PREDICATE MODIFIERS IN TENSE LOGIC

Jeremy BUTTERFIELD and Colin STIRLING

1. Introduction

Predicate modifiers can be introduced into tense logics in many ways.
Our aim is a very modest one: to explain two ways of revising a simple
tense logic by adding predicate modifiers to it. Both revisions have an
ad hominem interest in relation to the founder of tense logic, Arthur Prior.
And both can be regarded as exercises in combining a concern to give
sentences analyses close to their surface form, with a metaphysical view
of time as “tenseless”. (")

The tense logic we start with is like Kripke’s (1963) modal logic: it is
bivalent, and the quantifier ranges at each time over just the objects that
temporally exist at that time )i.e. exist in the sense in which Reagan exists
in 1984 and Lincoln does not). In this tense logic, none of a certain set
of formulas relating quantifiers and operators — called mixing formulas
— is valid. However, Prior believed that some of these mixing formulas
are, intuitively, necessary. And this three-valued system Q captured his
intuitions: it rendered valid the mixing formulas he found intuitively
necessary. We show in Sections 2 and 3 that by adding predicate modifiers
to the Kripkean tense logic, we can recover these intuitions within a com-
plete bivalent system. So we provide a via media between Kripke and Prior.
(As one would expect, this via media exists in modal logic as much as
in tense logic; but for brevity we shall only discuss the latter version.)

Our second revision (Section 4) aims to accommodate within tense logic
sentences in which temporal expressions qualify singular terms like “Toby
was fatter in 1980 than William in 1982”, Prior considered such sentences
(1967: 170). But his view that all temporal expressions be analysed as
sentence operators forced him to give these sentences analyses far from
their surface form. We suggest instead the use of predicate modifiers. This
second revision is more radical than our first. The first amounts to an
extension of the Kripkean tense logic; but the second calls for a substan-

(') This kind of combination is well recognized now, though in the classic Prior-Quine
debate of the 1950’s and 1960’s it was ignored. For discussion see Butterfield (1984).
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tial revision of the truth-definition. We do not have a completeness
theorem for the second revision and will only present semantic details.

2. Mixing Formulas

The main features of Kripke’s (1963) modal logic are: (i) bivalence, i.e.
every formula is true or false at every world under every valuation; (ii)
the quantifier ranges at each world over just the objects in that world;
(iii) the extensions at a world of atomic predicates are allowed to include
objects that are not in that world; (iv) there is no restriction on the rela-
tions (inclusion, disjointness etc.) of domains of quantification (1963 :
65-69).

We believe that a tense logic with analogous features, got by substituting
times for worlds and temporal existence at a time for being in a world,
is a good starting-point for analysing temporal discourse. So we shall use
“@i)” etc. for these temporal analogues also.

Our acceptance of (i) and (iii) arises from our “detenser” view of time.
We regard the present as an epistemic notion reflecting our limited access
to a temporally extended reality. Objects and states of affairs in the past
and future are wholly determinate; and they stand in genuine relations
to present objects and states of affairs (cf. “Reagan is shorter than Lin-
coln”). So we see little reason to analyse temporal discourse with a many-
valued logic, nor to confine the extensions of atomic predicates at a time
to just the objects that temporally exist at that time.

However, our view that past, present and future form a single reality
does not prevent our accepting (ii). No doubt the quantifier should not
range beyond what one takes to be real; but it can have a more limited
range. What its range should be is disputed. But in discussing intuitions
about mixing formulas, we do best to accept (ii). For we intuitively inter-
pret the quantifier as present-tensed; e.g. we read “(3x)”” as “there tem-
porally exists now an x such that ... And given (ii), we must accept (iv)
since we do not want to be committed to such claims as that all objects
are indestructible or uncreatable (cf. inclusion within future or past do-
mains, respectively), or instantaneous (cf. disjointness).

The relation between our detenser view and (iii) is a little delicate. Given
bivalence, the denial of (iii), i.e. the proposal that atomic predicates’ ex-
tensions at a time are confined to that time, amounts to the Falsehood
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Principle; that is, it amounts to the principle that atomic predicates are
false of non-existents. Such a proposal must of course be restricted to
atomic predicates, since complex predicates cannot be so confined. For
example, the complex predicate “does not exist” is satisfied at a time by
objects that do not then exist; and given bivalence, the Falsehood Princi-
ple makes — 80 a monadic atomic predicate, satisfied by every non-
existent. But provided the proposal is thus restricted, it seems plausible
when one focusses on monadic atomic predicates, considering examples
like “is red” and “is square’ : for example, the proposal is motivated by
the thought that when an object ceases to exist, it ceases to be red. On
the other hand, we take the detenser view to require polyadic atomic
predicates with unconfined extensions, as in “Reagan is shorter than Lin-
coln”. So a detenser either needs a logic in which monadic and polyadic
predicates are treated differently, or needs to sacrifice the Falsehood Prin-
ciple, even for monadic predicates. We make the second choice, for two
reasons. First, we are concerned to give sentences analyses close to their
surface form; and this choice allows us to analyse predicates like “is
famous” and “is dead™ as atomic. Secondly, our predicate modifiers will
enable us to capture some of the intuitive appeal of the Falsehood Prin-
ciple for monadic predicates. For they will give us valid analogues of some
formulas, relating quantifiers and operators, that the Falsehood Princi-
ple makes valid for atomic predicates.

So let us ask how the quantifiers and operators interact in a Kripkean
tense logic with (i) — (iv). To consider this, we focus on the mixing for-
mulas. There are eight such formulas, each a conditional licensing the
transposition of a quantifier (@) or (3@) and an operator L or M, inter-
preted as “at all (some) times”. (We use Greek letters ¢,f etc. as metal-
inguistic variables.) The formulas come in four pairs: the members of
each pair are interdeducible given the standard interdefinability of () and
(3@), and of L and M, and the substitution of — @ for @. (We could in-
stead focus on analogous formulas with G and F, or H and P, instead
of L and M; the discussion would be parallel.)

The pairs are marked off from each other in the diagram. 3. is the Bar-
can formula, 5. the Converse Barcan formula; 7. might be called the
Buridan formula (Prior 1967: 138).

We believe that if one assumes features (ii) and (iv), i.e. the tensed in-
terpretation of the quantifier and no requirement of inclusion, disjoint-
ness etc. on domains, then one intuitively judges validity as in the diagram.
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(This has been borne out by classroom surveys.) The judgements of in-
validity depend on the non-constancy of domains; except that one intuitive-
ly judges 1. and 2. (which are analogous to the invalid predicate calculus
formula (x) (3y)@xy — (3y)(x)@xy) to be invalid even if one assumes that
each time has the same domain. According to the diagram, intuition does
not respect interdeducibility within pairs. We suspect that one judges 6.
and 8. valid because one consciously considers examples like “is red” and
“is square”, and so restricts @ to an atomic predicate for which the
Falsehood Principle holds. Certainly such a restriction does not similarly
vindicate 5. and 7..

The Kripkean tense logic does of course respect interdeducibility within
pairs, and it rules all eight formulas invalid. The invalidity of 3. to 8. again
turns on the non-constancy of domains; but (iii) means that 6. and 8.
are invalid even for atomic predicates.

Formula Valid according to intuition
1. (e)M@ — M(x)@ No
2. LAa)d — (3a)Lo No
3. (0)LO — L(x)9 No
4. M(Aa)d — (Aa)MO No
5. L(e)@ — (a)LO No
6. Q)MO — MQ(Ax)d Yes
7. M(e)@ — (2)M@ No
8. Qa)Ld — L(Ea)d Yes

On the other hand, Prior’s three-valued system Q (1957: 34-44; 1967 :
154-58) agrees with the intuitions: 6. and 8. are valid, the rest not. For
our purposes, the main features of Q are: (1) it “confines” predicates’
extensions, i.e. violates (iii); (2) the third truth-value, “unstatable”, is in-
fectious, i.e. a formula @ is unstatable at time t under valuation V if 6
has a subformula ¥ (containing no free variables that are not free in @)
that is unstatable at t under V; (3) L is interpreted strongly as “true in
all worlds” and is therefore stronger than = M = (i.e. “false in none”);
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(4) similarly, M is stronger than — L —. Features (3) and (4) prevent in-
terdeducibility within pairs in the diagram.

The validity in Q of 6. and 8. follows from the result that in Q, if «
is free in @, and @ is true or false (i.e. not unstatable) at t under V, then
V assigns to & some member of t’s domain; this result is readily proved
by induction using feature (2) above.

In view of the discussion above, we are reluctant to give up the Kripkean
tense logic. So we need to recover the intuitions in some different way
from Prior’s. We do so by extending the Kripkean tense logic with predicate
modifiers that give us some new formulas analogous to 6. and 8. which
are valid in our extended Kripkean logic. Our conception of modifiers
is taken from Baldwin’s (1979: Sec 2) suggested simplification of Wig-
gins’ (1976) A-calculus modifiers.

First, we add a modifier for internal negation: if « is a variable and
B 1s a term (in Section 3’s logic, which lacks constants and descriptions:
a variable), then (= & f) is a modifier which like a quantifier can be prefix-
ed to any formula @ and binds all occurrences of « in 6. (— o )@ says,
roughly speaking, that £ exists and is not @ That is, (- @)@ is true at
t under valuation V iff V(8) is in t’s domain and = @ is true at t under
the valuation V# that differs from V at most in assigning V(f) to ¢, i.c.
Vi(@) = V(B). The use of V4 captures the idea that replacing o by 8 in
— @ gives a formula that V makes true. (Indeed, with the usual definition
of what it is to replace a variable @ by a term £ in a formula @, to give
a formula @ say, we have the usual result: for all a, B8 tand V, @ is
true at t under V/ iff @ is true at t under V.)

We also need modifiers which add existence conditions to L and M,
just as (— & ff) does to negation. So we add modifiers (La ) and (M f3):
if ais a variable and f is a term, then (Laf), (M af8) are modifiers. Like
a quantifier, each of them can be prefixed to any formula @ and binds
all occurrences of « in 0. (L &)@ says, roughly speaking, that at all times
at which g exists, it is @; (Ma )@ that there is a time at which f exists
at which it is @ That is, (L)@ is true at t under V iff for all times t”
whose domain contains V(f), @ is true at t’ under V£, And (Maf)d is
true at t under V iff there is a time t” whose domain contains V(8) such
that @ is true at t” under V%,

Example: (3y) (Lxy)(— zx)Qz is true at t under V iff there is some object
o in t’s domain such that at all times whose domain contains o, (= zx)Qz
is true of o, i.e. 0 is in the domain and is not Q.
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Given the modifiers (- @ 8) and (M« f8), we have these valid analogues
of 6. and 8.:

6." @B (Map)d — MEa)0
8." @AL(~af)—~ 0 — LEx)d

where £ is not free in @ so that antecedent and consequent have the same
free variables. Our suggestion is, then, that 6. and 8.’ are what prompt
us to think that 6. and 8. are valid.

Before giving a formal treatment, we should make three supplemen-
tary points. First, Q also renders valid some analogues of 5. and 7.; and
5. and 7. are, according to our informal surveys, more acceptable than
3. and 4., and certainly than 1. and 2.! These analogues are:

L@d - ()~ M-8,
M(@)d —» (@)~ L 8.

These are valid because if @ is not free in @, the formulas are equivalent
toL@ - =M -0 and M@ — — L - @ respectively, which are valid by
(3) and (4) above; and if « is free, the validity follows from p. 34’s result
about Q. Fortunately, we can use internal negation to offer valid analogues
of these, viz.:

5. L@@ ~ (@) 7" M(~ fe) (@)
7. M(@)0 ~ () 7 L(— fe) (@) ,

where £ is not free in @ so that antecedent and consequent have the same
free variables. (Here ﬂﬁ is got from @ by replacing all free occurrences of
o by f, relettering bound variables as necessary.)

Secondly, our modifier (L@ f) gives natural analyses of the temporal
analogue of what Kripke (1971: 137) calls “weak necessity”. Thus in
“Socrates is necessarily human”, “necessarily” expresses, not truth at all
worlds, but truth at all worlds in which Socrates exists. Similarly, in
“Socrates always lived in Athens”, “always” means “throughout Socrates’
life” not “at all times” nor “throughout Athens’ existence”. With our
modifier (L @ 8) we can analyse this sentence without having to write ex-

istence conditions which are not apparent in the surface form. Instead of :

L((3x)(x = Socrates) — Lives(Socrates, Athens)) ;
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or, in order to avoid the problem of vacuous truth:

P((3x)(x = Socrates)) & L((3x)(x = Socrates) —
Lives(Socrates, Athens)) ;

we can write:

P((LxSocrates) (Lives(x,Athens))).

(This advantage of predicate modifiers has of course been noticed in modal
logic: Wiggins (1976: 310) motivates his A-calculus modifiers for weak
necessity by their avoidance of such existence conditions. For discussion
and formal development of Wiggins’ proposals cf. Davies (1978) and Stirl-
ing 1982: 202f.) .

Uses of “always” as a restricted universal quantifier over times are in
fact common. But the restriction is not always fixed by the times at which
one object exists. When we say “Socrates and Plato were always friends”,
“always” means “at all times when they both existed”. (For more examples
of “always” as a restricted universal quantifier, in some cases not even
over times, cf. Lewis 1975.) This suggests an analysis:

(LxSocratesyPlato) (Friend(x,y)) .

That is, it suggests modifiers (L, f,...,8,) with «,, ..., &,, variables and
By oo By terms: (Le, B,..., 8,)@ is true at t under V iff at all t” whose
domain contains V(8,), .., V(8,), @ is true under ((...(Vﬂ})ﬁg)...)ﬂ::.
Similarly, Ma, f,...a,B,) will require that there be some such time t’.
And one can add (- ¢, f,..a,8,) where (- a,f,...a,5,)0 is true at t
under V iff V(8,), ..., V(#,) are all in t’s domain and - @ is true under
(C(VEYED)--on.

But we need not add all these modifiers as primitives; that is fortunate,
since proofs by induction are simpler the fewer primitives we have. In fact
we can define all these modifiers in terms of (- @f) and the sentential
operators L and M. So we can take (= a ) as our sole primitive modifier;
and in Section 3 we shall do so. We can do this because of the following
three facts. (1) By bivalence,

(Lap)d < L ({(—~af)d)
Meap)f < M((~ af) ~9)

are valid, so that (Laf) and (Majf) are definable from (- af), and L.
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(2) More generally, these formulas are valid:

Loy .0 )0 & Lo (e by, 8,)0)
(Ma]ﬁl"‘anﬁnﬂ AN M((ﬁ alﬁ]'"anﬁn) — g I

so that (Le,g,...a,8,) and (Mea,f,...a,f,) are definable from
(e B...a,,) and L. (3) (- &, B,..., ) is definable from our original
internal negation by using the valid formulas:

(_‘ajﬁl-"anﬁn)ﬂ c(agpf) " (nep) o (ma,_B8,-)
T ()9

here the “=" in “(-a,8,...a,8,)” corresponds to the “—=" in
“(ma,p,)" and the “="sin (- &, ), ..., (- @,_, f._,) are cancelled by
the negations to their right. In the same way we can define modifiers
(Pap), (Fap), (Hap), (Gap) and (Pa,,B,...a,B,) etc. from P, F, G, H
and (- af).

3. A Completeness Theorem

We shall implement the ideas of Section 2 in a first-order tense logic
with linear non-beginning, non-ending time, and without constants and
descriptions. Then we shall sketch how to adapt the techniques of
Thomason’s (1970) completeness theorem for his modal system Q3, so
as to prove our system complete; we shall be brief since we are adapting
Thomason’s techniques. They could also be adapted to prove completeness
for: systems allowing non-linear time; systems with constants and descrip-
tions; and modal rather than tense systems. (As he points out, Stalnaker
& Thomason (1968; 1969a) adapt them to prove completeness for a system
in which abstraction is used to mark the scope-distinctions that arise when
definite descriptions are treated as primitive; rather than being used, as
in Wiggins, to distinguish weak and strong necessity.)

We take as vocabulary: variables, predicate letters, brackets, commas,
and the symbols: 3, —, -, G, H. We add to the usual wff rules the clause
that (- af)@ is a wif whenever 0 is, and & and £ are variables. We add
to the usual definitions of A, v, (Va), P, F, the following:

@ (~e B, fy . @ B)8 = (meB) - (map,) -
- (—ea,f)0.
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2) L0 =0ANGOAHO; MO = L0,

(The axioms and rules to follow will impose a linear time structure, giv-
ing this L the force of an unrestricted quantifier over times, with the
S5 property: M@ — LM@A.)

(3) For 0 € [GH,L}: (0e,B,, &2y, ..., @, 800 = 0 (=, B, 3, ...,
a, 5.9 ;

and the dual of (0e,8,, .., @,)0 is = (0e,B,, ..., a,f,) -6 Thus
(Malﬁn sery anﬁn)g = M(_' alﬁl! 5eey; anﬁn) ﬂg‘

) 0<y =LO@-y) 0<y = HO ) 0< ¢ = GO ).

We take as axioms the following two groups:

Al.  Any sentential calculus tautology instance
A2, (Va)@ =) — (0~ (Va)y) where « is not free in @
A3, (Va)d — - (- ap)

Ad, (Vvo)d — (3a)d

A5, (Vo) (- Ba)d — (vB)D o not free in @
A6. (map)p — @

AT. (mapp A =) = (myPY

All GO@ — Fo

A21 G@— ) — (FO—Fy)

A3.1 GO — GGoP

Ad4.1 PG — @

A5.1 (FOANFY) = F@AY) vV F(FOAY) vV F@AFY)

and their mirror-images Al.2, A2.2, ..., A5.2, obtained by replacing G
by H, Fby P, P by F, H by G.

Here Al to A5 are in effect shared with Thomason, his formula (Eangp)
being equivalent to our formula (- fa) - @.

We take as rules:

MP @ 0y Gen 9
¥ (Va)d
RG 0 RH 0

Go Ho
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The following rules, which are useful in the completeness proof, are then
derivable:

DR.G -Gy o not free in @
0— G(Va)y

DR..H -0 <.. <.0,<;HyY
P— .6, <... <.0, < Hva)y

DR..G 9—.0,<...<.0,<.Gy
0—0,<... <.0,<;GvVa)y

_« not free in 6,0,,...,0,

a not free in 4,0,,...,0,

and their mirror images DR.H, DR.,,G, and DR.,H. Thomason has the
modal analogue of these rules with L replacing G and H throughout (so
that the four rules DR.gH etc. collapse into his single rule RS).

In this system we can prove analogues of the intuitively valid formulas
that are theorems of Q. Thus we can prove the formulas 6., 8.” and 5.",
7.7 of Section 2; and their analogues with P or F for M and H or G for L.
For example, to prove 6./, we start with axiom A3: (Va) -0 —
— (7 af) @ where @ has no free 8. L obeys: A/LA, and L(@ — y) —
(L@~ Ly). So by Gen and A2, L(Va) = @ — (VAL = (~ aff) = & Con-
traposing and applying the definition of (M a ), we have 6." : (38)(M a )@
- M(3a)d.

The following results about derivability are needed for the completeness
theorem:

TL IfT' U {83 + ¢, and a is an individual variable not in ¥, not in any
member of T, then I' U {(3$)0] ~ .

T2. = @M|(~af) -~ ()8 > B)] S not free in ¢

T3. If T is consistent and P(,A...A@,) €T, then [@,...0,] is consistent.

Similarly for F.

T4. (POAY) — P(@AFY); and its mirror-image.

An interpretation is defined in the usual way: the set T of times has
a linear, non-beginning, non-ending order; each time has a non-empty
domain to which quantifiers are restricted; variables are rigid; and the
extension assigned to a predicate letter relative to a time can include ob-
jects not in that time’s domain. The only new feature is that valuations
have the clause: V((— af)@)(t) = 1 iff V(B) is in t’s domain and
VA(@)(t) = 0. We can prove by induction as usual: V(@)(t) = 1 iff
Vi@)(t) = 1. And abbreviating (= af)(P°A - P°), with P° an arbitrary
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fixed O-place predicate letter, by EB, we have: V(- af)-0)(t) =
V(ESA®)(t). With respect to this semantics, the axioms are valid and
the rules respect validity, so that a satisfiable set is consistent.

We can now prove completeness by Thomason’s method. To show that
a set of formulas is consistent only if it is satisfiable, we show that (a)
if " is consistent, then for any vocabulary M’ extending our given one
by adding denumerably many variables, T has an extension saturated in
M’; and (b) if T is an M’-saturated set, then it is satisfiable.

To define saturation, we need a set of functions f; which play an
analogous role to Thomason’s f,. We say an ordered pair {A,u) divides
n(n = 0,1, ..)iff A and u are mutually exclusive and jointly exhaustive
subsets of {0,1,2,...,n], ordered by the less-than relation;-each of A and u
can be empty. Then we define:

Q)8 ) = PEa)d ~ P((~ap) = 0)
(@)l f) = FEa) ~ F((— af) - 0)
fo(Qa)d, B, ¥) = PY = PUAT(Ea)d )
(@8, B, ¥) = FY ~ FYAL((32)8 f)
(@8 B, ¥) = Py ~ PYAL(@0E B)
fo(e)8 B, ¥) = FY — FYA (@) B)

and generally, if (A,u) divides n, then we define:

7 @B B, ¥y s Vs Ye) = F¥ns1) = FWoy  ATAGDB B, Y1 ens V)
f:'lﬂ“]((aa)ﬂ! ﬁ’ lps resy wn’ ¢'n+l) = P(‘J’nﬂ) = P('l’rnll\f:'r((aa)ﬁ’ ﬁ’ ’pl’ ---!wn))

Thus the role of A and u is to keep track of which occurrences out of
2(n+1) occurrences of P or F are P and which are F; in fﬁ, A will tell us
which are P, and u will tell us which are P.

We say a subset I' of wffs in a vocabulary M’ is M’-saturated iff it
satisfies all the following:

(1) T is consistent;

(2) for all wffs@in M’, @€T or "0 ET,

(3) for all wffs @ in M’, and variables & of M : if (3e)d €T, then for
some variable f of M’, (maf) -0 €T,

(4) for all n = 0, for all wffs ¢, ..., ¢, Q)@ in M’, for all divisions
{A,u) of n, there is a variable # of M’ such that ff,((aa)ﬂ, B by e
y) ET.
(Here it is understood that in the case n = 0, the formulas
¥y ..., ¥, are absent.)



42 J. BUTTERFIELD AND C. STIRLING

We can now prove the following, making straightforward changes in
the proofs of Thomason’s corresponding results (his L9, L11, L13):

L1. Foralln > 0, for all (A,u) dividing n, if T + = f{(Q@)8, B, ¥, ...,
¥.), and f§ does not occur free in ¥, ..., ¥,, (3)@ or any member
of T', then I' is inconsistent.

L2. Any consistent set of formulas in our given vocabulary has, for any
vocabulary M’ extending it by adding denumerably many new
variables, a M'-saturated extension.

L3. Let T' be any M-saturated set. Let A,, A, range over M-saturated sets.
Let A [4, iff: 0:GOE A} € A, and (0:HOE A,] < A,.

Let K be the closure of ('] under [ and its converse.

Then K satisfies: for all A€ K, and all formulas @ in M, both (a)
if POE€ AthenthereisaA’ EKwith@E A’, A’ [A; and (b) if FOE A,
then there is a A’ EK with @ € A’, A[A".

Given L3, it is straightforward to show that [ is a linear nonbeginning,
nonending order on K. And then we can prove:

L4. If T is M’-saturated, it is satisfiable.

by considering an interpretation with K as the set of times, [ as the order,
the domain of a time t as {a: (= fa)@ € t for some formula @}; and by
showing by induction that for all formulas @ and times t, Vg)t) = 1
iff @ € t.

4. Temporal Adjectives

We turn to the analysis of sentences in which temporal expressions
qualify singular terms, like “Toby was fatter in 1980 than William in 1982”,

These sentences are readily enough analysed if we accept temporal terms,
Le. terms standing for instants or periods of time. For we can analyse what
seem to be n-place predicates as having 2n places, n of which specify the
times at which the objects in the other n places satisfy the predicate. Thus
we write “Fatter(Toby,1980,William,1982)”. And we can use indexical tem-
poral terms and a 2-place later-than predicate to analyse the verbal tense
in “was fatter’”; so we can analyse the sentence above as: Fat-
ter(Toby,1980,William,1982) & Later(now,1980). This is essentially Quine’s
approach (1960: Section 36) except that he prefers to analyse seemingly
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n-place predicates as indeed n-place, and to accept temporal parts, Toby-
at-1980, William-at-1982 etc. (For more details, cf. Needham 1975 37-41,
59-60.)

But what about the analysis of these sentences within a tense logic of
the Kripkean kind we favour ? Here there is a problem. To be sure, feature
(iii), i.e. letting a predicate’s extension at a time include objects that do
not then exist, means we can give relations between objects that never ex-
ist simultaneously an analysis close to the surface form: “Reagan is shorter
than Lincoln” can be analysed as “Shorter(Reagan,Lincoln)”. But the fact
remains that if all temporal expressions are analysed as operators, only
objects simplicifer, not objects at various times, can bear a relation (relative
of course to a time) to one another. So to analyse “Toby was fatter in
1980 than William in 19827, one must find objects bearing an appropriate
relation simpliciter. One might suggest degrees of fatness (which will no
doubt be taken to exist at all times), bearing the greater-than relation,
and write:

(3%) 3Y) (T ggo(Fat(x,Toby)) & T ge(Fat(yWilliam)) & Greater (x.y))

where “T,g"" is the operator “It is true in 1980 that ... Thus temporal
adjectives appear as sentential operators governing a relation between their
objects (Toby, William) and a degree of fatness: cf. Prior (1967: 170).

But this suggestion suppresses the information, conveyed by “was” that
1980 is in the past. We cannot express this by conjoining “P(Fat(x,Toby))”
within the quantifiers’ scope. But we can express it with a later-than
predicate and indexical terms for times and intervals, each time and in-
terval entering the appropriate domains: we conjoin ‘“Later(now,1980)”
to the above. Or we can treat times and intervals as propositions and con-
join “P(1980)” to the above.

But whichever tactic we adopt, we end up with an analysis far from
the surface form. First, the past tense of ‘““was” ceases to be just an
operator; it requires a separate conjunct, as in the approach using tem-
poral terms. Secondly, the analysis invokes odd objects and relations not
apparent in the surface form: and even if degrees of fatness pass muster
as objects, surely the hairstyles needed to give a similar analysis of “Toby
had the same hairstyle in 1980 as William in 1982” do not.

The situation is ironic. Many have found tense logic attractive because
they value closeness to the surface form, and analyses in some simpler
e.g. extensional language require us to accept as objects items like tem-
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poral parts that are not apparent in the surface form (cf. Clark 1970: 316-9;
Parsons 1970: 329; Cresswell 1974: 460; Montague 1974: 41, passim). But
when it comes to temporal adjectives, the tables are turned: tense logic
has to introduce odder objects and arguably depart further from surface
form, than an extensional analysis needs to do.

So advocates of tense logic must try to analyse temporal adjectives more
closely than the above suggestion: especially if, like us, they are detensers
and therefore have no metaphysical objection to relations between ob-
jects at different times. We shall describe how to do this, gradually
motivating a formal definition for a Kripkean tense logic. ()

In a tense logic, a temporal adjective such as “in 1980” can be analys-
ed as a predicate modifier “(1980x...)” which like a quantifier binds the
occurrences of x in its scope; but unlike a quantifier does not reduce the
polyadicity of the formula it is applied to, since in “(1980x...)” “.” is an
argument-place. Indeed an analysis like this is inevitable if we refuse to
add to predicates special argument-places for times. For how then could
we qualify “Toby” with “1980” and “William” with “1982” in ‘“‘Fat-
ter(TobyWilliam)”, so as to move from this present-tensed sentence to an
analysis of “Toby was fatter in 1980 than William in 1982”7 (Ignore the
“was” for the moment.) Operators such as “(1980Toby)” and
“(1982William)”, giving “‘(1980Toby)(1982William) (Fatter(TobyWilliam))”
will not do in general: for sometimes only one of two occurrences of
“Toby” should be thus qualified, as in “Toby was fatter in 1980 than Toby
is now”. This suggests using variables to mark occurrences of “Toby” to
be qualified by “in 1980”; and if predicates are not to have extra argument-
places, “Toby” will have to fill an argument-place introduced by the tem-
poral adjective. Thus we write “(1980xToby) (1982yWilliam) (Fatter(x,y))”
for “Toby was fatter in 1980 than William in 1982""; and “(1980xToby) (Fat-
ter(x,Toby)” for “Toby was fatter in 1980 than Toby is now”. Likewise,
indexical temporal adjectives as in “Toby will one day be fatter than

(3) In modal logic there has been some discussion of expressing crossworld relations by
indexing an Actually operator (Humberstone and Davies 1980: Forbes 1985: 92-94; 1983:
296, fn.24). But we do not know of proposals like ours, for modal tense logic. Indeed, tradi-
tional grammarians, as well as semantic analysts, give temporal adjectives less treatment
than adverbs: in Quirk et al. (1972), Sections 5.71 and 10.11 to 10.14 are about both but
8.56 to 8.75 are only about adverbs. We suspect the reason for temporal adjectives being
ignored is that in analysis we tend to choose examples about observable matters, and obser-
vable relations usually hold of objects at one time (cf. Butterfield 1984a).
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William (is now)” and “Toby was once fatter than William (is now)” can
be analysed as modifiers: “(FxToby)(Fatter(x,William))” and
“(PxToby) (Fatter(x,William))".

Indexical temporal adjectives raise two points. First, they usually relate
to the time of utterance, even when they are in the scope of an expression
carrying us to some other time. Thus in “We knew then that Toby will
one day be fatter than William is now”, “now”’ refers to the time of ut-
terance and “will one day” to this time’s future — despite their being within
the scope of the past-referring “we knew then that ..”. (Contrast “We knew
then that Toby would be fatter than William was then” (Quirk et al. 1972
90,92).) This dominance of the time of utterance has long been recogniz-
ed in temporal adverbs. And tense logics modelling it have been suggested
(Kamp 1971; Vlach 1975). The idea is to keep track of the time of ut-
terance when evaluating a subformula at whatever times we are carried
to by the tense operators governing the subformula. Thus we relativize
truth-values to two times instead of one: we consider “@ is true at time
t’ when part of an utterance made at t”. We shall use the same idea to
handle indexical temporal adjectives: the “P** and “F” in “(Px...)"" and
“(Fx...)” will relate to the time of utterance, not to any subsidiary time
to which an operator carries us.

Secondly, these indexical adjectives suggest a generalization to modifiers
binding more than one variable (and thus having more than one argument-
place). “Toby and Harry once weighed as much together as William does
now’’ cannot be analysed as
“(PxToby) (PyHarry)(TogetherWeighSame(x,yWilliam))”. For the two
modifiers may “carry” Toby and Harry to different past times, so that
the formula comes out true if Harry’s 1975 weight and Toby’s 1980 weight
add up to William’s present weight. To cope with such cases, we need
modifiers (Px;...X;...X,,...) and (FX,...x,..X,,...) binding m variables and in-
troducing m argument-places, all tied to one past (future) time. Similar-
ly, we could use m-place non-indexical modifiers such as (1980x,...x,,...)
to analyse (ignoring the tense of “weighed”). “In 1980 Toby and Harry
weighed as much together as William does now’ as
“(1980xTobyyHarry) (TogetherWeighSame(x,yWilliam))”. (But this will be
equivalent to “(1980xToby) (1980yHarry)

‘ (TogetherWeighSame(x,y,William))” so that m-place non-indexical
modifiers, though permissible, are not essential.)

So far we have ignored verbal tenses functioning as temporal adjec-
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tives in conjunction with dates, a phenomenon that is in fact as common
as any temporal adjective : nouns are rarely qualified only by a date. The
copula in particular commonly acts as an indexical temporal adjective,
as in “Toby was fatter in 1980 than William was in 1982”. And as with
simple indexical adjectives, the tense is usually chosen to fit the time of
utterance: “We knew in 1980 that Toby will be fatter in 1990 than William
was in 1982”. It turns out that such complex temporal adjectives can be
analysed with a pair of our modifiers : we need only link them by making
one modifier bind the variable in the other’s argument-place. Thus “Toby
was fatter in 1980 than William is now” becomes ““(PxToby) (1980yx) (Fat-
ter(y,William))”, and interpreting this according to our semantics gives it
the right truth-conditions. In effect, the conditions imposed on “Toby”
by “P” and “1980” just conjoin. (The order of the modifiers doesn’t mat-
ter: “(1980xToby)(Pyx) (Fatter(yWilliam))” is an equivalent formula.)
Similarly, “Toby and Harry weighed as much together in 1980 as William
does now” can be analysed, without ignoring the tense of “weighed”, as
(PxTobyyHarry) (1980uxvy) (TogetherWeighSame(u,vWilliam)).

How then should we adjust the semantics of an “ordinary”” tense logic
in order to incorporate these modifiers? For simplicity, we shall omit in-
dividual constants and definite descriptions. Ignoring for the moment the
use of two times to handle the dominance of the time of utterance, the
rough idea is of course that a formula “(t’xy)@” is true at time t iff the
formula we get from @ by substituting y, considered at t’, for x is true
at t. To make precise sense of this “considered at t’”, the first thing we
shall do is give an n-place atomic predicate Q" an extension relative to
an n-tuple of times rather than just one. The extensions of Q" relative
to all these n-tuples then represent what objects considered at what times
bear Q" to each other. This kind of relativisation does not prevent atomic
formulas being interpreted as present-tensed; we only need to consider
n-tuples all of whose members are the same. Thus we shall have the truth-
definition make “Q"(8,...8,)", where $,...4, are (not necessarily distinct)
variables, true at time t under valuation V if the objects V(g)..V(B,)
assigned to f,...8, by V are in the extension of Q" for V relative to the
n-tuple {t,tt,...t) (n occurrences). And it is easy to see how to treat a
modified atomic formula “(t'xy)Q"(f,...5,) where some of the terms
B,...B, are “x™. This is to be true at t under valuation V if the valuation
V’ differing from V at most in that V(y) = V’(x) is such that
V7 (B)),...V"(B,) are in the extension of Q" relative to the n-tuple resulting
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from (tt,t,..t) (n occurrences) by substituting t” for t in those places
corresponding to the B, which are “x”.

So far, so good; but what about modified formulas “(t”xa)d” where
@ is not atomic? How can we make precise sense in this case of substituting
t’ for t in the places “corresponding to x” ? After all, a formula as against
a predicate is usually interpreted as having a truth-value at each time; there
is no n-tuple of times in sight. The idea of the solution we adopt is to rela-
tivize the truth-values of any formula with j free variables (j types, not
tokens) to j times in addition to the time of utterance. Or rather: in addi-
tion to the two times (one of them the time of utterance) used to handle
the dominance of the time of utterance. A formula with j free variables
thus gets a truth-value relativized to j+2 times. When the formula is in
the scope of a modifier which binds one of its j free variables, the modifier
affects at what (j+2)-tuple the scope formula must be true for the entire
formula to be true (at a (j+2)-tuple since the modifier’s argument-place
is filled by a variable). Roughly speaking — and ignoring the use of two
times to handle the dominance of time of utterance — we say: let @ have
j free variables, of which “x” is the kth (1 < k < j), and none of which
is y; so that “(t"xy)@” also has j free variables, since the modifier binds
“x”. Then “(t’xy)@” is true when uttered at t under valuation V relative
to {t,...,t;> iff @ is true when uttered at t under the valuation V* differ-
ing from V at most in that V(y) = V’(x), relative to the j-tuple got from
{t},..,t;> by substituting t’ in the kth place.

However, adopting this relativization as it stands leads to some cumber-
some accounting of how the number and order of free variables in a for-
mula depends on the number and order in its subformulas. It is easier
to follow the analogy of Tarski’s use of denumerable sequences in the ac-
count of satisfaction. Thus we assume we have an indexed set of individual
variables [x,..., X,,...}, and we make the indexing correspond to position
in denumerable sequences of times. This allows us to have a single semantic
relation: allowing for the dominance of time of utterance, it is “@ is true,
when part of a formula uttered at t, relative to t* and the denumerable
sequence of times ¢”. In accordance with the above discussion, tense
operators are interpreted with the “running” time t’, while the modifiers
are interpreted with the time of utterance.

Thus suppose we have, together with the variables {x,,...}, predicate let-
ters, connectives and quantifiers, time constants t, t’, ... and the operators
P, F, M. To the usual wff rules we add the clause that if @ is a wff and
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Xipp woer Xi oy Xj 1y ooy Xj TE variables, then (Gxille...ximxjm)ﬂ is a wff also,
where # is either P or F or M or one of the time constants. (Here and
below, the fact that the semantics exploits variables’ indices makes dou-
ble subscripting more convenient than the metalinguistic variables a,, f,,
..» Oy, B, used in Sections 2 and 3.)

An interpretation is a quintuple (T, <,D,EV), where E is a set of times,
for which we can again use t, t’ etc, without confusion; < is the usual
relation on T; D is a set of individuals; for each t € T E(t) is a non-empty
subset of D; V is a map sending each variable to an element of D and
each time constant to an element of T, and for each predicate letter Q"
and n-tuple of times t,,...,t, V(Q")(t,,....t,) is a subset of D". V is then ex-
tended as follows thus defining the relation “the formula @ is true, when
part of a formula uttered at t, relative to t” and the denumerably infinite
sequence of times ¢ € T™’, which we write as: V(@) (t,t',0) = 1. We
make use of a little notation in the definition of V. (a) If ¢ € T*, then
a(i) = the ith member of . (b) As usual, V;g differs from V at most in
the assignment to x;: V:ii(xi) = V(x;). (c} g} is like o except for having t
in the ith place: ¢i(j) is o(j) if j # i, and is t if j = i. The clauses of
V’s definition are then:

() VQ'x;,..x; ) (tt",0) = 1iff Vix;),.V () € VIQ")(a(i)...ali,)
(2) V(- d)(tt',0) = 1iff V@)(,t’',0) = 0.

(3) V@~ y)(tt',0) = 1iff V@) (tt',0) = 0 or V) (t,t',0) = I.
(4) V(PO)(t,t’,0) = 1 iff for some t” <t’, V@) (tt”,a;) ---5;.;) = 1.
where x; ,....x; are the free variables in @

Thus the operator P sends the process of evaluating a wff, including the
free variables, back from the running time, not the time of utterance.

(5) V(@Ex)0)(t,t",0) = 1 iff there is a valuation V’ differing from V at
most in that V'(x) € E(t') with V'@)(t,t’",¢) = 1.

The use here of the running time, together with clause (4), implies the
usual Kripkean interpretation for quantifiers within the scope of a tense
operator.

(6) V((t"x,x;.x, X W)(tt",0) = 1iff ViL.im@)(tt',0) .. ) = L.
(7) V((Pxille...ximxjm)ﬁ)(t,t’,a) = 1 iff for somet’'’ < t,
V;‘g:...’;grnr:(ﬂ)(t,t',a{;' ...:'n;) = 1.
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Thus the modifier sends one back from the time of utterance, modelling
the dominance of the time of utterance in the choice of tense for the
copulas etc. that function as temporal adjectives.

Clauses for P and for M as operators and in modifiers are similar to
(4) and (7).

Owing to the fact that (o)) = o}, we have, as we would want: if x
is not free in @ then V(@)(t,t’,0) = V(@)(t,t’,0! ). We now stipulate:
V@) (tt') = Liff V@) (t,t’,{t" t",t",...>) = 1;and V(@)(t) = 1 iff V(@)(t,t)
= 1. We now define @ implies  as usual: for all interpretations and times,
if V(@)(t) = I then V({)(t) = 1.

Finally, here are two examples of how these definitions match the
motivating discussion. (a) V(PPQ'x,)(t) = 1 iff there is some t’’ and
some t’, with t'” < t’ < t, and (V(x,)) € V(Q)(t’'"). (b)
V(P(Px,x,)Q’x,x;) (t) = 1 iff there is some t’ < t, and there is some t”’
< t, with (V(x,)V(x,)> € V(Q*)(t’",t’). In this example, the operator
P puts t” in the second and third position in the sequence of times, and
the modifier then putst’’ in the first position; the clause for atomic for-
mulas then ignores the t’ in the second position, since x, does not oc-
cur in the atomic formula Q’x,x, that we evaluate for Vi2 and the times
(L, 0. O
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