have A in U[kS, kJ] define:

K, iftr=t,
m’ (") : ={K3, if ' = ',
m(t"), otherwise.

Then we have: N, (t) » N, (') ~ @, V'@, t A in U[m"/m], thus
VT VT (N (@) A Na(T2) 2+ 9112213 A) in UL
Q.E.D.

This finishes the introduction of Segerberg-operators into many-
dimensional topological modal logic.

Further semantical reasoning shows that all of Segerberg's
axioms(*) for two-dimensional modal logic turn out to be valid
formulas in topological logic if they are translated by the operator
definitions (1) - (6). Thus, Segerberg’s logical system is a specializa-
tion of many-dimensional topological modal logic. — However, we
must once more look at completeness: Since by the assumptions D, =
D,, m; = m, and R, = R, we have tightened the concept of a
structure, the model which we construct within the course of the
completeness proof has to satisfy these additional assumptions. The
model construed does not, however: Even if P, = P, = : P the set
D, : = {Z,tL|t€P} is different from D,: = {Z,tL|tP}.

Can we get rid of this problem? Indeed we can — even in the
n-dimensional case. This is shown by some arguments very similar to
those we already know.

Using the abbreviation

Ztl:=2Z,t..2, tT (fort €P)

we have the following theorems (T being some maximal consistent
and w-complete set):
(*) Vide ibid., p. 82.
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Theorem 10:
Forallt, ' €P:

ZtT=Z¢Tifft=t €T.

Theorem 11 :
Ifforni= 1, ey nXT=2t|T
thenZ (1) T = Z (') T (for any t;, t] € P).

These theorems resemble theorems 5 and 8, and so do their proofs :

(10) Sufficiency: LetbeZtT=32t'T. .
From axioms (iv h,m) we have ¢,,. @,tN;(t) € T, hence
Ny(t) €XtTand Ny (t) €Xt' T.
But N, (t') €Zt' T as well. Hence (axiom (iv g)) t=t €Zt' T
hence (by axiom (iv k)) t=t" €T. - Necessity: Ift=t' €T, then
by theorem 5: £, tT= X, t'T. Now let be Z,t...5,tT =
et LLEN U T, Since g t..gett=t’ is in T, t=t' is in
St Z,tT. Hence Sy tE t.. .S, tT =5, t'St... 2, t T.
By induction hypothesis: X, _;tZ, t..3, tT =
S B LT

Q.E.D.
(11) LetbeXZt T=2t' T(i=1,..., n).
Then by theorem 10: ;=t' €T
(i=1,..., n), hence by theorem 8:
SMT=32()T.
Q.E.D.

Now I define a model U:

() D:= {ZtLjteP}.
) ki:=2z¢ iff N} eL.
kY is well-defined: if Ni(t}) € L, then )=t} €L, hence by
theorem 10: YL = =t L.
By axiom (iv f): N;(t9) €L for some t} €P.
(3) m®:=3tL.
(49 ZtLRZtLIifftRt’ L.
R is well-defined by axiom (iv “)1 and theorem 10.
() V(p:EtL,..St,L)= 1iff pe2()L.
V is well-defined by theorem 11.
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Ift,,.... t, €EP let U (£ tL) denote the structure

We then have

Theorem 12 :
For all t,,..., t, =P and all sentences A:
AinUEtL) iffAEi(l)L.

The proof is left to the reader. It results from the proof for theorem
9 by substituting U (Z tL) for U[ZtL], by dropping the indices at the
appropriate places and by using the new theorems 10 and 11.

Corollary:
Forall A: | A iff A€ L.

Proof: By definition:
U= U[EY,..., =t¥], where N;(t}) € L. Hence by the corollary of
theorem 7:
$(t)L = L, and by theorem 12:
Ain Uiff A E:';:(t”)L.
Q.E.D.

Thus we have completeness for many-dimensional topological
modal logic also in the case where there is only one set D of
coordinates and D" is our class of possible worlds.

Let us have one final look at the indicators ‘‘here’” and ‘‘tomor-
row’’ mentioned in the introduction. (Definite operators like “‘in New
Orleans™ and “‘on January 7" 1985 are simply construed by @, t;,
@, t,, respectively, t; being interpreted *‘in New Orleans’ by the
function my, t,, via m,, designating the 7" of January 1985.) Well, if
D, = D, is the dimension of space and U[k,, k,] is a structure with
ki €D (i= 1,2), let us interprete the relation A in U[k,, k,] to mean
““The sentence A, regarded as being uttered at k,, is true at k,*’. But if
in “‘Here, A" the indicator ‘‘Here"’ is meant to refer to the point in
space where the sentence A is uttered, this yields:
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Here, A in U[ky, k,] iff A in U[k,, k;] ).

Thus ‘‘Here™ is the operator © defined above.

In order to construe the indicator ‘‘tomorrow’” we use the relation-
component R of a structure U and the additional assumption that R is
a successor relation, i.e. R has the properties:

(1) For every k €D there is some k' €D
such that for all kK’ =D:
kRK’, and: if kRK’, then K’ = k'.

(This condition makes R a function on D.)
(i) For every keD: not kRk.

In order to save the completeness of our logic, we have to add some
further ground axioms. Canonical reasoning shows, that the following
set will do the job (since R, = .. = R, I drop the index):

(i) AMVT AT @RT A@RT - 1" =1")
(ii) At TtRx

Let us now define ‘‘tomorrow’’. Since the relation Tomorrow, A in
U [k,, k) is understood to mean ‘‘The sentence Tomorrow, A,
regarded as being uttered at k,, is true at k,"* and since ‘*‘Tomorrow’’

refers to the day after the sentence’s utterance, the truth condition
will be

Tomorrow, A in U[k,, k;] iff A in U[k, k], where k is the unique
element from D such that k, Rk.

Now, by the conditions on R, this obviously amounts to:

Tomorrow, A in U[k,, k,] iff A in U[K, k] for some k €D such that
k, Rk.

(*) This makes the second component in (k;, k,) be the point of a sentence’s
utterance. Since this component is referred to by the operator @, t,, the sentence
@191y Here, A is understood to mean: The sentence Here, A, regarded as being
uttered at t,, is true at t;. Thus the truth condition of @, 1, ¢, ¢, Here, A ought to be the
same as that one of g, 1,¢@,1, A. — Well, this is the case:

@, ;yt, Here, A in U[k,, k,] iff
Here, A in U[m(t,), m(ty)], iff
A in U[m(ty), m(t,)], iff @, £, 1, A in U[k,, ky].
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I now define:

Tomorrow, A: = vt vt'
(N, (@) ~TtRT rpy T/ @ T/ 3T’ A).

Tomorrow, A has the intended truth condition.

Proof: Let t, t' be the first and second constant from P which are not
in A. Let U= <D?; (K%, k3); m; R: V> be a structure.

If we have Tomorrow, A in U, then by def for some functionm’ =, , m:
N, () A tRU 2y Uy ' A in U[m’/m].

Hence: m’ (1) = k3, m’ (t) Rm’ (t') and A in U[m’ ('), m’ ('); m'/m].
Hence (t, t' not being in A): For k: = m’ (t') we have kI Rk and A in
U[Kk, k]. — Now let be A in U[k, k] for some k €D such that k% Rk.
Define

Ky, ift" = t,
m' (") : =ik, if ' = ',
m(t'), otherwise.

Since t, t" are not in A we then have by our assumption and def of m'’ :
N, (1) » tRt" in U[m'/m] and A in U[m’ ('), m’ (t'); m’/m]. Hence:
N, () a tRt AUy t" A in U[m’'/m].
Thus: Tomorrow, A in U.

Q.E.D.
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