HOW TO DO THINGS WITH WORLDS

SYLLOGISTICS AND SOME OF ITS EXTENSIONS IN THE
CONTEXT OF RELATIONAL LOGIC

Alfons GRIEDER

1. Contractions of a Relation Schema

Let R; be a binary relation schema of dimension n, with n>2; and
let Ry, R,, ..., R,_1, R, be its basic relations, and X the associated
domain of elements x on which the basic relations are defined. (1) If we
introduce R;_; as the disjunction R,_; VR, and put R} = R; for
i<n-—1, then the relations R{, R;, ..., R._; form the basis of a new
relation schema of dimension n—1. For, to each of these n—1 basic
relations there is at least one ordered couple (x, x') of elements of X to
which it applies ; conversely, to every ordered couple of elements of X
one, and only one, of the relations Ry, Ry, ..., R._; applies. Instead of
R,-1 and R, we may take any other pair R;, R, from the original basis
and replace them by their disjunction R/ = R; VR, with j<m. In
each case we obtain a new basis consisting of n—1 basic relations, and
hence a new relation schema R; 2, (of dimension n—1). The new basic
relations are written and enumerated as follows: R, = R, for
Isksm-1,k#j, R{=R; VR, and R¢_; = Ry for m <k <n. I shall
call such a transition from R} to R, 2, a simple contraction of R2. If
R.:2, is thus contracted again, to R2,, then the latter will be said to
result from R2 by a twofold contraction. In a similar way threefold,
fourfold etc contractions may be defined for relation schemata of
appropriate dimensions. A relation schema R2 (n>2) gives rise to
n(n—1)/2 simple contractions.

(') The reader is referred to **On the Logic of Relations™, Dialectica, 34 (1980),
167-82; **On an Application of Truth-functions to the Logic of Predicates™, Logique et
Analyse, 101 (1983), 3-18, and *'On the Generalised Converse in Relational Logic™,
Logique et Analyse, 105 (1984), 63-67. In these publications I have explained some of
the crucial terms (e.g. ‘relation schema’, ‘generalised converse’, ‘regular’, *counterpo-
sition’, ‘syllogistic function’) in more detail.
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Let C, be the generalised converse (or g-converse, for short) of a
relation schema R (n>2) and F,(2,1), F,(1,1), Fu(2,2) and F,(1,2) its
syllogistic functions, C,, and F,(2,1), F(1,1), F,(2,2), F(I1,2) the
matrices representing those correspondences. If the schema R.?,
derives from Rj by a simple contraction with R/ = R; VR, (j<m),
then the elements ¢} of C;_, (representing the g-converse of R/ 2,) are
determined as follows. The mth column of C, is added to its jth, and
the mth row to the jth row; in the matrix thus obtained column
numberk (k = m+ 1, m + 2, ..., n) replaces column number k—1, and
row number k (k = m+ 1, m+ 2, ..., n) replaces row number k—1.
Each of the elements of the matrices C,, and C,,_, is either 0 or 1, and
the elements are added in accordance with the rules: 1+1 =140 =
0+1=141=1,04+0=0.

This way of deducing C;-; depends upon the fact that C,, is linear:
Cu(Rj VRp) = Co(R)) VCy(Ry). As Fi(2,1), Fy(1,1), Fu(2,2) and Fy(1,2)
are also linear, similar considerations apply to them. That is, the
matrices F,_,(2,1), F,_,(1,1), F._(2,2),and F,_,(1,2) for the contracted
schemata are obtained from the matrices F,(2,1), Fy(1,1), F,(2,2), and
Fa(1,2), by applying an analogous procedure.

2. Expansions and Regularisations of a Relation Schema

A relation schema R} is an expansion of a schema R2(m < n) if, and
only if, R;Z can be obtained from RZ by a series of contractions. R2 is a
simple expansion of R:_, if, and only if, R?_, is a simple contraction of
R;. Relation schemata with widely differing features may be obtained
by expanding a given schema, depending upon the way basic relations
are split up into new basic relations. A simple expansion need not
preserve the regular or stable character of a schema ; but it will lead to
an alternating schema if the original schema is an alternating one.

One important type of expansion leads from non-regular relation
schemata, to regular ones which can be defined in a relatively simple
way in terms of the original schemata. Let R} be a binary non-regular
relation schema, C, its g-converse and C, the corresponding matrix.
The basis of the schema must then contain at least one basic relation
R; such that C,(R;) has at least two components: C,(R;) = R; VR, V

.... This enables us to define new relations Ri;, Ry,, ... as follows:
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R, (x,x") holds if, and only if, R;(x,x") ‘Ry(x",x);
R;, (x,x") holds if, and only if, R;(x,x’) - Ry (x',X)

and so on, using all the components of C(R;) (among which, of course,
may be R; itself). Obviously, whenever R; applies to an ordered couple
(x,x"), then one, and only one, of the relations Ri,, Ri,, ... holds for
(x,x"). For the sake of having a convenient term, let me refer to the
right hand side of the above expressions as the c-conjunctions (e.g. of
R; and R)). To determine the order of the new basic relations into
which R; is split, we stipulate that the new basic relation equivalent to
the c-conjunction of R; and R; should precede the one equivalent to
the c-conjunction of R; and R,, if, and only if, j < m. We assume that
the same procedure is applied to all the other basic relations the
converse relations of which involve two or more components. We
then determine a new ordered set of basic relations, starting from the
original basis Ry, R,, ..., Ry: Ri(i = 1,2, ..., n) is retained if, and only
if, its converse relation (as represented by means of the old basis) has
only one component ; otherwise we replace it by the new relations Ri,,
R;,, ... in the agreed order. Let us now denote the relations thus
constructed by Ry, R;, ..., R;. It can easily be shown that the ordered
set of these relations is again a basis over the domain X associated
with R} and that the resulting schema is a regular one. We shall refer
to it as the C-regularised form of the schema RZ, and to the process by
means of which it is derived as a C-regularisation.

Let the C-regularised form of a relation schema R2 be a schema of
dimension p(p =n). We shall call the difference p—n the degree of
irregularity of RZ. The degree of irregularity of a schema of dimension
n cannot be greater than n> —n = n(n—1); and it assumes this value
whenever the converse of each basic relation involves all basic
relations as components, that is, when all the elements of the original
matrix C are equal to 1.

There are other important ways of expanding relation schemata. In
syllogistics for instance, a schema may be expanded with the help of
what we may call the counterpositions K;, K, and K;. In order to
define these, let us assume that X contains with every element x also
its negative X. K, associates with each basic relation R; that relation R
of the schema which satisfies the following two conditions: (1)
Whenever Ri(x,x"), then R(X,x"); (2) each relation R’ (of the schema)
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such that whenever Ri(x,x"), then R'(X,x’) contains all the compo-
nents of R. K; and K; can be similarly defined. K, (R;) = R holds if,
and only if: (1) Whenever Ri(x,x"), then R(x,X’); (2) each R’ such that
whenever Ry(x,x’), then R'(X,X') contains all the components of R.
And R; = K; (R;) holds if, and only if: (1) Whenever Ry(x,x’), then
R(X,X"), (2) there is no relation besides R which satisfies (1) and
implies R. K;, K, and K; are ‘linear’ correspondences of the schema
into or onto itself.

A counterposition K; defined in a given schema may induce a
one-one-correspondence of the basis onto itself; if this is the case K;
will be said to be regular, and the schema K;-regular. If a relation
scheme R; is not K,-regular, we may expand it in the following way
into a K;-regular one. Let R; be a basic relation of R such that

K, (R;) = Ry VR, V .... We define the new basic relations R;, R;,, ...:

R;, (x,x") holds if, and only if, R;(x,x"). Ry (X,x’),
R;, (x.x") holds if, and only if, R;(x,x’). Ry (X,x’),

ans so on, making use of all the components of K,(R;). Whenever R;
applies to an ordered pair (x,x"), then one, and only one, of these
newly defined basic relations applies to it. All the other basic relations
of R; whose images K,(R;) involve more than one component are
treated analogously. The order of the new basic relations is fixed in a
similar manner as explained in section 2. We thus obtain a new,
K ,-regular schema. Instead of using K, we could use K, or K; instead
and construct a K, or K;-regular schema. If a schema is C-regular and
regular with respect to K, (or K,), then it is also regular with regard to
K, (or K;) and K;. For in this case we have

K1 = Cch, Kz = CK]C, K]Kz - K2K1 = K3.

3. Three Extensions of Classic Syllogistics

Let us now sketch out the way in which classic syllogistics can be
enlarged and the three syllogistic systems a, 3 and y be obtained. The
three systems are based upon relation schemata of dimensions 3, 5
and 7 respectively. As is well known, classic syllogistics(’) works

(°) See e.g. O. Bird, Syllogistic and its Extensions, 1964.
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with variables x, x’, X" etc. for general referential names, with the
constants A and 1 and their negations 0 and E, and with the
propositional forms

Axx': All x are x’;

Ixx': Some x are x';
Oxx': Some x are not x';
Exx': No x are x'.

To obtain a binary relation schema of dimension 3 and the syllogis-
tic system o, we introduce the following basic relations, defined over
the set of general referential names:

R, all ... are ...,
R, some, but not all ... are ...,
R; no...are....

If instead of R; and R, we use the traditional symbols A and I, and
instead of R, the symbol U, then the constant I can be represented as
the disjunction A vV U, and 0 as U VE. R, is the negative of R, VR;, R,
the negative of R; VR;. In addition we obtain a relation R, V R; which
is the negative of R,. We shall refer to the disjunction R; VR, VR; as
the universal relation and denote it by R,. For any general referential
name X R;(x,x) must hold. Hence R, cannot be an asymmetric
relation. We shall assume that there exist terms x,x’ such that
Ri(x,x) - Ry(x’',x) and terms x,x” such that Ry(x,x") - Ry(x",x). R; is
symmetric. We thus arrive at the conversion matrix

1 10
C = 1 10
0 0 1

A schema of this kind can be C-regularised by introducing five new
basic relations Ry, R;, R3, R4, R¢:

Ri(x,x") holds if, and only if, Ry(x,x") - Ry(x',X);
R;(x,x’) holds if, and only if, Ry(x,x") - Ry(x’,X);
Ri(x,x") holds if, and only if, Ry(x,x") - Ry(x’,X);
Ri(x,x") holds if, and only if, Ry(x,x") - Ry(x’,x);
Rs(x,x’) holds if, and only if, R3(x,x’).
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This is the basis upon which system B is built. The matrix for the
g-converse is

3

II
SO o O -
co~oc o
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that is, we are concerned with a C'-regular schema. However, the first
counterposition is represented by the matrix

0000 1
00010
K;=L 00001 |,
01010
10100

which may be used for a further regularisation. To this effect we
introduce a new basis consisting of the following seven basic rela-
tions:

Ri(x,x") if, and only if, R{(x,x");
R3(x,x") if, and only if, R}(x,x");
R3(x,x") if, and only if, Rj(x,x’);
Ri(x,x") if, and only if, Ri(x,x’) - R3(X,x');
R5(x,x’) if, and only if, R4(x,x’) - R4(X,x");
Re(x,x") if, and only if, Ri(x,x") - R§(X,x");
R7(x,x") if, and only if, R{(x,x’) - R{(X,x').

This is the basis on which the third system, system v, is founded,
We find

le

Il
cCoCoOoC oo —
cococo—~0o0C
coocoo—~o
coco—~oc oo
co—~cocCco
cC—oocooc o
=== =R ]



SYLLOGISTIS IN THE CONTEXT OF RELATIONAL LOGIC 327

and

[ -

-
|
- oo CcC o oo
cC oo —Oo oo
o= o oo
SO OO OO
oo~ OO CO
cCoCc o —=o o
[T = = R = R e R e

4. The Syllogistic System vy

As indicated this system is constructed by means of the basic
relations RY, Rz, R3, Ry, Rs, Rg and R; which form the basis of a binary
relation schema of dimension 7. Its g-converse as well as its three
counterpositions are regular correspondences, and hence a most
elegant treatment of the syllogistic functions can be given. We
suppose that F(2,1)", the syllogistic function determining the syllo-
gisms of the first figure in vy, is given by the matrix (®)

4 Rf Ry Ry R R;

R} Ry RIVR;VRy VR{VR; R{VR{VR;VR;VR{ R;VRIVR R:

R RiVR; VR VR{VR; R} R{ RyVR; VR; RjVR{VR;VRIVR}
F,1) =1 K R} RiVR{VR; VR vR; R]VR;VR;VRY R; VR{ VR; R:

Rs R; VR{ VRs Ry VRS VRg R; VR VRS Ry Ry VR VRY

R RiVR{VR;VR;VR; R; R; R{VR{VR; R;VR;VR;VRIVR]

R} R R R; R; R}

Using the matrices C”, Ki, K3 of system y we can then easily
determine the ordinary syllogisms of the second, third and fourth
figures, also the contrapositional syllogisms of all four figures.

(*) F(2,1)" may be logically deduced from a proper subset of the 48 basic syllogisms in
conjunction with a number of existence assumptions and other assumptions about the
basic relations and their properties. As my main objective is to draw attention to, and
explain the connections between, the three syllogistic systems I shall not concern
myself herewith providing such a deduction, nor with pointing out the various
symmetries of the matrix. With the help of Euler diagrams the reader may confirm the
validity of the matrix for the idealised (non-fuzzy) general referential names of a natural
language.
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Dropping from now on the double dashes in order to simplify the
formulae we obtain:
CC=E and K,K, =E,
where E is the identity correspondence. From this and
K, = CK,C
we derive that
K,K; = CK,CCK,C =CC =E;
and from K;K, = K,K; = K; that
K;K; = K,K;K;K; = K;,K, = E.

Thus, the correspondences C, K,, K,, and K; are involutions on the
set of relations constituting the relation schema. If E and the three
‘linear’ correspondences L, = K,C, L, = K,C, and L; = K,C are
added, we obtain eight correspondences which form a group whose
multiplication table is given below.

E C K, K, K; L, L, L;

E E C K, K, K, L, L, L,
C C E L, L, L, K, K, K,
K, K, L, E K; K, C L, L,
K, K, L, K, E K, L C L,
K; K, L, K, K, E L, L, C

L, L, K, L; C L, K; E K,
L, L, K, C L, L, E K; K,
L, L K; L, L, C K, K, E

Let us now assume we are given C, F(2,/) and K,. We can then

determine all the syllogisms of the first figure starting with the
products

R'F2,1) R',
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where R and R’ are any two relations of the schema other than the
universal or the void relations, R’ the ‘column vector’ representing
R’, and RT the transposed ‘column vector’ (i.e. the ‘row vector’)
representing R. If the product differs from R, a syllogism with the
premises R and R’ is obtained. As

F2,2) = F2,1)C,
F(1,1) = CF(2,1),

and
F(1,2) = CF(2,1)

the syllogisms of the second, third and fourth figures can be determi-
ned in a similar way by forming the products

RTF(2,1)C R’ (for the second figure),
RTCF(2,1) R’ (third figure),
R'CF(2,1)C R’ (fourth figure).(*)

Each of these four figures gives rise to seven sets of counterpositive
syllogisms. The ordinary syllogisms of the first figure are of the form

for all x,x’,x": if R(x,x") - R'(x',x"), then R"(x,x"),

whereas the corresponding (genuinely different) counterpositive syl-
logisms are of the forms

(1a) for all x,x',x": if R(X,x") - R’(x’,x"), then R'"(x,x"),
(1b) for all x,x’,x": if R(x,X') - R'(x’,x"), then R"" (x,x"),
(1¢) for all x,x’,x": if R(X,X’) - R'(x',x"), then R’" (x,X"),
(1d) for all x,x',x": if R(x,x’) - R'(x',X"), then R"" (x,x"),
(1e) for all x,x’,x": if R(x,x") - R'(X',X"), then R'"(x,x"),
(1) for all x,x’',x": if R(X,x") - R'(x',X"), then R""(x,x"),
(1g) for all x,x’,x": if R(X,x") - R'(X',X"), then R'"(x,x").

These syllogisms are calculated by means of the matrix products:

(1a) RT K,F(2,1) R,
(1b) RT K,F(2,1) R',
(1c) RT K,F(2,1) R',

(*) The ‘strong’ syllogisms are obtained directly in this way. It is then a trivial step to
derive the syllogisms with a weakened conclusion.
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(1d) RT F(2,1)K, R’,
(le) RT F(2,1)K; R’,
(1f) RY K F(2,1)K, R',
(lg) R" K\F(2,1)K; R',

and by using the identities (K;R)" = R"K; (i = 1,2,3). It can easily be
confirmed that each of the counterpositions is identical to its trans-
pose. That this is so for K; follows from the symmetry of the matrix
K, ; on the other hand, K, = CK,C, and hence

K} = CKiC" = CK,C, as C is also symmetric; and
KE = (Kle)T ~ K-:I;KT =K)K, = K\K; = Ks-

In the same manner we proceed with the syllogisms of the second,
third and fourth figures. The ordinary ones are obtained by forming
the products

R]: F(2,2)R' = R F(2,1)C R’ (second figure),
R“_ F(1,1)R" = RT CF(2,1) R’ (third figure),
R'F(1,2) R = R" CF(2,1)C R’ (fourth figure).

We then find the matrices of counterpositive syllogisms of these
three figures, either by applying the matrices K; to the above matrix
products, or simply by using the expressions (la) — (1g) and multi-
plying the matrix products between R" and R’ with C from the right
(for the second figure), from the left (for the third figure), or from both
the left and the right (for the fourth figure). For given that

for all x,x',x": R(x,x") - R'(x",x") - R"(x,x")
is a syllogism of the first figure, then

for all x,x',x": R(x,x’) - CR'(x",x") - R"(x,x")
is a syllogism of the second figure,

for all x,x',x": CR(x’,x) - R'(x’,x") = R"(x,x")
one of the third, and

for all x,x",x": CR(x’,x) - CR'(x",x") - R"(x,x")

one of the fourth figure; and this holds irrespective of whether the
terms x,x’,x"” are negative or positive.
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Taking into account that the transpose of CK;R equals R'K,C we
find the following sets of matrices for the counterpositive syllogisms
of the second, third, and fourth figures respectively:

(2a) K,F(2,1)C (3a) K,CF(2,1) (4a) K,CF(2,1)C
(2b) K,F(2,1)C (3b) K,CF(2,1) (4b) K,CF(2,1)C
(2¢) K5F(2,1)C (3c) K,CF(2,1) (4c) K;CF(2,1)C
d) F2,1)CK, (3d) CF(2,1)K, (4d) CF(2,1)CK,
(2e) F(2,1)CK, (3e) CF(2,1)K, (4e) CF(2,1)CK,

(2f) Ki\F(2,1)CK,  (3) K,CF(2,1)K, (4 K,CF(2,1)CK,
(2g) K,F(2,1)CKy  (3g) Ky,CFR2,DK;  (4g) KLCF(2,1)CK,

5. The Syllogistic System [5

The basis for this system has been introduced above (section 3). We
utilise a relation schema of dimension 5 which can be obtained by a
contraction of the schema underlying system y. This contraction
collapses R} and R{ into the new basic relation R, and R§ and R’ into
R:. The contraction of C" yields

¢ 00

2

Il
cocooc o —
co—~oco

0
0
1
0

- o O

1
0
0
0

The contractions of K7, K3, and K3 provide us with the matrices of
the counterpositions in f3:

00001 00001 1 0 00
00010 00 001 0 010
00 001 K; = 00010 K; = 0100
01010 ¢c 0110 00 01
1 01 00 110 00 0 0 0 1

From this we deduce that

K; = C’K;C’', hence also K; = C'K,C’;
KK;=E (i=1,2)3).

—_——0 O O



332 A. GRIEDER

All three counterpositions are alternating correspondences :

12 4 __ 6 __ = —_ . -
K= K"*"=K{*= .= K= .., K’=K’=K{= ...=
K{Zni—l = ...

12 _ 4 __ e _ —_ .
Kz = 2 = K‘.l —_— s = K}»:an vee g K2’3= K2’5= K£T= e —
K52n+1 = ..

12 14 __ 6 _ ey 2n _ . s i
K3 —K3 = A3 ——--.—K;n—...,K:;—K:;3“K55=...=K3'2n+1=

By contracting F(2,1)" we obtain

Ri R; R; R R;
R; R; R, R; VR4 VR Rs
F'21) = | R} R{VR}VR;VR{ R} R; VR RiVR4{VRs

Ri{ RjVRy R VR] VR! R, RjVR;VR}
R; RjVR;VR{ R! R; VR; VRS R.
R! denotes the universal relation in system (3. The relation schema is a

C-regular one. We can proceed as before and derive the matrices for
the second, third and fourth figures:

F'(2,2) = F'2,1)C',
F(1,1) = C'F'(2,1),
F(1,2) = C'F'(2,1)C".

As the correspondences K;, K; and K; are not regular, the counterpo-
sitive syllogisms cannot be derived from the ordinary ones in the way
this can be done in system y. However, we can obtain them simply by
contracting the matrices for the counterpositive syllogisms in system
v. Thus, contracting the matrices (la) — (1g) provides us with the
matrices determining the counterpositive syllogisms of the first figure
in system (; contracting (2a) — (2g) yields those of the second figure,
and so on, for the third and fourth figures.

6. The Syllogistic System o
Here we use a relation schema of dimension 3, with the basic

relations R; = R{ VR;, R, = R; VR}, R; = R{. The contractions of
C', K{, K; and Kj provide us with the matrices
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110
c=Ql110 ,
00 1
011 00 1 110
K.= 111 ), Kn=]o1o0), ks=1]111
110 100 01 1

The degree of irregularity of this schema equals 2. Among the above
correspondences only K, is a regular one. We obtain F(2,1), F(2,2),
F(1,1) and F{(1,2) by contracting F'(2,1), F'(2,2), F'(1,1) and F'(1,2)
respectively. (%)

Contracting F'(2,1) yields

Rl Ru RS
F(2,I) = R1 VR; Ru Rz VR3
R, R, R,
And from F'(2,2) we find,
R, R, R;
F(2,2) = R2 VR3 Ru Rz VR3
R3 Rll Ru
from F'(1,1)
R1 v Rz R2 R2 Vv R3
F1,1) = R, VR, R, R, VR, ;
R, R, R,
and finally from F'(1,2)
R1 VRZ R1 VRz R2 VR3
F(1,2) = R, R, R; VR,

R, R, R,

(*) There are 42 ordinary syllogisms in system a (11 in each of the first three figures
and 9 in the fourth), 4052 (ie 1013 in each of the four figures) in system f, and 95692 (ie
23923 in each figure) in system y. I would like to thank my colleague Mr H G Moring
(Department of Computer Science, The City University) as well as Mr R H Moring for
having computed these numbers. As Mr H G Moring pointed out to me, the increase in
the number of syllogisms is mainly due to the rapid increase of the number of syllogisms
with a weakened conclusion.
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By a twofold contraction starting from the matrices (1a)-(1g) we
obtain the seven matrices for the counterpositive syllogisms of the
first figure in system o. They are

Rz VR3
G (2,1) = R,
R, VR,

R] v Rz
R,
Rz v R3

Gs(2,1)

R,
R, VR,
R,

G,2.1)

R; VR,
G,A2,1) = R,
R, VR,

R, VR,
R,
R, VR,

R, VR,
R,
R, VR,

R,
R, VR,
R,

R] \' R2
R,
R; VR;

’ Gf)(zsl) =

G, 42,1) =

» G:5(2.“ =

R, R,
RI VRz Ru
R‘l Ru
R3 Ru
R, VR; R,
R. Ry
Rl VR2 Ru
R, R,
R, VR; R,

In a similar manner the counterpositive syllogisms of the second,
third and fourth figures can be derived, using the matrices (2a)-(2g),
(3a)-(3g) and (4a)-(4g) respectively.

Thus, what is normally referred to as classic syllogistics is a
relatively undifferentiated and formally clumsy sub-system of the
systems a, B and y. It may have been strongly suggested by certain
features of ordinary language, but from a formal point of view it is
nonetheless a poor system whose structure can be more satisfactorily
analysed if it is embedded in a wider context. I hope to have shown
that relational logic is ideally suited to provide such a context.
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