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1. Introduction

The so-called possible world semantics is now pervasive among almost
all branches of philosophical logic, owing to the pioneering work of S.
Kripke. Now in spite of its great interest, from a philosophical and
technical point of view, it seems to be an inadequate tool when treating
questions as the cross-world identity of individuals. Now, it is clear what
sorts of criteria are usually adopted in everyday life: they turn on the con-
tinuity of individuals with respect to possible transformations.

In accordance with these considerations, in this paper we propose a
new approach to first order modal semantics. Roughly speaking, if ¢ is
a first order formula and d an individual, then $ « is true for d provided
it is possible to transform d so that e holds. So, in general, we identify
the individual d with the individual d’ provided there exists a transfor-
mation f such that f(d)=d’. Such a type of modality is a contralogical
modality in the sense of Hintikka [5].

2. Transformational modal structures

In the sequel £ denotes a first order language, £*= ¢ U {(J] its correspon-
dent modal extension, F(®) the set of formulas of £ and F(¢*) the set of
formulas of £* Let W be a class whose elements are called worlds,
M=(M,,), cw a family of classical interpretations M, =(D,,, I,,) of £ and,
for every w,w’ € W, let H(w,w"’) be a set of maps from D, into D,,.. We
assume that the identity map i:D,—D, belongs to H(ww) for every
w € W. Then the pair S=(IR,H) is called transformational modal struc-
ture (or merely trasformational structure) for £* and, if w € W, (I, H,w)
is called transformational modal model (in brief, transformational model).

(*) Work performed under the auspices of M.P.1. of Italy (60% 1986).
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We write a(x,,...,x,) to emphasize that the free or bound variables of
the formula ¢ are among x,,...,X,, and we write t(X,,...,X,) to emphasize
that t is a term whose variables are among XpseenXy. If f, R and ¢ are sym-
bols for functions, relations and individual constants, respectively, then
we set f,=1,(f),R,=I,(R) and ¢, =1,(c). If t(x,,...,.x,) is a term, w E W
and

a;,...,a, € D, then t"[a,,...,a,] is defined, as usual, by
t“(a,,....a,)=a; if tis x;

t"(a,,....a,)=c, if t is the constant ¢

Y@y ) =5, (@) 08 b Ty 3)) 36 € 08 105k, ):

If a(x,...x,) EF(®*), wEW and a,,..,a, €ED,, the relation SwE= o
[a,,...,a,] is defined by recursion on the complexity of a by setting

Swet =t, [a,..a,] if t,"(@,,..,a,)=t,"(a,,...,a,)

SwER(,...t) [a,..a,) if (t," (@508, (@y.002,)) ER,,
SwEaAp [a,...a,] if SwEe [a,...a,] and SwE= B [a,,...a,]

SwiE —ala),..a,] if SwrHeae [a,,...a,]

SweEaxe [a),...,a] if SweE=a [a,,..a,..,a,] for a suitable a€ D,
Swela [a),..,a,] if Sw' =a [f(a),..f(a,)] for every w’ €W and
fe Hww’).

Moreover, we set

Swea (ais true in w) if SwiE=a [a,,...a,] for every a,,...,a, €D,
SEa (o is valid in S) if SwE a for every w € W,
Eo (ais valid) if Sea for every transformational structure S.

If L is a class of transformational structures, we set £ = a, @ is L-valid,
provided that S = & for every S € L. We call Z-/ogic the logic correspon-
ding to the E-validity, a I-logic is axiomatizable if the set of E-valid for-
mulas is recursively enumerable [8].

The proposed semantics gives an interesting (in my opinion) meaning
to the modalities and the iterated modalities. Indeed, [ & (respectively,
(") holds for a,,...,a, if @ remains true however one acts on a,...,a, by
a transformation (by n successive transformations). Likewise <« (respec-
tively, O"a) holds for the individuals a,,...,a, if it is possible to realize the
property « via a suitable transformation (via n suitable transformations)
of a,,...,a,. Besides, we identify an individual d of D, with an individual
d” of D, provided that d’=f(d) for a suitable f € H(ww").
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3. Validity and invalidity of some formulas

It is immediate to verify that

3.1 E Qe - (ODe=0p8

(3.2) =Ela—a

(3.3) Ex=y—~> Ox=y)

(3.4) = L(vx,a) = vx, o (converse of Barcan formula)
(3.5) E O(vx,a) ~ vx,$a

(3.6) SEa implies SE o  (necessitation rule)

3.7 Sw = < B’ implies S,w = g« e’ (substitution of equivalents

rule) where ¢’ is obtained from & by substituting #* to some
occurrences of f.

If S is a category, i.e., from f € H(ww’) and g € H(w’w’’) it follows
that gf € H(w,w’’), then

(3.8) SeEUa— OO« (the characteristic formula of S4).

Finally if, for every ww’ € W and f € H(ww '), f is injective, surjec-
tive or invertible, then

(3.9 SEx#y—-0Ox=zy)

(3.10) SeEvx,UOa - O(vx,e) (Barcan formula)

(3.11) S=Ca — O(Ca) (the characteristic formula of S5),
respectively.

Note that, in spite of the validity of the formula vxvy((x=y) —
[ (x=y)), if in € there are constants, the semantics we have proposed deter-
mines a modal logic with contingent identity. Indeed, the formula
vxvy((x=y) = [l (x=y)) expresses only a linguistic convention, i.e. that
if actually x and y denote a unique element, then they continue to denote
its transformed afterwards. On the other hand, if ¢ is a constant of &,
then the formula vy((c=y) — [J (c=y)) is not valid. Indeed let S= (9, H)
be a transformational structure with two worlds w,w’ such that f(d) # d
where d=1,(c) and f is a suitable element of H(w,w’). Then Sw = (c=y)
[d] while Sw # [ (c=y) [d]. Likewise, one proves that if ¢ and ¢’ are two
constants, then (c=c’) = C(c=c"’) is not valid. It follows also that
the universal specification is not valid in transformational logic and
therefore this logic is not an extension of the classical first order logic.
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Indeed, if we assume the validity of the universal specification ¥xa(x)
— a(c), then from vxvy((x=y) — [](x=y)) should be possible to derive
the two formulas (c=c”) = [ (c=c’) and ¥y(c=y) = [J(c=y). This hap-
pens on account of the different meanings of the variables and the con-
stants in the proposed semantics. The interpretation of the variables is
connected with the possible transformations while the interpretation of
the constants is connected with the interpretation of the language. The
fact that formula vyax[J (x=vy) is valid while 3x[J (x=c) is not valid, fur-
nishes another example of this difference of meaning. This makes our
modal logics very different from the other modal logics and this creates
some difficulties to find suitable axiomatizations.

4. Collapsing transformational structures

Now we will examine the case in wich the formulas holding in a transfor-
mational structure collapses in a non modal system. Recall that a system
T of modal formulas collapses if ¢+ (] o belongs to T for every formula
a of ¥*; we says that a transformational structure S collapses provided
that {a € F(£*)/S &= a] collapses.

PROPOSITION 4.1 A transformational structure S collapses if and on-
ly if, for every ww’ € W and f € H(w,w’), f is an elementary embedding
of M,, into M,,...

Proof. Let a(x,,...,x,) be any formula of ¢ ww’ &€ W and f € H(ww’)
and assume that S collapses, then Sw = ¢« e and Swe - g« 0(- @)
for every w € W. Hence, from M, =ea [a,,...,a,], ie from MwE«a
[a},...,a,], it follows that SwE Oe [a,,...,.a,]. This implies Sw’ E «
[f(a)),...,f(a,)], and therefore M,,. = a [f(a,),...,f(a,)]. Now, assume that
M, = « [f(a)),...,f(a,)] and, for contradiction, that M, = = « [a,,...,a,].
Since SwE -« [a,...,a,], by hypothesis SwEe [0 -« [a,,...,a,] and
therefore we have that Sw = - « [f(a,),....f(a,)], an absurdity. This pro-
ves that M, = « [a,,...,a,].

Thus we have

M, Ea [a,,..,a,] if and only if M, = & [f(a,),....f(a,)]

i.e. fis an elementary embedding of M,, into M,,..
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Conversely, assume that every f € H(w,w’) is an elementary embedding
of M, into M,,, and let & be any formula of £*; to prove

4.1) Sweea« Uea [a),..,a,]

we proceeds by induction on the number n of occurrences of [J in a. If
n=0 then (4.1) follows from the hypothesis and the meaning of [(J. If n#0
then there exists a subformula (J 8 of ¢ with 8 € F(Q). Since

Swe g« Op [a,...,a,], by substitution of equivalents rule it is also
SwEea+<a’ [a,..a,] where ¢’ is obtained by substituting in « the for-
mula [] £ by 8 Thus, by inductive hypothesis, SwE= ¢’ < Ha’ [a,,...,.a,]
and therefore Swi= o < a [a,,...a,].

5. Logic of the extensions

An interesting example of Z-logic is the logic of the extensions in wich
the possibility means the possibility of extending a given model. Since
this logic is extensively examined in [3] and [4], we confine ourselves to
sketch it. Let W be a class, = a reflexive and transitive relation in W,
and M=(M,).ew a family of models of £ such that if w=<w’ then
M, €M, ie. M, is a submodel of M,.. Set

[ij if w=w’ and i: M, = M,. is the identical
H(ww')= embedding

® otherwise.

then (IM,H), in brief I, is a transformational modal structure. We call
E-structure and E-models the transformational structures and models ob-
tained in this manner and we call E-logic, or logic of the extensions the
logic corresponding to the class of the E-structures. An interesting exam-
ple of E-structure is associated to every theory T of £ by considering the
class M(T) of the models of T ordered by <, (the submodel relation).
In this case & means the possibility of extending the given model so
that o holds.

In E-logic it is possible to express several important concepts of classical
model theory, such as existential completeness and being infinitely generic,
that are not expressible in classical logic. We call model complete an E-
model such that w = w’ implies that M. is an elementary extension of
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M,,, we call existentially complete an E-model (I,w) such that w < w’
implies that M,, is existentially complete in M,,.. Obviously in M(T) this
concepts coincide with the corresponding classical ones. From Proposi-
tion 4.1 it follows that an E-structure collapses if and only if it is model
complete. In [4] we prove that an E-model is existentially complete if and
only if it verifies O« « for every existential formula a. In other words
the set {Oa+ a/a is existential} represents in €* the theory of the existen-
tially complete models. If a,,...,a, are elements of a model M,, of ¢ and
@ is a formula of € then the relation Mw &= « [a,,...,a,], w infinitely
Jforces a in a,...,a,, is defined inductively in the same way as = except
for what concerns the negation for wich we set Mw E -« [a,...,a,]
if and only if Mw’ #a [a,,...,a,] for every w’ = w.
The E-model (IM,w) is infinitely generic if, for every formula « either (t,w)
forces o or — . The above two notions coincide with the classical ones
in the E-models M(T).

In order to express the infinite forcing, we define a map t: F(2)—> F(2*)
by setting t(a)=¢ if & is atomic and

tlaAf)=t(@)At(f), tlavp)=ta)Vi(B), t(3xa)=3xt(a),
t(-a)=L(~t(a)

otherwise. In [4] we prove that a transformational model (9%,w) infinitely
forces e if and only if Mw = t(a), moreover (IMN,w) is infinitely generic
if and only if Mw = e t(a) for every formula ¢ of €. In other words,
the set {t(a) < a/a € F(R)] is the theory in £* of the infinitely generic E-
models.

In [4] we give some applications of the fact that in E-logic it is possible
to express the above quoted concepts of model theory.

With regard to axiomatizability question, in [4] we show that a suitable
system of axioms for the E-logic is obtained by adding to first order modal
logic QS4 the rigidity axiom schema a— [ a, where o denotes a basic
formula, i.e. an atomic or the negation of an atomic formula. This means,
in particular, that E-logic is an extension of classical logic.

6. Logic of invariance

Let M=(D,I) be a model of £ and G a group of transformations of
D, then it is possible to define a modal structure S=(,H) by assuming
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that I coincides with the unique model M and H(M,M)=G. We denote
by (M,G) both the transformational structure and the unique transfor-
mational model associated to M and G and we write MG = a [a,,...,a,]
instead of Sw =« [a,,...,a,]. In I-logic it is possible to express the in-
variance of a property represented by the formula a(x,,...,x,) via the for-
mula vx,..vx,(e+e). Indeed M,GEa< e [a,,.a,] means that
M=« [a),...a,] if and only if M = « [f(a,),...f(a,)] for every f €G. This
suggests, for example, the possibility of applying a suitable multimodal
version of I-logic to Klein’s Erlangen program. It suffices to extend the
language € of elementary geometry to a multimodal language
=gU [, O, U] In this case a modal structure should be of type
M, G, G,, G)) and the interpretation of the formulas of £* is obtain-
ed by an obvious extension of the definitions of Section 2. In particular,
we are interested in the case in wich M is a model of the euclidean geometry
and G,,, G, and G, are the groups of the isometries, the affinities and
the projectivities, respectively. In such a logic it is possible to express that
a property, represented by the formula e(x,,...,w,), is metric, affine or
projective, by the formulas

VX VX (@e U a), VXY (ae D), vX,.. VX, (0 U,a)

respectively.
Moreover, if ¢ is a formula and r,(X;,....X,g)seesTp(Xp5eensXy) are the
predicate symbols occurring in ¢, then the formula

4 AV Y X e O] AA [V Xy ¥ Xy (T, O 1)

expresses that ¢ is a theorem of metric geometry. Then we can built up
a unique multimodal language able to express the metric, affine, projec-
tive geometry at the same time.

Another possible application of I-logic is the formalization of those
physical theories that are based on the invariance concept.

[-logic has an interesting behaviour with respect to the de dicto
modalities. Recall that a de dicto formula is a formula with no occur-
rence of subformulas of type [J 8 in wich 8 has free variables. A formula
is de reif is not de dicto. We say that in a modal formula & the modalities
are erasable if the formula o< c(e) is I-valid, where c(«) is obtained from
a by deleting every occurrence of []. The following proposition shows
that in every de dicto formula the modalities are erasable. Thus, in a sense,
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de re modalities are the unique modalities of I-logic and the modalities
of I-logic are contralogical modalities, essentially.

PROPOSITION 6.1 In I-logic the modalities of every de dicto formula
are erasable, that is.

(6.1) I =aec(a).

Proof. We proceed by induction on the number n of occurrences of [
in a. If n=0 then (6.1) is obvious. Assume that n=0, let [] # a subfor-
mula of @ where £ is a closed formula of € and let @* be obtained by
substituting in e the formula (J 8 with 8. By inductive hypothesis we have
that I = a* < c(a*), besides, since § is closed, from the interpretation of
C] we have that 1= g« [J]4. Thus, by substitution of equivalents rule,
[ = a+a* and therefore I = e« c(a*). Since c(a) =c(a*), (6.1) is proved.

Now we will compare the I-models with the Kripke models. To this aim,
we assume that in the language & there are only relational constants and
we associate to every I-structure S=(M,G), with M=(D,I), a Kripke
S5-structure K(S) as follows. The class of worlds of K(S) coincides with
the group G and to every f € G a model M;=(D,],) is associated whose
domain is D and I, is defined by

(6.2) I(R) = [@),...a)/(f(a),...,f(a,) € I(R)].

Obviously, if i: D—D is the identity map then M, coincides with M and
every model M, is isomorphic to M, via the map g7 'f.

PROPOSITION 6.2 Assume that in € there are only relational constants,
then for every formula «(x,,...,x,) and a,,...,a, € D

(6.3) GMEa [a,,...a,] if and only if K(S), iE=« [a,,...,a,].

Proof. First we prove that
(6.4) K(S),i E « [f(a)),....f(a,)] if and only if K(S),f =« [a,,...,a,]

by induction on the complexity of @. If @ is atomic, ie. of type
R(x,,...,Xx,), With m <n, then
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K(S),i ER(X,...x,)  [f(a),....f(a,)] = (f(a),.., f(a,)ELR) &
(a;,...,a,) E I(R) & K(S),fE= R(x,,..A.,xn) [a,...,a,]

If =014, then

K(S),i = 008 [f(a)),....f(a,)] & K(S).g = B [f(a,),...f(a,)] for every g €EG &
K(S),i = g [gf(a,),....gf(a,)] for every g€ G & K(S),ef = 8 [a,,...,a,] for
every g€ G e K(8),f= 04 [a,,...,a,].

If @=3x,8, for example a=3x,8 then

K(S),i = 3x,8 [f(a),....f(a,)] & K(S),i = £ [d, f(a,),....f(a,)] for a suitable
d €D & K(S).f =B [f'(d),a,,...,a,] for a suitable d € D & K(S),f = ax.fp
[a,...,a,].

The induction steps in the cases ¢=8A8" and a= = f are obvious.
Now, it is possible to prove (6.3) by induction on the complexity of «.
If ¢ is atomic (6.3) is immediate, if «=[1p4 then

GME g [a;...a] & GMEZS [f(a),...[@)] for every fEG &
K(S).i = B [f(a,),....f(a,)] for every fE€ G & K(S),f = f [a,,...,a,] for every
fEG & K(S),i= g [a,..a,].

Since the remaining steps of induction are obvious, (6.3) is completely
proved.

From Proposition 6.2 it follows that every S5-valid formula is also I-
valid and that I-logic is an extension of S5-logic. In particular, every ex-
ample of a classically valid formula is I-valid while in Section 3 we have
observed that there are examples of universal specification schema invalid
in transformational logic. This is a consequence of the absence of con-
stants and functions in ¥ rather than a characteristic of I-logic. Indeed
it is immediate that if in € there is a constant c, then the examples at the
end of Section 3 are not [-valid.

We conclude by showing that I-logic is axiomatizable.

PROPOSITION 6.3 I-logic is axiomatizable.

Proof. We proceed by showing that the set V of the I-valid formulas is
one-one reducible (see [8]) to a suitable axiomatizable theory of a two
sorted first order logic (for example, see [7]). To this aim, let & be the
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two sorted language extending £ whose variables are f,, f,,... and x,, x;...
and with an operation symbol h. Every I-model (G,M) determines a model
u(G,M) for € in an natural way. Namely, we extend the interpretation in
¥ given by M by assuming that the variables f, and x; range on G and
the domain D of M, respectively. Moreover the interpretation of h is the
operation h* defined by h*(f,x)=f(x) for every f € G. It is immediate
that u(G,M) verifies the following system S of axioms,

Al af, vx, (h(f,,x,)=x,) (existence of the identity map)
A2 vf, vf,3f, vx,(h(f,,h(f,,x,))=h(f;,x,) (existence of the product)
A3 vf, 3f, vx, (h(f,,h(f,,x,))=x,) (existence of the inverse).

Conversely, let It be an interpretation of ¥ verifying the theory
T={A,, A,, A,}, then I individuates a model M=(D,I) of €, a set Z and
a map h*:ZxD-D. For every z€ Z, let g,:D—D be defined by the
equality g,(x)=h"(z,x) and set G={g,/z €Z]. It is matter of routine to
prove that

— G is a group of transformations of D and therefore a(IN)=(G,M) is
an [-model

— w(a(M)) is isomorphic to M for every model M of T

— a(u(G,M)) is isomorphic to (G,M) for every I-model (G,M).

Then it is possible to identify the I-models with the models of T. Now,
define the function t:F(¥*)>F(¥) by setting t(e)=«a for every atomic
formula o and t(aAp)=t(@) At(B), t(— a)= - (t{a), t(Ax,a)=IXt(a),
(O a)=vf, [t(a)(h(f,,x,),....h(f,,x,))] where t(@)(h(f,,x,),....h(f,,x,)) is the
formula obtained from t(e) by substituting every free occurrence of
Xp5esX, by h(f},X,),....,h(f),x,). It is easy to prove that, for every o € F(¢*)
GM =  if and only if 6(G,M) = t(a) and therefore that e € V if and on-
ly if T + t(@). Thus, since t is a recursive one-one map, V is one-one reduci-
ble to the recursively enumerable subset {& € ¥*/T @] and this proves
that V is recursively enumerable.

Recall that, since V is recursively enumerable, there is a decidable system
S of axioms and a rule of inference able to generate V. Indeed, let «,,
o,,... be an effective enumeration of the elements of V, set 8, =«,,
Booi=B.Ae,,, and S=[f,/n € N}. Since the lengths of the sequence
(B).en are increasing, S is decidable and V is generated by the system
of axioms S and the rule ena’/¢’. Of course, this is not completely
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satisfactory. It is an open question to find a more significant system of
axioms and inference rules for I-logic.

Dipartimento Mafematica ed Applicazioni Giangiacomo GERLA
Renato Caccioppoli

Via Mezzocannone 8

80134 Napoli

[taly

REFERENCES

[1] ER. Drake, On Mc Kinsey’s syntactical characterization of systems of modal logic, Journal
of Symbolic Logic, vol. 27 (1962) 400-406.

[2] J. Garson, A new interpretation of modality (abstract), Journal of Symbolic Logic, vol.
34 (1969) 535.

[3] G. Gerla, Le modalita’ contrologiche, Arti degli Incontri di Logica Matematica di Siena
(1982) 365-367.

[4] G. Gerla-V. Vaccaro, Modal Logic and Model Theory, Studia Logica, vol. 43, n. 3 (1984)
203-216.

[5] J. Hintikka, Existential Presuppositions and Uniqueness Presuppositions, in K. Lambert,
Philosophical Problems in Logic, Reidel P.Co., Dordrecht (1970) 20-55.

[6] J. Hirschfeld-W.H. Wheeler, Forcing, Arithmetic, Division Rings, Lecture Notes in
Mathematics, vol. 454 Springr Verlag (1975).

[7] 1.D. Monk, Mathematical Logic, Springer-Verlag New York (1976).

[8] H. Rogers, Theory of recursive functions and effective computability, Mc Graw Hill (1967).

[9] J.C.C. Mc Kinsey, On the syntactical construction of systems of modal logic, Journal
of Symbolic Logic vol. 10 (1945) 83-94.



