RICH RELEVANT LOGICS BASED ON A SIMPLE TYPE OF
SEMANTICS

Diderik BATENS

1. Aim of this paper

The logics dealt with in the present paper differ from the well-known
Anderson and Belnap systems in two respects. They were arrived at by
starting from a simple, clear and intuitive sernantic idea and they are in
a specific sense richer than the Anderson and Belnap systems. Both
features are interesting. From the first one learns that at least some rele-
vant logics may be characterized by semantic tools which are a lot simpler
than the ones devised by Routley and Meyer. Moreover, an interpretation,
in the non-technical sense, of the logics is readily available, and the delinea-
tion of the contexts in which the logics are adequate is greatly simplified.
The second feature is interesting for both technical and philosophical
reasons. From a technical point of view, it offers a partial, yet systematic
answer to questions suggested on p. 348 of [I] — the semantic systems
have indeed quite straightforward connections to Fitch-style systems. From
a philosophical point of view, it is quite helpful to counter the objections
(and puzzles) raised by people who consider relevant logics too strong in
some senses and too weak in others. Apart from all this, the systems
discussed below are decidable. For all these reasons they also happen to
be useful from a pedagogical point of view.

There is a rich plurality of simple and intuitively clear semantic systems
which all lead to relevant logics, not all of them different. It is by no means
my intention to give a survey of this plurality. I shall stick to some il-
lustrations of the simplest type, viz. all concerning logics “without” nested
implications, i.e. in which nested implications do not have a specific mean-
ing. In such systems it is impossible to derive (p— ) = ¢ from p, to derive
p—q from p—(p—q), or to derive (g—r) = (p—r) from p—g, although
it is possible to derive r from the premises p—(g—r), p and g. A small
family of this type of systems was first devised by Newton C.A. da Costa
and Ayda I. Arruda in [2]; see also the later [3]; do not study these systems
from [4], in which they are deformed to (not uninteresting) systems lack-
ing any (object-language) implication at all.
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The enrichment I want to illustrate is quite clear and obvious for such
simple logics already. Incidentally, the introduction of the enrichment in
logics “with” nested implications is a matter of rather straightforward
generalization, at least if one sticks to E, R, and nephews, for interesting
alternative roads are easily found. My restricting illustrations to the poorer
systems is merely a matter of keeping things as simple as possible with
respect to the point to be made; it has nothing to do with preferences.

Since we are at it, [ wish to repeat what I wrote several times elsewhere,
viz. that I do not believe in some unique and omnipotent logic. The logics
of this paper have all the nice features mentioned in the first paragraph,
but this is not a reason to consider them better or more adequate in general
than other logics or even than other relevant logics. Monologism is as
indefensible as any other dogmatism.

This paper is structured as follows. I first offer a brief comment on
the logical paradoxes, which is necessary to avoid misunderstandings. Next,
I introduce the ideas behind the semantics, and formulate a semantic
system for a very poor positive logic L1+. A decision method is presented
as well as Fitch-style and axiomatic formulations. In the subsequent sec-
tions, I consider a variety of extensions of L1+, including systems with
negation. Finally, I mention some open problems and offer a comment
on classical derivability within the systems discussed.

2. The paradoxes of classical logic

There are good reasons to distinguish bevween at least three kinds of
paradoxes of PC, the classical propositional calculus. Let me briefly ex-
plain. (2.1) and (2.2) are examples of the first kind, (2.1) a plain and sim-
ple one, (2.2) perhaps a somewhat misleading one, as it might be
misinterpreted as belonging to the second kind.

(2.1) P+ g-op
(2.2) ~p+ p—q

Such examples show that material implication and some of its nephews
do not express some suitable connection intended in most if-then
statements of natural language. I take (2.1) to mean that from p we can
derive that g implies p. In doing so, 1 keep implication and derivability
neatly separated. (I have nothing against people who want to use both
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in the same sense, if that is coherently possible; but some don’t, and no
one should forbid them.) The paradoxes of the second kind derive from
the definition of the derivability relation:

(2.3) g+ pv~p
(2.4) g p-p

From a semantic point of view they are related to the fact that some
formulas A are true in all models, and hence, for any arbitrary B, that
there is no model in which B is true and A is false. The paradoxes of the
third kind concern, semantically speaking again, the fact that some for-
mula A is false in all models, and hence, for any arbitrary B, there is no
model in which A is true and B is false.

Examples are:

(2.5) p&~p+ g
(2.6) (pV~p)—> (r&~r + g

What about remedies? The paradoxes of the first kind are solved by
introducing some relevant implication. Incidentally, there is nothing wrong
with adding such implication to PC if all one is worrying about are the
paradoxes of the first sort. The paradoxes of the second kind are resolved
by allowing for a larger set of models, viz. to the effect that no for-
mula is true in all of them. In other words, one should avoid to have any
theorems of logic (respectively, valid formulas) in the classical sense —
see section 4. In starting from PC, to go paracomplete constitutes a par-
tial remedy only, as (2.4) shows. Finally, one gets rid of the third kind
of paradoxes by, again, allowing for a larger set of models, viz. to the
effect that any formula is true in some model. As all connected troubles
in PC derive from negation, going paraconsistent is a choice at hand.

It seems that Anderson and Belnap found another way to solve the
paradoxes of the second and third kinds, viz. by changing the definition
of derivability; see p. 277 ff. of [1]. The situation is rather complex, but
as this paper concerns relevant logics, I should at least touch upon it.
Anderson and Belnap’s view may be rendered — in a fair way, it seems
to me — be saying that theorems may be used as means to derive conclu-
sions from premises, but may not be added to the premises in order to
derive conclusions. I called the resulting notion ‘relevant derivability’ (see,
e.g., [6], which contains a demonstration that “classical’” derivability may
be defined from relevant derivability). Personally, I do not like the “iden-
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tification” of derivability with implication, which lead to the notion of
relevant derivability, but the latter is certainly interesting and important.
Do Anderson and Belnap go paraconsistent and do they avoid theorems
of logic? If the discussion in section 1 of [7] is correct, the answer should
be positive, but maybe there is more to it. Also, according to the well-
known Routley-Meyer semantics for relevant logics, some worlds (set-ups)
are indeed paraconsistent and no formulas are true in all worlds, but maybe
a less classical semantic explanation for relevant derivability will be devised
in the future,

In the following sections, I shall present systems in which all three kinds
of paradoxes are avoided. Still, I shall also consider some systems in which
certain (but not all) paradoxes appear, and I think it useful to do so. This
entails that I shall stick to the distinction between implication and
derivability, and that for the latter I shall distinguish between the classical
and the relevant sense. I need to stress this because Routley (alone and
with others) has been consistently using in papers on semantics, e.g., in
[4] and [5], a way of speech which conflicts with this distinction (and ac-
cording to which a logic “without” nested implications has no object
language implication at all).

3. The semantic idea

This was first proposed in [7] and goes as follows. Consider a theory,
let us call it 0, and world, let us call it /, to which the theory applies.
The fact that the theory applies to the world may be expressed by the
(binary) accessibility relation R. Consider the usual definition:

3.1 v(A-B,0)=1 iff, for all i such that R0i, either v(A4,i)=0, or
v(B,)=1.

This is known to lead, under usual conditions, to a non-relevant implica-
tion. (') So, let us look for something more interesting about the relation
between a theory and a world to which it applies.

If A—B is true in some theory, and A is true in a world to which the
theory applies, then B is “grounded” in that world. This notion, well-

M As appears from section 14, however, the resulting implication is not as uninteresting
as it looks.
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known from philosophy of science, may be rendered as follows: B is not
merely true in the world, but it is true in it because some other statement,
viz. A, is true in it and the theory applies to this world. (%) Instead of
‘grounded’, one might say ‘predictable’.

‘Predicted’ and ‘explained’ might also do, but only if some further con-
ditions are fulfilled. Whichever terms are preferred, we are looking for
a condition which decently expresses:

3.2) v(A- B, 0)=1 iff, for all i such that R0, either v(4,7)=0, or
B is grounded in 1.

The easiest way to express the idea in the formal semantics is by in-
troducing a “part” <1,0> of the world 7, in which are true the statements
that are grounded in world /. From now on I shall use the more idiomatic
expression ‘aspect-world’ to denote such part of a world. Given a theory
0, I shall associate an aspect-world <i,0> with any world i. If the theory
0 does not apply to world /, it does not matter which statements are true
in <i,0>.() The condition for implication will thus read :

3.3) v(A—B,0)=1 iff, for all i such that R0i, either v(4,)=0, or
WB, <i,0>)=1

Whatever is true in aspect-world <i, 0>, is grounded, and hence true,
in world i:

(3.4) If w(A4, <i,0>)=1, then v(4,i)=1.

In order to formulate a simple (positive) logic, clauses for conjunction
and disjunction should be added. Provisionally, I will keep them classical
in worlds and aspect-worlds, and postpone the decision concerning
theories. This treatment of disjunction in aspect-worlds may seem pro-
blematic. It is attractive to say, e,g., in some cases in which p is true in
the world and p—(gVr) is true in the theory, that g V r is grounded whereas
neither g nor r is. However, a somewhat weaker notion of grounding
justifies the classical treatment of disjunction and is equally sensible. The
weaker notion may be best understood if one refers to “elementary facts”

(%) “To be grounded’ is usually meant as a pragmatic notion; in the present context I in-
tend the corresponding ontological notion.

(®) E.g., in some systems one might stipulate v(4, <i,0>) = 0 for all 4, whenever not
ROi.
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(which are neither “disjunctive” nor ‘“conjunctive”). In te previous exam-
ple some elementary fact is the case and guarantees the truth of p. The
applicability of the theory results in some other elementary fact being
the case, which in turn guarantees the truth of ¢V r. For this reason, gV r
is said to be grounded. But the latter elementary fact also guarantees either
the truth of g or the truth of r, and hence either of these is grounded.
Consequently, a disjunction is grounded (in the weaker sense) if and only
if at least one of its disjuncts is grounded (in the same sense). ()

4. The logical theory

Relevant logics require a specific semantic definition of ‘valid formula’.
No formulas may be true at all set-ups of all models, and no formulas
may be true at the privileged set-up of all models (such as 0 in the case
of the semantics under construction). Hence, relevant logics do not have
any logical truths in the traditional sense.

However, the notion of a logical truth may also be viewed in other ways.
I shall follow an approach which has the advantage to lead to an almost
direct translation from the semantics to the Fitch-style formulation and
vice versa, and to result in an intuitively appealing interpretation.

In standard relevant logics, theorems of logic relate to derivability as
follows (where ‘>’ denotes relevant derivability — see section 2):

4.1) A, o A, P Biff - (A, &.&A4,)—B.
(4.2) If the members of ¢ are theorems and & > A, then — A.

Let us first concentrate on (4.1), and restrict its application in such a
way that we do not assign properties to nested implications. Consider the
set of implicative “logical truths” as a theory, the “logical theory”, to
be denoted by # The properties of # with respect to grounding are easily
found: if /i is accessible from @ then

(4.3) VA4, <i0>)= iff WA, = 1.

In other words, implicative logical truths simply express the logical pro-
perties of worlds, the relations between the truth of statements within

) To be grounded in the weak sense is an ontological notion, whereas to be grounded
in the stronger sense has epistemological components.
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worlds. An other, simpler procedure to arrive at the same result consists
in saying that implication in @ is characterized by:

(4.4) v(A—B,0) = 1 iff, for all i such that R@i, either v(A,/) =0, or
v(B,i) = 1.

As the logical theory should clearly apply to all worlds, we may simplify
this to:

(4.5) v(A—B,0) = 1 iff, for all i, either v(A4,i) =0, or v(B,) = 1.

Although the latter two formulations are simpler, the combination of
(4.3) with (3.3) is more revealing. A theory such as # has the peculiarity
to ground statements in a specific weak sense, viz. in function of the mean-
ing of logical terms or, more generally, in function of logical relations
between statements. Where “grounded” is meant in this sense, we have,
e.g., in view of the classical treatment of disjunction, that 4 v B is ground-
ed in any world in which A4 is true; in general, a statement is grounded
in a world whenever it is a logical consequence of statements which are
true in it. In other words, anything true in a world is grounded in it with
respect to the logical theory. This is not paradoxical, but just as we want it.

I shall introduce a logical theory # within each model. As each model
contains a set W of worlds which may be incomplete in comparison to
the set of all semantically possible worlds, the logical theory # of some
(most) models will contain non-logical truths. For this reason 4 is local
logical theory. The valid formulas are those which are true at the local
logical theory of all models.

5. A first system

The first system considered will be called L1+. It is a very poor positive
logic in which (i) nested implications have no meaning, ie., in which
v(A— B,i) is arbitrary whenever i is a world, and (ii) non-implicative for-
mulas have no meaning, i.e. v(4,0) and v(A4,d) are arbitrary unless A4 is
of the form B—C. Here is a semantics for L1+ :

A model M is a 6-tuple <0, 4 W, X, R, v>in which 0is a theory,
@ is the local logical theory, Wis a set of worlds, X is a set of aspect-
worlds (such that <i,0> € X iff i € W), R is a binary relation bet-
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ween {0} and W, and v is a valuation fulfilling the following con-

ditions:

(i) wA&Ba)=1iff v(4,a)=v(Ba)=1, fora€ WU X.

(i) v(AvBa)=1iff v(da)=1o0or v(Ba)=1, fora€ WU X.

(iii) w(4—-B,0) = 1 iff, for all i € W such that R0, either v(A4,) = 0
or v(B, <i,0>)=1.

(iv) If v(A4, <i,0>)=1, then v(4,) = 1.

(v) v(4—-B,0) = 1iff, for alli € W, either v(4,i) = 0 or W(B,i) = 1.

The definition of the semantic consequence relation is exactly as one
should expect. The unusual sign is explained immediately.

A, o, A, B B iff, for all M, either v(4,,0)=0 or ... or
v(A,,0) =0, or else v(B,0) = 1.

Finally, I define validity. ()
= A (A is valid) iff, for all models M, v(4,0) = 1.

I employ the special sign for the semantic consequence relation in order
to indicate that it is relevant. The classical consequence relation may be
defined from it — see section 14.

It is possible to devise a simpler semantics for L1+ which lacks an ex-
plicit accessibility relation (similar to the simple worlds semantics for S.5):
all worlds of the model may be considered “accessible” from the theory
0. This semantics is obtained by dropping all references to the accessibility-
relation from the previous semantics. The difference between both seman-
tic systems is as follows. In the second, all that is true at 0 is also true
at 4 In the first W may contain worlds not accessible from 0, and hence
some formulas true in 0 may be false in 4 This difference is immaterial
with respect to semantic consequence and validity.

I offer an axiomatization in section 9, but it is useful to state right away
that all theorems of L1+ are implicative and that only implicative for-
mulas matter with respect to the semantic consequence relation. This
means that nothing follows from non-implicative formulas, except for these
formulas themselves (A4, B, ... B A), and that, e.g., modus ponens and

() Alternatively, validity might be defined with respect to the set of “regular models”,
viz. the models for which w(A4,i) = v(A, <i,0>) for all worlds i and formulas A. I shall follow
the approach sketched in the text; it has some advantages which will appear later, e.g., with
respect to the Fitch-style formulation.
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addition do not hold in L1+. I shall consider extensions in which these
do hold, but at present this extremely poor logic will do to illustrate the
enrichment with respect to the corresponding fragments of standard rele-
vant logics.

6. The net gain

Each of the following is correct in L1+ and is not correct in T, E or R:

(6.1) A—-B, (A&B)~C k A~C

(6.2) A-=(BVC), B-~CFk A-C

(6.3) A—(BVC), (A&B)~C b A-C

(6.4) A—(BVC), (A&B)~D, (A&C)~E F A—v(DVE)
(6.5) A—~(BVC), C»D F A—~(BVD)

(6.6) A-B, (B&C)~D, B (A&C)~D

The reason why Anderson and Belnap arrived at systems according to
which each of these are incorrect will become clear in the section on the
Fitch-style formulation. At present I only want to state that there is nothing
wrong with any of these from a relevantist point of view. A first argu-
ment for this claim is that none of the paradoxes which relevant logicians
wanted to avoid obtain in L1+. The reader may easily check this by means
of the decidability method of section 7. Moreover, L1+ has extensions
which contain nested implications, negation, and the binary connectives
inside and outside the scope of implications, which are strictly stronger
than the corresponding standard relevant logics, and which avoid all the
aforementioned paradoxes (and are all decidable). A second argument for
my claim refers to intuitions, and hence is indicative rather than
demonstrative in nature. Whether you read the arrow as an entailment,
or as a causal implication, or as a relevant nomological implication, (6.1)-
(6.6) appear to be sound. I do not claim that they are correct for all
readings of the arrow. I do indeed think that Anderson and Belnap’s
systems contain meaningful implications. All I suggest is that, for many
uses of implication which occur in natural languages, including scientific
language, (6.1)-(6.6) are correct.

Neither of the following obtain in L1+ :

(6.7) A-BF A—-(A&B)
(6.8) B-CFk (BVO)-C
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It is well-known that these lead to paradoxes under quite normal condi-
tions on the arrow. Both are avoided in L1+; so, e.g., the correctness of
(6.1) does not depend on (6.7).

7. Decidability

The decision method for L1+ is easily derived from the semantics. I
shall use tableaux with two columns, one for truth and one for falsehood.
For a tableau i, these columns will be denoted by i, and i; respectively.
Whenever a tableau /, other than 0 or 4 is drawn, one also draws a (aspect)
tableau <i,0>. Tableaux and tableau-constructions are said to close
under the usual conditions for two-sided tableaux (a formula occurs in
both columns of some tableau). The rules are as follows (i and j are always
different from both 0 and #; i is never an aspect-tableau): (°)

T1 : If A= B occurs in @, start a new tableau i, write 4 in i, and B in i,

T2 : If A—=B occurs in 4, then, for all i, split i into i’ and i”, write
Aini’;and Bini”,.

T3 : If A—B occurs in 0y, start a new tableau i, stipulate R0i, write A
in j, and write B in <i,0> .

T4 : If A—B occurs in 0, then, for all tableaux / such that R0i, split
the tableau into i’ and {”, add 4 to i’; and add B to <i”,0>,.

T5 : If A&B occurs in i, add both 4 and B to i,.

T6 : If A&B occurs in i, split i into i* and i”, write A in i’, and B in
i

T7 : If AvB occurs in i, split i into i’ and i”, write 4 in i’ and B in
2%

T8 : If AV B occurs in i;, write both 4 and B in i,.

T9 : If A occurs in <i,0>,, write A in i,.

T10: If A occurs in i;, write A in <i,0>,.

It is provable that:

Theorem. = A iff the construction started by writing A4 in 4, closes.

(%) Splitting tableaux is the common short-hand method for splitting the whole construc-
tion. Of course, ineffective moves should not be carried out. E.g., in the case of T2, i should
not be split if A occurs in iy or B occurs in i,.
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Theorem. A,, ..., A, P B iff the construction started by writing A, and
.. and A, in 0, and by writing B in 0; closes.

The present decision method may easily be extended to all extensions
of L1+ below. The theorems remain provable.

8. Fitch-style formulation

There is a direct relation between Kripke-semantics and Fitch-style
proofs. (') The fact that a formula occurs with index {i| corresponds to its
being true at world /. For usual relevant logics, {i, j] corresponds to a world
k distinct from i and j (but for which Rijk holds if i precedes j). For L1+
and its extensions, {/,0] corresponds to the aspect-world <i,0> of i.

As derivability and implication should be clearly kept apart in L1+
— remember that A—(B&C) i+ A~ B but that #(A—(B&C))— (A—+B)
— I need a Fitch-style formulation in which premises, as distinct from
hypotheses, may be written. To this end I shall adapt the terminology of
[1]. Premises may be written with {0} as their set of numerical subscripts
and with rank zero. Any number of premises may be written in the proof.

Apart from this, the rules for L1+ are as those for E — see p. 347
of [1] — with the following modifications:

(i) The rule of Hypothesis is restricted to the effect that the maximum
rank is 1 (one hypothesis at a time; nested subproofs do not occur).
(ii) One rule is added. It is called RSD (restricted subscript deletion) and
reads: from A with the set {/,0} of numerical subscripts, to derive A with
the set (1] of numerical subscripts. From a semantic point of view this
corresponds to the fact that grounded statements are true (in the world
in which they are grounded).

(iii) VE is replaced by a stronger rule, called VE* This rule is easy to ap-
ply but somewhat complex to formulate. I shall give a rather circumstan-
tial description. Let AV B occur in a proof, with rank r (in L1+ always
1) and the set @ of subscripts. Copy the proof twice. Add 4 with rank

(’) Just as each logic has a two valued semantics (as was shown independently by Suszko
and by da Costa), each logic characterized by a Fitch-style system has a Kripke-semantic
with two-valued valuation functions. Moreover, this semantics is in a direct way derivable
from the Fitch-style system and offers a “natural” interpretation for it. For a set of interesting
results on the fact that any logic has a two-valued worlds semantics, see [8].
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r and set a of subscripts to the first copy and add B with the same rank
and set of subscripts to the second. If C is derivable with rank r and any
set b of subscripts in both copies, then C may be added with the same
rank and set of subscripts to the original proof. To see the effect of this
rule, show the correctness of (6.2)-(6.5). The rule VE* indicates that dis-
junction is extensional: C is derivable from A Vv B in a given context, just
in case it is derivable from A as well as from B in the same context.
(iv) &V is redundant !

(v) = I should be restricted : it may not be applied to a subproof in which
RSD has been applied and the last formula of which has the same set
of subscripts as the hypothesis, viz. 1. By this restriction we make sure
that all formulas that occur with the empty set of subscripts in any proof
are theorems.

Theorem. o > A iff A occurs with (rank zero and) the set {0 of subscripts
in a proof in which all premises are members of e.

Theorem. = A iff A occurs with the empty set of subscripts in some
proof in which no premises are introduced (or in any other proof).

Are the rules easy to understand in their application? If one keeps the
semantics in mind, they obviously are : premises are given as true in some
theory and hypotheses are supposed to be true in some world. In this way
the semantics is a guide to the intuitive interpretation of syntactical rules.
Fitch-style rules have no independent convincing character. The fact that
they are easily fed to undergraduates, usually by misleading tricks, is no
argument for their conceptual clarity.

9. Axiomatization

I shall not merely consider the delineation of a set of axioms, but also
the set of correct inferences (from premises) defined by the axiomatic
system. To this effect I shall follow the notation of pp. 277-278 of [1]:
for a correct (relevant) deduction it is possible to attach stars to some for-
mulas in such a way that (i) premises are starred, (ii) axioms that are not
premises are not starred, (iii) other formulas are starred as indicated below,
and (iv) the conclusion is starred as a consequence of (i)-(iii).
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Axioms

Al A—-A

A2 (A&B)—A

A3 (A& B)—B

Ad A—-(AVB)

AS B—(AVB)

Rules

R1 A—-B, B-C/ A-C

The conclusion is starred if at least one premise is.
R2 A-B, A~C / A= (B&C(C)

The conclusion is starred iff both premises are; application of the rule
is forbidden in case only one premise is starred.

R3 A-C, B~C/ (AVB)~»C
Stars as for R2.
R4 A—-(BVC), (A&B)—~C / A-C

Stars as for R2.
The strength of R4 becomes clear if one realizes that it allows one to
demonstrate (6.1), (6.2), and (6.4)-(6.6), as well as the theoremhood of:

9.1 (A&(BVC) - (A&B)VO)

The proofs are straightforward. E.g., for (6.2), A—(BV C) is derivable from
A—B, and A—C is derivable from A—(BvC) and (4&B)—C.

Theorem. ¢ - A iff a B A.

Theorem. +— A iff = A.

10. Small extensions

The logic L1+ does not enable one to derive anything from non-
implicative formulas (except for the formulas themselves). Several ways
are open to circumvent this restriction. E.g., we may interpret non-
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implicative formulas true in 0 as true in all worlds, or as true in the real
world. The latter turns out to be most appealing.

It seems worth pointing out that the first alternative leads to an in-
teresting logic, the implication of which, however, lacks certain relevance
properties usually considered as desirable.

(10.1) A-B, APk C-B
(10.2) (A&B)~C, Ak B-C

For (10.1), suppose that both 4 and A— B are true in 0. Then A4 is true
in all worlds, and hence B is grounded in all worlds. But then C—B is
true in 0 for any C. (10.1) certainly resembles too much (2.1) to keep rele-
vant logicians happy, and (10.2) is considered a source of disaster by most
of them. Yet, this logic does have a lot of relevance features; it does not
make any of the straightforward paradoxes valid. Typically, it is not one
of the usual modal logics. E.g., we have:

(10.3) APBPA-A
(10.4) A, A»B BC-C

The moral is presumably that it does make sense to distinguish between
the types of paradoxes discussed in section 2, and that we should care
to worry about interpretations, rather than about syntactical properties.

The second alternative consisted in considering the non-implicative for-
mulas true in 0 as true in the real world. Let us single out / to denote
the latter. Obviously, this corresponds to many uses of the term ‘theory’.
More specifically, whenever the term is used to denote a set of statements
about some domain, one means the non-implicative (and non-modal)
statements to be true in the real world, whereas one means implicative
statements to be nomologically true, i.e. to be true in a theory in the strict
sense. (At least, that is the case if we disregard counterfactuals and similar
locally true implications.)

The neatest way to deal with the present logic, which I shall call L2 +,
is to define a model as a seven-tuple <0, 4 I, W, X, R, v>, IEW
denoting the real world, to add to the semantics of L1+ the clause(®)

(vi) v(A4,0) = v(A,])

and to define the semantic consequence relation with respect to 7 instead

(®) There is no need to stipulate that A be non-implicative.
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of 0. By doing so, we gain a set of correct inferences in comparison to
L1+. They are easily summarized by noting that an axiomatic version
of L2+ is obtained by adding to that of L1+ :

RS A, A-B/ B

The conclusion is starred iff the minor is; applications in which the ma-
jor is starred and the minor is not are forbidden.

R6 A, B/ A&B
The conditions on stars are as for R2.
R7 AVB, B-C/ AvVC

The conditions on stars are as for RS.

R4 and R7 express the enrichment in comparison to standard relevant
logics. Just as its “implicative counterpart” (6.5), R7 is not objectionable
from a relevance point of view and is quite desirable intuitively speaking,
(The last phrase in a joke; R7 is desirable on the present interpretation
and on some others).

There is an alternative way to formulate L2+ — if you wish, there is
an alternative semantic system which leads to the same set of semantic
consequences. It is obtained by collapsing 0 and I into 0 as follows. A
model is a quintuple as for L1+, but with 0 € W and R00 (and possibly
WA, <0,0>) = v(A,0) in order to simplify the decision method).

Both formulations are decidable. Both correspond in a straightforward
way to Fitch-style systems. However, the latter formulation leads to Fitch-
style proofs which are a lot easier to set up and which moreover are closer
to those for standard relevant logics.

I briefly touch upon a third way to handle non-implicative premises,
viz. by considering them as true in a “part” of the real world, to be denoted
by I* Intuitively, this is the part of the real world that the theory pertains
to. Formally the matter is handled by defining a model as <4 0, I, I*
W, X, R, v> and by requiring:

v(A4,0) = v(A,1%).

If v(A,/*) = 1, then v(A4,]) = 1.

If v(A, <1,0>) =1, then v(4,/% = 1.
Let us call the resulting logic L3+. It is syntactically identical to L2+
as it stands, but a striking difference appears for some conditions on
negation.
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In writing the present section, it was may aim to show that the enrich-
ment this paper is about relies on a semantic interpretation which does
not exclude considering non-implicative premises. As a side-effect, I hope
to have shown that the present semantic approach to implication opens
a variety of perspectives. I pointed to three of them, but it is obvious that
more are available. To mention just one example, a non-implicative for-
mula may be interpreted as true in a specific part of any world, viz. the
part that the theory pertains to. Again, the resulting logic as it stands will
coincide with the first alternative discussed in this section, but it will lead
to divergent results for some conditions on negation.

11. Negation

Negation too may be handled in a variety of ways. Some of these lead
to rather disappointing results. E.g., if one extends the L1+ semantics
by requiring that all worlds, i.e. members of W, are consistent and negation-
complete, then one arrives at the result that (p& ~ p)—gq is true in the
theory, viz. 0, of any model M.(°) I do not have space here to discuss
several systems together with their advantages and disadvantages with
respect to domains of application. I shall restrict my attention to a single
approach to negation and to a single system.

If one starts off in a naive way, and keeps standard relevant logics in
mind, one will want to have, e.g., each of the following:

(11.1) ~ ~A b A and conversely.

(11.2) ~(A&B) - ~ Av ~ B and conversely.
(11.3) ~(AVvB) > ~ A& ~ B and conversely.
(11.4) ~A—~B P B—A and conversely.

Simply adding the corresponding clauses to the semantics might cause
people to protest: a semantics should consist of clauses which suggest
a sensible interpretation of the meanings of the logical terms. I now pre-
sent an approach which leads to such an interpretation.

It was said before that B is grounded in a world i to which 0 applies,
if A is true in that world and 4 - B is true in theory 0. For reasons that

) As, for any M, (p& ~ p)—q would also be true at 4 it would be both a non-logical
theorem of any theory, and a theorem of logic.
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become clear soon, I now reformulate this as: the presence of B in world
i is grounded by the presence of A in i. However, it seems desirable to
attach a further consequence to A— B with respect to grounding: the
absence of A is grounded by the absence of B. The presence or absence
of certain facts may be linked to the outcome of tests. One should keep
in mind that, in any somewhat realistic situation, more than one kind of
test is available for most predicates, and that it cannot be excluded by
an act of faith that something is both present and absent, or that it is
neither.

The preceding paragraph suggests that we express the absence of 4 by
~ A. In order to keep things straight, it is helpful to link an absence-world
to any world (and aspect-world). Let us denote the .absence-world
associated to 7/ by i- (not to be confused with the starred worlds of the
Routley-Meyer semantics). This results in:

(11.5) V(~ A,)) = 1 iff w(A4,i-) = 1

In order to arrive at (11.1)-(11.4) we simply have to request that absence-
worlds (and absence-aspect-worlds) are duals to the worlds with which
they are associated in that (i) the meanings of conjunction and disjunc-
tion are exchanged, the meaning of relevant implication is “reversed”, and
any world is the absence-world of its absence-world (i-- = i, in other words
‘’ and ‘i2 may be exchanged in (11.5)). The reader may check that this
convention is plausible in a large number of situations.

Applying all this to L2+, we arrive at the semantics for L2 by inser-
ting W- and X- in the model, by adding the clauses

V(A&B,i-) =1 iff v(4,i-)=1or v(Bj-)=1 for iEWU X.
VAV B,i-) =1 iff v(A,i-)=v(B,i-)=1for i€ WU X.

W~ A)=1iff v(4,i-)=1for i€ WUX.

v(~ A,i-)=1iff v(4,))=1 for i€ WU X.

and by modifying the clause for implication as follows:
v(A—B,0) =1 iff, for all i such that R0i, v(4,))=0 or
v(B, <i,0>)=1, and v(B,i-) =0 or v(4, <i,0>-)= 1.

and analogously for v(A4— B,#). Needless to say, the same additions and
modifications may also be applied to L1+ and L3+, provided one keeps
in mind the obvious modifications for the latter.
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For the Fitch-style formulation, one adds the following rules:

~ ~1: from A with the set ¢ of numerical subscripts, to derive ~ ~ A
with the same set of subscripts

~ ~E: from ~ ~ A with the set @ of numerical subscripts, to derive A
with the same set of subscripts

~=: from ~ B with the set ¢ of numerical subscripts and A — B with
the set b of subscripts, to derive ~.A4 with the set a U [i] of
subscripts, provided b= {0} or b=40.

These rules lead to the theoremhood of ~(A&B) = (~ AV ~ B), etc.

The axiomatic formulation is obtained by adding the axioms

A>~~A4
~~A-A

and the rule
A-B/ ~B->~A4

the conclusion is starred iff the premise is.

A richer system is obtained by adding to the semantic condition for
v(A—B,0) = 1 that v(~ AVB,0) =1 (ie., v(~ AV B,1) = 1 in the first for-
mulation). In this system we obtain, e.g., (')

A-BbP ~AVB
A-B A-~BP ~A
A->B&~B) kP ~A
A-~AP ~A
A—-B, ~A-BF B
(Av~A)»BPF B

One may or may not adapt the clause for v(4— B,d) in a similar way. If
one does not, the set of theorems is not deductively closed. If one does,
one also need to adapt (in a straightforward way) the properties of the
other connectives in # in order not to loose all theorems again. I shall
not discuss the matter any further.

(*% We do not have (A—+A)—B = B; remember that v(4—A,)) is arbitrary whenever
i is distinct from 0, and that v(A Vv ~ A4,i) may very well be false.
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12. Nested implications

One may obviously extend the previous logics in such a way that nested
implications obtain specific properties. Some such extensions contain one
or more standard relevant logics. I cannot work this out here in any detail,
but shall merely indicate in which way one may obtain a sensible seman-
tics for such systems.

Let us consider L2, viz. the alternative formulation (see section 10) which
leads to a technically simpler semantics. Basically, non-implicative for-
mulas are evaluated in a straightforward way within 0; the evaluation of
implicative formulas is guided by the idea that they are true in the theory
(in the strict sense) associated to the “real world” 0. The aecessibility rela-
tion R expresses that all implicative formulas (those true in the theory
in the strict sense) are effective in the accessible worlds. Now, we may
associate a theory in the strict sense with the latter, and consider worlds
accessible from them as well. Two restrictions might (but need not) be
introduced: stipulate that R is transitive and that
< <ij> k> = <i, <j,k> >. If Rkj and Rji, then both couples denote
the aspect-world of 7 in which is true whatever is grounded in i by the
interplay of the implicative statements of j and k; whence one may iden-
tify both couples. I cannot offer any proofs, but it is quite obvious that
such moves will lead to semantic systems for standard relevant logics
enriched by R4, R7 and perhaps some more things.

13. Open problems

Important open problems concern the weakest extensions of T, E and
R that may be obtained by the present approach.

A technically interesting problem is whether the present logics are in
some sense maximal. Consider, e.g., L1+. Is it possible to weaken the
implication without loosing its relevance properties? I do not have an
answer, but I see a possible approach. The non-implicative formulas form
a lattice. Implicative theorems are in an obvious way related to this lattice
(A— B iff there is an upward path from A4 to B — henceforth denoted
by ALB). On the elements of the lattice one may define a transitive binary
relation 7 which corresponds to implicative formulas true in 0:
v(A—B,0) = 1 iff AIB. I has properties such as: If AIB and BLC, then



456 D. BATENS

AIC. This may be seen as: there is a “contingent” path from A4 to C if
one may reach C from 4 by a path of which at least one part is con-
tingent. The difference between L1+ and (the corresponding fragment
of) standard relevant logics may be seen as follows. One may reach a point
C from a join AV B if, whether one “drops down” to A or to B, one is
able to reach C. Standard relevant logics require that both paths are of
the same type, viz. logical or contingent. L1+ allows for mixed cases,
and merely requires this : one may reach E from D if there is an itinerary
such that, in whichever direction you “drop down” at a join, part of your
path is contingent. A similar condition applies to meets.

14. Classical derivability

According to the spirit of Anderson and Belnap’s views — see also [6]
— classical derivability is related to relevant derivability as follows, where
7 is the set of logical theorems:

aFAiff aUr b Al

It follows that the classical semantic consequence relation (for all systems
discussed) may be defined by:

Ay, .., A, & Biff, for all regular models, v(A4,,0) =0
or ... or W(A4,,0) =0 or v(B,0) = 1.

where

M is regular iff, for all / and for all A,
v(A, <i,0>) = v(A4,).

Equivalently:
M is regular iff, for all A, v(4,0) = v(A4,5).

Incidentally, this shows that the kind of approach I considered in the begin-
ning of section 3 is not as far away from relevant logics as one might sup-
pose. If we consider regular models only, one arrives at a system which
fits into this approach.
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