SEARCHING AN APPROPRIATE LANGUAGE ABOUT PROOFS
AND CONSTRUCTIONS: what a small semantical change may
accomplish

Jean Paul VAN BENDEGEM

Everybody is familiar with the famous proof of the irrationality of the
V2. It is easy to see — at least, for us, humans (and maybe mathematicians-
logicians in particular) — that only a minor modification is required to
obtain a proof of the irrationality of Vp, where p is a prime number. Let
us suppose that computer scientists succeed in writing a program capable
of mathematical reasoning, and suppose further that the program pro-
duces a proof of the original theorem. It would save us a lot of time and
energy if the program could somehow reflect on the proof itself. For, on-
ly if the program has this capability, is there any chance of it “discover-
ing” the generalization of the theorem to arbitrary prime numbers without
actually constructing a new proof altogether. (Note that I am not claim-
ing that this would be sufficient). This requirement is obviously equivalent
to the inclusion of a meta-level in the program.

This observation is hardly new: Bundy (1983) has a separate chapter
on meta-inference and in Wos et al. (1984) meta-level reasoning has become
an integrated part of the automated reasoner’s tool kit. In order to develop
such a higher level performance, a language is needed that must necessarily
involve expressions about programs. This is exactly what the title of this
paper refers to. [am convinced that most computer scientists and logi-
cians involved in computer logic will have their answer ready: dynamic
logic is the very language for that purpose. It has been and still is an ob-
ject of intensive study, it is known to be of invaluable use and it is generally
recognized within the field as the most plausible candidate. Nevertheless
I will try to show in this paper, that there are some positively odd features
about dynamic logic. Although this does not discredit dynamic logic itself,
it certainly is the case that there are alternatives lacking all or some of
these odd features.

In II, I present the propositional part of standard dynamical logic

422 J. P. VAN BENDEGEM

(PDL). In III, the odd features are discussed and a network of alternatives
is explored, but as it turns out, none of these is really satisfactory. An
analysis of this failure leads to a change in the semantics of PDL. This
change is such that whereas all cases considered in III are conservative
extensions (') of PDL, the system presented in IV, is not. The paper ends
by a brief comment on the use and value of this system for automated
reasoning.

I1

The essentials of PDL are the following:
syntax: — a list of propositional variables: p, q, 1, ...
— a list of atomic programs: «, 8, ¥,...
e formation rules for programs:
— an atomic program is a program
— if @ and f are programs then e; £ (first @, then f) ¢ U B («
or ff) and a* (« repeated an arbitrary number of times) are programs
— if p is a program-free formula, then p? (is p the case?) is a
program
* formation rules for formulas:
— a propositional variable is a formula
— if p and q are formulas and « is a program, then pvq, ~ p
and [a]p are formulas. '

axiomatics:
® axioms:

PC-tautologies
- [el(pDq) D ([alp D [a]q)
= la;Blp = le]llBlp
- [aUBlp = [alp&[Blp
— [a*lp = (p&lalle*]p)
- PNa=@EDq
® rules: — if A and A DB, then B
— if = A, then ~ [a]A

(') I use “conservative extension” in a slightly different meaning. A theory T" is a con-
servative extension of T if anything provable in T is also provable in T’ (plus some addi-
tional theorems).

ABOUT PROOFS AND CONSTRUCTIONS 423

semantics: a model is a triple <W,Ryv> such that:
e v: programs - 2V*V
a = v(a)
where v(@) = {(s,t) | st € W]

for composite programs the following definitions hold:
- v(a;) = v(@)°v(h)

ie. {(s,t) | Fu((s,u) € v(e) and (u,t) € v(B))}
= veUpB) = vie) Uv(h)
- v(a*) = Uv(e")

where v(a®) = v((pVv ~p)?)

v(i@") = v(e)’v(e"™")

= v(p?) = {59 | v(pss) = 1]
ev:F x W = {01}
for program-free formulas v(p,s) is treated according to classical proposi-
tional logic (relative to s). Of special interest is the semantical interpreta-
tion of [e]p: v([e]lp,s) = 1 iff for all t, if (s,t) € v(e) then v(p,t) = 1
The notion of validity and valid consequence is classically defined. In
the sequel, I will write s = p instead of v(p,s) = 1 and sat instead of
(s,t) € v().

As is well-known, PDL is complete and decidable, since it has the finite
model property.

111

What is a proof or construction expressed in PDL? Consider any
mathematical proof: you start out with some assumptions, p, the initial
data, you perform a number of operations (basically applying the rules
of the theory under consideration) and you end with a conclusion, q, the
Sinal output. In terms of PDL, this is neatly captured in the formula:

[p?;alq

ie if p is the case and « is executed, then q will result. (I will assume
throughout that e itself does not contain tests, unless otherwise indicated).
But, strangely enough, within PDL itself, the above formula behaves in
a peculiar fashion. Direct semantical control shows that the following are
invalid, and hence not provable:

424 J. P. VAN BENDEGEM

() p [p?ealq g

2y ¥ Ip?;ap

(3) [p?ielq ¥ [p?;0]l(p&q)

4 H[p?;alq Vv [q?;alp

(5) [p?;da, [q?;8Ir + [p?;0;BIr

(6) p ¥ [a?;alp (provided q is not a falsehood)

(7 HIp?;alq (provided q is not a theorem and p not a

falsehood)
Some of these results are quite distressing, and some are not. (1) and (5)
are troublesome: the former says that modus ponens for proofs or con-
structions does not hold, while the latter says that transitivity does not
hold. (2) and (3) make clear that initial data cannot be preserved, they
are confined to the input-world. On the other hand, the invaliditiy of state-
ment (4) — the counterpart of the classical PC-theorem, (p D q) V (q D p)
— is a pleasing result. It would be very odd indeed if, given two statements
p and g, we can either construct p out of q or vice versa. (6) is the classical
counterpart of p ~ gD p and is generally recognized as one of the
paradoxes of material implication. (*) So, its being invalid is a positive
sign. (7), although unproblematic, informs us that there are no generally
valid constructions.
One might wonder, if so little turns out to be valid or provable, if

anything is provable at all. The following statements, though undesirable,
do hold:

) + [p?el@v~q)
9 F l(p&~p)?;alqg

These two formulas are valid, because semantically speaking the worlds,
i.e. the elements of W, are considered to be complete and consistent. As
such they have nothing to do with « itself; in fact, the formulas make
clear that « is arbitrary.

Even the weaker form of (9), viz.:

(10) ~p +~ [p?;alq

also holds.
A more general result, as to what is provable, can be stated:

(® See Anderson and Belnap (1975) and Routley, Meyer, Plumwood and Brady (1982)
for a detailed discussion on the problem of the paradoxes of material implication.

ABOUT PROOFS AND CONSTRUCTIONS 425
Theorem 1. A+ B iff [C?;a]A + [C?;a]B iff [B?;2lC + [A?;]C
Proof: all proofs are semantically straightforward.

Although many formulas turn out to be provable, the result is still rather
weak, because the correct inferences express no connection between in-
put and output world. The conclusion is quite inevitable: the language
should be made stronger in one way or another. But, rather surprisingly,
it does not take much to trivialize [p?;elq. It is sufficient to add to the
semantics the following two clauses:

(TF): if s=p and set then t=p

This is the transfer rule, since it creates the possibility of transferring
anything from the input world to the output world.

(RP): for all @, sas

The reflection principle states that the relation R is reflexive. Let PDL
+ (TF) + (RP) stand for PDL with the clauses added.
Then we have:

Theorem 2. in PDL + (TF) + (RP), [p?;alq = (p D q) is valid.

Proof: although the proof is rather trivial, I do present it, in order to
show where (TF) and (RP) enter into the picture.

(i) [p?;0lg D (pPDQq)

assume s = [p?;algand s ¥ pDq, ie s = p& ~ q. Since (RP) holds,
we have sas. Together with s = p, we have s = q. Contradiction.

(i) (p2>q) D [p?;alq

assume p D gand <p?;a> ~ q. Hence there is a (s,t) such that st and
t= ~qg,ands = p.Buts = pD>q,sos = qand by (TF)t = q. Con-
tradiction. O
This result implies that all unhappy consequences of material implica-
tion(’) are valid for [p?;alq, especially (4) which, as argued, is highly
undesirable.

() See 2.

426 J. P. VAN BENDEGEM

The strategy that will be followed in the remainder of this chapter is
this: cases in between PDL and PDL + (TF) + (RP) can be distinguish-
ed by restricting (TF) and (RP) (either drop (TF) or (RP) or restrict one
or both of them to a particular set of programs L). This generates at least
the following possibilities:

PDL + (TF) + (RP) (j)
4

PDL + (RP) + (TF), (g) PDL + (RP), + (TF) (h)

PDL + (RP) (e) ; PDL + (TF) (f)

|

PDL + (RP), + (TF)_ (d)

/

PDL + (RP), (b) PDL + (TF), (¢)

AN

The cases involving (TF) are particularly uninteresting, viz. (f), (h) and
(i)- Theorem 2 showed that if (TF) holds, then (p D q) D [p?;alq holds.
But this implies that all irrelevant properties of O are transferred to
[p?;alq.

I first consider PDL + (RP). Axiomatically, the semantical addition
corresponds to adding the following axiom:

PDL (a)

(1) [p?;alg D> (pDq)

(11) is equivalent to [¢]lg D q, as the following theorem shows.
Theorem 3. [p?;alq D (p D q) is equivalent with [a]g D q.

Proof (i) assume [p?;e]q and [e]q D q. [p?;alq is equivalent to p D [alq.
Together with [a]lq D q, we find p D q.

(ii) assume [p?;a]lq D (p D q) and [a]g. If [e]lg then (pV ~p) D [elq
or [(pV ~p)?;alq, hence (pV ~p) O q. But then q. O

ABOUT PROOFS AND CONSTRUCTIONS 427

By adapting one of the well-known proofs of the completeness theorem
of PDL, (") it is easy to show that:

Theorem 4. PDL + (11) is complete with respect to the PDL-semantics
with (RP).

In this logic, modus ponens for programs does hold:
(12) p, [p?5elq + q
and transitivity holds for identical programs:
(13) [p?;ela, [q?;er = [p?;alr

But transitivity for different programs still fails as might be expected.
For anyone familiar with modal logic, it is obvious that PDL + (RP) is
based on the modal logic T, whereas PDL itself is based on K (correspon-
ding to the first two axioms and the necessitation rule). A rather particular
feature of this logic is that no formula of the form [p?;a]q can be a
theorem, if p is not a theorem. The argument is quite simple: it is easy
to construct a countermodel, viz. a model in which <p?;a> ~ q s true.
Take W = [s,;t], v(@) = [(s,t), (5,5), (t,t)] and v(p,s) = 1 and v(g,t) = 0.
Therefore if we restrict ourselves to formulas that are program-free or of
the form [p?;a]q, then the language must be purely inferential as far as
program statements is concerned. In other words, there is no program
of which we can claim that it is always executable.

The variant PDL + (RP), consists in restricting the universal quan-
tifier in (RP) to a particular set L, thus

(RP), foralle €L, sas.

Axiomatically, this corresponds to the addition of a list of axioms, one
for each member of L stating that for that particular program [a]p D
p holds. As hardly anything new can be expected from this variant that
has not been said concerning PDL + (RP) I now turn to the remaining

(* See Kozen and Parikh (1981) for a completeness proof for PDL. Their definition of
A~ B should be extended to include the case where A&B is consistent, viz. if A&B then
A-* B, for all a occurring in the formulas of FL(W).)

It is also possible to transcribe the Kozen-Parikh proof into a typical modal logic completeness
proof. In that case, the proof proceeds along the lines of the proof presented in Hughes
and Cresswell (1968) for the system T.

428 J. P. VAN BENDEGEM

cases all of which involve (TF),. Assume once again that a particular list
of programs, L is given. Members of L will be introduced in the language
by certain constants, say ¢, f,, ...,'C,, (n finite). Semantically, a particular
set will correspond to each of these constants and for these sets we stipulate
that (TF) holds.

Axiomatically this corresponds to introducing a particular axiom of the
form [p?; t]q, for each i,. A typical example would be:

(14) [p?; LETIp

This program leaves p unchanged. It transfers p from the input to the
output world. Obviously we now do have theorems expressing basic
capabilities. But, modus ponens for programs remains irivalid, unless (RP)
is added. The systems (c), (d) and (g) do have one very nice property, that
deserves special attention:

(15) [p?;alq ¥ [p?;al(p&q) if « is not a constant
(16) [p?;tla + [p?:](p&q)
(I17) [p?;elq, [p?;alp + [p?;e]l(p&q) for all @

(15) and (16) express the difference between a constant and an arbitrary
program. (17) shows what has to be added to an arbitrary program so
that it behaves like a constant program. Why is this a nice property ? Take
the following quite simple program:

[x =07, x—>x+1](x = 1)

This program changes the value of x, if it is 0, into 1. For this par-
ticular program, if (TF) were to apply, we would obtain an inconsistency,
viz. (x = 0) & (x = 1). In short, it is clearly not a necessary property
of every program that it should satisfy (TF). Because of theorem 2, it
is straightforward to see what happens: suppose you have [p?;e] ~ p of
which the program above is a special instance (q is such that it implies ~ p).
Since [p?;al ~p=(pD ~plandpD ~p= ~p, [p?;al ~p= ~p,
Le. the program itself is annihilated. What we try to capture, viz. that x
has changed its value, is precisely wiped out. Hence it is reasonable to
restrict (TF) to a particular set so as to safeguard its expressive power.
An important remark is that, given an arbitrary list of programs L, the
members of L are not necessarily independent. Suppose that we add,
besides LET, the special program SEL, which does the following:

ABOUT PROOFS AND CONSTRUCTIONS 429

(18) [(p&q)? ; SEL,]p

However within PDL + (TF) ¢, SEL, can be derived, i.. there is a
program that produces the very same behaviour:

LET assures us that [(p&q)?; LET](p&q) holds

But (p&q) D p. Because of theorem 1, if a program produces A, then it
produces all consequences of it, thus:

[(p&q)?; LET]p.

Thus LET does exactly the job of SEL,. Actually, LET is a particular-
ly strong program for it is easy to see that, if A and B are program-free
formulas and - A D B, then [A?; LET]B. Thus the following is pro-
vable in the system under discussion :

(9 = (p>q D [p?; LETIq

Using a technique similar to that of theorem 4, we can prove that

Theorem 5. PDL + (19) is complete with respect to the PDL-semantics
with (TF)gr,.

Since it is obvious that we want modus ponens for programs to hold
for all programs, the system (g), ie. PDL + (RP) + (TF)y gy, is the most

interesting case. For this system, the following theorem holds (combining
theorem 4 and 3):

Theorem 6. PDL + (11) + (19) is complete with respect to the PDL-
semantics with (RP) and (TF), g,

This logic is particularly interesting because reasonings about programs
are such that:
(i) nearly all classical logical rules are valid for formulas involving
programs:

[p?;elq, p - q

[p?;alq, [q?;alr + [p?;elr
[p?;elq, [p?;alr — [p?;a]l(q&r)
[p?;alr, [q?;elr = [(pVQ)?;alr

430 J. P. VAN BENDEGEM

(ii) if p D q is a logical truth, then the program LET translates this truth
into the capability for transforming p into q, or

if tpe pDq, then [p?;LET]q

However, although this language is definitely richer than PDL, and has
the nice features listed above, it still lacks one property that is essential :
transitivity for different programs, ie. (5).

All systems discussed so far suffer from this shortcoming. Is there an ex-
tension of PDL that does make it valid? The answer is no, because of
the specific semantics of PDL and its extensions. When we evaluate a PDL-
formula, we choose a specific world s as a base world. All programs have
their starting point in this world. Given a composite program « ; 5, seman-
tically its translation will be st and t fu. Thus £ never starts in s, unless
o is a test-program, but then (5) does hold.

Hence the presence of the formula [q?;S]r does not help us much. (Ac-
tually what is required is [p?;a ;q?;f]r). But that implies that we have
no other choice than to change the PDL-semantics itself. The system
presented in the next chapter turns out to be a non-conservative exten-
sion of PDL. This is however not a necessary feature and it is an open
problem whether a non-trivial conservative extension can be found. But,
fortunately, the valid inferences that become invalid due to the change,
were troublesome anyway (as far as irrelevance is concerned).

IV

At first sight, the change in the semantics is quite simple. It is suffi-
cient to strenghten the clause for [@]p. Instead of selecting a particular
world as a starting point, we propose a semantical interpretation of [&]p
that is independent of the pair of worlds chosen. Thus:

v(lelp,s)=1 iff for all t, t" if tet’ thent’ = p

Obviously, in this system — indicated by PDL + (v) — transitivity
for different programs does hold.
Although one might expect that anything valid in PDL should be valid
in PDL + (V) (because the new semantical clause is definitely stronger),
this is not the case, as we already mentioned.
Examples of (PDL + (V))-invalid, but PDL-valid formulas are:

ABOUT PROOFS AND CONSTRUCTIONS 431

(20) #(pDa) D [p?q

It is sufficient to evaluate <p?> .~ qin a world different from the one
in which p D q is evaluated.

(21) ~p ¥ [p?;alq

This is a “hopeful” statement, as the invalidity of (21) eliminates a
typical, unwanted, irrelevant property of implication. However what does
remain valid, is:

if ~ A then + [~A7?;a]B

Thus PDL + (v) will in the best of cases, prove to be a weakly relevant
system.

(22) # [a;8]p O [e][Blp

This is a rather important result, as it shows that in PDL + (V) the
elimination of “;” is no longer possible.
Although some formulas cease to be valid, there is an explosion of valid
formulas. The following theorem provides a measure of this growth.

Theorem 7. Consider the K-fragment of PDL + (V), i.e. PDL
restricted to (i) PC tautologies
(i) [a]l (P2) D ([elp D [¢lq)
and (iii) the new semantical clause for [a]p
This fragment is equivalent to the OS5-fragment of PDL (where OS5 is
the deontic “partner” os S5).(°)

Proof: It is easy to show that the semantical properties of an OS5-model
are equivalent to the new semantical clause.

However, it is still the case that we need (RP) to ensure modus ponens
and (TF). g to ensure the existence of basic capabilities. Hence the
system that seems to be the most promising candidate is:

PDL + (¥) + (RP) + (TF),gr,

(*) See Aqvist (1984) for an excellent overview of deontic logic.

432 J. P. VAN BENDEGEM

Note that in this logic, (20) and (21) remain invalid, whereas (22) is now
valid.

The following theorem presents a first result:

Theorem 8. PDL + (V) + (RP) restricted to a single program « and to
first-order statements involving programs (i.e. only expressions of the form
[p?;alq where p and q do not contain « are admitted), is completely
characterized by the following axioms and rules:

(i) PC tautologies

@) ([p?;elr & [q?;e]r) = [(pva)?;alr
(iii) ([p?;alq & [q?;e]r) D [p?;ealr

(iv) (Ip?;alqg & [p?;elr) = [p?;el(q&r)
v) p,[p?;ela/ q

(vi) if - A then ~ [B?;a]A

Instead of presenting the proof that is quite lengthy, I will briefly discuss
an example:

the formula [(pvq)?;elr D [p?;a]r is valid and equivalent
to <(pvq)?;a>~r V [p?;ar
As one can see the following holds:
F ~pV(pvq) (“collecting” the inputs)
Frv-~r (“collecting” the outputs)
By (vi) we have + [p?;a@](rv ~r)
or F [p?;alr v <p?;a> ~r
We also have — pD(pVvq) hence

<p?;a>~r D <(pvqg)?;a> ~r
thus obtaining

F <(pvq)?;a> ~r Vv [p?;alr

It must be noted that the full system does have some strange proper-

ties. Among other things, the role of the programs is severely reduced,
as the following is valid:

(23) [e;8lp D [Blp

and even more distressing, that

(24) [p?;e;q9?;6r D [(p&q)?;flr

ABOUT PROOFS AND CONSTRUCTIONS 433

is valid.

Apparently, it is possible to “erase” programs from the formulas. This
raises the question what the “appropriateness” of the title of this paper
amounts to. As it is, in the field of automated reasoning, this logic may
prove to be quite interesting.

Consider this very simple argument as an example:

p
pD(qVvr)
q>os
ros

S

An automated reasoning program transforms the premisses into (where
the vertical bar indicates disjunction):

(@ p

® ~plalr

(©) ~q]ls

d ~r|ls

and proceeds thus:

() q]|r (by resolution on (a) and (b))
) rls (by resolution on (¢) and (€))
(g8) s (by resolution on (d) and (f))

In terms of the language presented here, the transcription is somewhat
different :

(@ p
(b) [p?;el(qVvr)
(€) [q?;als

(d) [r?;als

and we proceed thus:

(e) gqvr (MP for programs on (a) and (b))
(f) [gvr)?;als (composition for identical outputs on (c) and (d))
® s (MP for programs on (e) and (f))

Rewriting the argument this way is different from the classical resolu-

434 J. P. VAN BENDEGEM

tion method but one must agree that it is closer to the “natural” way of
reasoning. Furthermore, it opens up the possibility of an economical
automated reasoner. The following argument, classically valid, is invalid
in the system presented here:

p

qDp

as its transcription

p

[q?;alp
is invalid
Of course, the central question remains unanswered: is it possible to
find a resolution-type formulation for this logic.

If so, then we would have indeed an economical effective automated
reasoner. (%)

Research Associate NFWO Jean Paul VAN BENDEGEM
Rijksuniversiteit Gent
Vrije Universiteit Brussel

(%) The very first issue of the Journal of Automated Reasoning contains an interesting
short paper by Graham Wrightson stressing the importance of non-classical logical systems.
It is equally interesting to note that one of the disadvantages mentioned by him concerning
the resolution method is the fact that it introduces redundancy.

ABOUT PROOFS AND CONSTRUCTIONS 435

REFERENCES

Anderson, Alan Ross & Benap, Nuel D., Ir.: Entailment, the logic of relevance and necessity,
volume 1, Princeton UP, Princeton, 1975.

Aqvist, Lennart: “Deontic Logic”, in: Gabbay & Guenthner, pp. 605-714.

Bundy, Alan: The computer modelling of mathematical reasoning, Academic Press, New
York, 1983.

Gabbay, D. & Guenthner, F. (eds): Handbook of Philosophical Logic, volume II: exten-
sions of classical logic, Reidel, Dordrecht, 1984,

Harel, David: First-order Dynamical Logic, Springer, Heidelberg, 1979.

Harel, David: “Dynamic Logic”, in: Gabbay & Guenthner, pp. 497-604.

Hughes, G.E. & Cresswell, M.].: An introduction to modal logic, Methuen, London, 1968.

Kozen, Dexter & Parikh, Rohit: “An elementary proof of the completeness of PDL”,
Theoretical Computer Science, 14, 1981, pp. 113-118.

Routley, R.; Meyer, R.K.; Plumwood, V. & Brady, R.: Relevant Logics and Their Rivals.
Part I: The Basic Philosophical and Semantic Theory, Ridgeview, Atascadero, Califor-
nia, 1982.

Wos, Larry; Overbeek, Ross; Lusk, Ewing & Boyle, Jim: Automated Reasoning: introduc-
tion and applications, Prentice-Hall, Englewood Cliffs, 1985.

Wrightson, Graham: “Nonclassical Logic Theorem Proving”, Journal of Automated Reason-
ing, 1,1, 1985, pp. 35-37.

