PARTIALITY AND NONMONOTONICITY IN CLASSICAL
LOGIC

Johan VAN BENTHEM

Recent developments in semantics have broken with what are
generally perceived to be two major presuppositions in classical logic :
complete information, and cumulative inference. In this report, we
want to show that the matter is more complex. Lack of completeness
and failure of cumulation do occur in classical modal Jogic and, in the
last analysis, even in ordinary classical logic itself. Although the locus
of these phenomena becomes less definite in this way, the classical
analogy may also have some positive heuristic virtues.

The following discussion has been restricted to propositional lan-
guages, for reasons of expedience rather than principle. Three results
obtained appear to be new: a semantic tableau analysis of ‘‘strong
consequence’’ (Sec. 1), a modal reduction of ‘‘data logic’’ (Sec. 2),
and an axiomatization of nonmonotonic classical logic (Sec. 4).

FPartiality

Recent semantic theories have advocated a ‘‘partial’’ perspective,
often as regards our information about semantic objects, sometimes
also as regards these objects themselves. For instance, in tense logic,
people have studied partially interpreted languages over mathemati-
cally definite points in time. But also, extended ‘‘periods’’ have been
investigated, as a kind of temporal item which itself represents a range
of eventual mathematically precise locations. (Cf. van Benthem,
1982.) Similar moves have been proposed in possible world semantics
for modalities: cf. Humberstone, 1981.

Actually, the term ‘‘partial’’ may be inappropriate in these and
similar cases — as it suggests cutting off parts from some complete
given entity. But eventually, one may come to regard the partial cases
as the fundamental ones, viewing the former semantic objects as some
kind of ideal extrapolation out of the latter. Instead of musing about
these issues in a general fashion, we shall now take a look at some
concrete examples, pointing at more general features as they arise.
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1. Strong Consequence in Situation Semantics

One of the fundamental observations in ‘‘situation semantics’’ (cf.
Barwise and Perry, 1983) has been that an adequate account of the
propositional attitudes needs to employ a finer grid of identifying
propositions than that provided by classical logic. In fact, ‘*harmless”’
classical equivalences such as p—(p&(g V~g)) turn out to be
unacceptable in an analysis of direct seeing. The proposed solution
has been that (partial) situations can ‘‘support’’ p without supporting
p & (g V ~q), when lacking information about g. In general a situation
can support a statement or its negation, and then the matter is decided
henceforth (‘‘persistence of information’’); but, the statement can
also be undecided, becoming supported only in a larger situation.
Only those statements will be identified now into one single proposi-
tion which are indistinguishable in terms of supporting situations.

Kamp’s Analysis

Kamp (1983) proposes an interesting analysis of the above ideas, of
which the following fragment is relevant here. Situations may be
regarded as partial valuations V, assigning truth values 0,1 to some
(perhaps not all) proposition letters. A simultaneous recursion now
defines

V=@ (V supports @), Vo (V rejects @),

for formulas ¢ in a propositional language with ~ (negation), &
(conjunction), and V (disjunction):

(i) Vip iftVp)=1, Vsp it V(p)=0
(i) VEe&yifViEgand Viey, Vee&yif Vepor VHy
(iii) VeEeVy if VEg or V=Y, Ve Vy if Vegand Vey

and, simple, but subtle,
(iv) VE~¢ ifVHe, Ve~¢ ifViEe.

. Alternatively, these clauses could be formulated using three-valued
truth tables.
In the restricted area of propositional logic, but also in the much
more complex field of predicate logic with an added operator for
direct perception statements (treated by Kamp), this semantics dis-
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plays the earlier-mentioned features. We do not have Vi=¢ or V 5 ¢
for all @ (i.e., bivalence fails); hence, for instance, g V~g is not
always supported, which blocks the strong inference from p to
p&(@GV~q). On the other hand, persistence does hold: if
ViE=@(V H¢), then V' =¢ (V' @) for all valuations V' extending V.

Kamp gives a completeness argument deriving the full logic of this
scheme. Basically, all those classical equivalences remain valid which
involve the same vocabulary on both sides: including most construc-
tively controversial principles, such as the De Morgan law ~ (p &q) —
~p V~q, or just Double Negation ~~p «p. Thus, perhaps surpri-
singly, the grid of strong equivalence is not that much finer than that
of classical equivalence after all.

Semantic Tableaus

Once presented, the Kamp semantics suggests an alternative,
completely orthodox view upon the matter. In so-called ‘‘Beth
tableaux’’ for classical logic (cf. Smullyan, 1968), a counter-example
is sought for a top sequent P,...,P,: Qi,...,0n representing an
inference from P; and ... and P, to the disjunctive conclusion Q, or ...
or Oy. That is, some valuation V is to be found verifying all of
Pi,...,P,, while falsifying all of Q,,...,0,.. Connective rules break this
problem down into (alternate) sets of less complex requirements,
down to an operator-free level (if need be). Thus, through a systema-
tic application of these rules to all complex formulas, a tree is created,
each of whose branches represents a purported counter-example.
Formulas to be made true occur on the left-hand side, those to be
made false to the right-hand side of the branch. Such a branch may
“*close’’, when the same formula appears on both sides (then, the
corresponding counter-example turns out to be spurious); otherwise,
it remains ‘‘open’’.

Example : a closed tree

~pV@&r),~q-~p

~pVi(g&r)-~p,q

~pVig&r),p-q
q&r,p-q ~p.pq
q.r.p-q p-q.p
closure closure
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There are no counter-examples:

~pV(@G&r),~q imply . ~p.
Example : an open tree
~pV@Vr),~q-~p

~pVi@gVr)-~p,q
~pVigVrhp-q

qVr,p-q ~p,p-q
q,7°q rp-q P4q,p
closure open closure

The valuation V with V(r) = V(p) = 1 and V(g) = 0, corresponding wv
the open branch, is a counter-example to the top sequent.

Now, one interesting thing about the Beth refutation method is this.
Counter-examples occur when a branch remains ‘‘open’’, that is, no
statement occurs both on the left and the right side of the branch. But,
there is no presumption of completeness: not every proposition letter
need be decided on the branch.

Example : In refuting ~p Vgq -~q, the tableau may ledve p undeci-
ded:

~pVq-~q
~pVq,q-
~p.q- q.9 -
q-p
Left counter-example: V(g) = 1, V(p) = 0, and right counter-exam-
ple: V(g) = 1. Notice that the former is a special case of the latter.
Significantly, this indeterminacy shows in the form of the induction
establishing the desired behavior of the valuation V associated with an
open branch:

if @ occurs on the 1-side, then V=g
if @ occurs on the 0-side, then Vi=~g.

Usually, one extends V to some arbitrary total V* 2V, But, evidently,
the above partial valuations would also be quite suitable, with V () =
1 if and only if V=@ and V(¢) = 0 if and only if V = @. Thus, Beth
tableaus already induce the above partial perspective.

But then the question arises how the outcome of such a partial
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perspective can still be classical logic. The answer lies in the
definition of consequence. In a partial valuation framework, there are
at least two options for defining consequence, which were still
co-extensive in the bivalent case (a latitude well-known from many-
valued logic). One possibility is to set @ =1 if

forall V, if V() = 1, then V(y) = 1.

This is ‘‘strong consequence’’ in the above sense. Another possibility
is to have

forall V, if V(g) = 1, then V(y) = 0.

It is the latter notion which is being tested in Beth tableaus, and hence
it is the latter which gives rise to classical consequence.

Still, using the tableau perspective, it is now also relatively easy to
give a complete description of strong consequence. The idea is simply
to reinterpret the two labels 1 and 0 on the two sides as 1 and #= 1 (i.e.,
0 or undefined). All rules of decomposition for &, V, and ~ except one
work out in entirely the same way. (For instance, p &g =+ 1 if and only
if p=1or g= 1.) The only exception are negations with the
= 1-label. If V(~q) = 1, then not necessarily V(@) = 1; it might be
undefined. Thus, reading off Gentzen sequent rules from tableau rules
in the usual way (recall the and/or-reading mentioned above), we
obtain the following valid inferences:

(1) the usual basic sequents, the usual (introduction) rules for & and
V, as well as the left ~-rule: A =C, D implies A,~C =D.

Notice that the missing right ~-rule would be involved in deriving
the invalid sequent = p, ~p (i.e., tertium non datur). The left ~-rule,
however, gives us p, ~p = (i.e., ex falso sequitur quodlibet). Even the
latter would have failed us, if we had also admitted ‘‘over-defined”
valuations V, assigning both 0 and 1 in some cases — that is, if a
four-valued semantics had been adopted.

Nevertheless, there remain quite a few principles governing nega-
tions in the conclusion (and premise) set, mirroring the given evalua-
tion rules. Basically, these allow negations to move inward :

(2) ~~A is equivalent to A, ~(A&B)to~A V~B, and ~(A VB) to
~A & ~B.
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These observations yield a simple proof for a result first obtained by
Kamp:

Theorem: The complete logic of strong consequence, expressed in
Gentzen sequents, is given by the principles (1) and (2).

Proof: The above principles are all valid in the intended sense.
Conversely, a nonderivable sequent may be brought into an equiva-
lent form having negations only in front of atomic formulas. To the
latter, the ordinary tableau rules for & and V may be applied, yielding
some open branch, which induces a counter-example as follows. The
valuation V defined by setting V (p) = 1if p occurs on the 1-side of the
branch, V(p) = 0if ~p so occurs, will give value 1 to all formulas on
the 1-side and a different value to those on the other side. (The
relevant induction step is guaranteed by the above reinterpretation of
the tableau rules.) Q.E.D.

Thus, a simple validity test for classical consequence can be made
to work for strong consequence as well.

Actually, the Beth test is one of a family of classical methods
sharing similar partial traits. Another relative would be Hintikka’s
well-known method of ‘‘model sets,”” being partial specifications of a
model under construction.

Representation

There are other possible connections between the above partial
semantics and its total ancestor. A partial valuation V can be extended
in several ways to a total one and the idea lies at hand to attempt a
“reduction’” of truth at the former to truth at the latter. More
specifically, the following equivalence seems plausible:

V(p) =1 iff V*(¢) = 1 for all total valuations V* extending V.

When taken as a definition, this amounts to the ‘‘supervaluation’
approach to partial truth. But as a statement the equivalence fails. For
example, p V ~p is true in all total V*, but not necessarily in all partial
V. What can be shown, however, is the earlier-mentioned persis-
tence: V-values once assigned remain the same for extensions of V.
(Actually, not even this much will be guaranteed in later sections,
when absence of information may validate possibility statements,
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which need not be persistent.) Thus, on the whole, the above
connection fails. This does not preclude more sophisticated formula-
tions — which certainly exist — but they are beyond the scope of this
report.

2. Strong Consequence in Data Semantics

An extension of the above propositional semantics to the case of
modal notions has been proposed in Veltman (1981). In ‘‘data
semantics’’, ordered sets of information states, provided with partial
valuations, are used to model possible growth of information. This
setting is needed to describe the semantics of implication, as well as
the natural language modalities MAY and MUST, which refer to some
set of possibilities, not all of them (necessarily) actual. We shall give
an outline of this theory, which has a lingering orthodox modal flavor.
The latter feeling is then validated by presenting an embedding of data
semantics into the more traditional possible worlds semantics for the
modal logic $4.1.

Data models M = (I, C, V) have a partially ordered set {I, C) of
information states, each of whose maximal chains ends in a greatest
element. (The idea is that every search for complete information is
eventually succesful. Compare the similar condition in Scott’s *‘do-
main semantics,”’ where all omega-chains are required to have limits.)
To eachi in I, the function V assigns some partial valuation V, for the
proposition letters, subject to a monotonicity constraint: if i Cj, then
V, extends V.. Moreover, V; ends up being total in the maximal
elements of (, C).

Notice that not all possible partial valuations need occur in a model.
This means that certain constraints may be encoded in the pattern of
available continuations for a state / in  with valuation V,. Conversely,
certain partial valuations may recur at different states. This allows us
to model distinctions such as those displayed in the following pattern:

'P,q 'P
~ -~
1 \.2
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In state 1, p and g are not yet true, but, whenever p becomes true, so
does g. In node 2, p and g are not yet true either, p will become true,
but it may or it may not entail g. This kind of observation is also
standard in modal logic: mere state descriptions cannot replace
possible worlds (except in the semantics of such a simple logic as S5),
since verification of higher modal operator statements may require the
occurrence of identical state descriptions at different locations in the
pattern of alternative worlds.

The truth definition is as before for the propositional part of the
language (~, &, V). In addition, Veltman presents the following
operators, with their truth clauses:

MEg->y[i] if forall j i, Mi=q[j] only if M =v[j]
M- yli] if for some j Ji, M =q[j] and M Hy[j)
ME=MAY@[i] if for some j i, M =g[j]

M EMAYg[i] if forallj3i, not M =ql[j]
MEMUSTo[i] if for all maximal j Ji, M =][j]

M =MUST@[i] if for some maximal j i, M =q[j]

Evidently, different views of these operators could be (and have been)
implemented as well.

As was indicated above, this time, persistence is not guaranteed:
growth of information may mean loss of possibilities, and hence true
MAY-statements, or, say, false —-statements, can change their truth
value. Veltman charts this phenomenon systematically.

With the definition of strong consequence as before, this semantics
generates a ‘‘data logic’’ extending the earlier one of Section 1. (A
complete axiomatization is obtained in Veltman 1985.) For instance,
the implication — has an interesting logic, with features reminiscent of
classical, intuitionistic, and even counterfactual conditionals. Also,
MUST and MAY behave in an attractive way. Like their counterparts
in traditional modal logic (**necessarily’’ and *‘possibly’’), they satisfy
some reasonable reduction postulates, such as MUST MUST
¢=MUSTg or ~MAY ~p =MUSTg. On the other hand, they
avoid the principle MUST ¢ — @, which seems too strong for ordinary
language. The semantic point here is that MUST @ may hold, in the
sense that @ is true at all maximal information states extending the
present one, while @ is still not true. More informally, the implicit
evidence may make @ inevitable, while we still lack direct evidence to
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assert @. This intuitive distinction, hard to draw in classical logic, is
reminiscent of the difference between ~~ ¢ and @ in intuitionistic
logic. (This observation, which will be clarified below, is even valid in
a precise technical sense.)

A Modal Embedding

Even though the presentation of data semantics involves partial
information, the above account evokes analogies with classical modal
logic. And indeed, a reduction is possible, as sketched in the following
five steps. Presumably, this type of argument can be made to work for
a variety of partial semantics in the above vein.

First, we determine a modal logic with enough *‘locomotive power’’
to drive the reduction.

A. The modal logic of all partial orders with
greatest elements for maximal chains is S4.1

Here, §4.1 is the logic arising from the modal logic S4 by adding the
so-called McKinsey Axiom O g —» OO,

The soundness side of this assertion follows by a simple inspection:
all $4.1 axioms are valid on data structures, when the modal operators
are interpreted in the usual way over the ‘‘alternative’’ relation C. In
particular, the McKinsey Axiom holds thanks to the presence of
maximal elements.

Completeness is less immediate. $4.7 is known to be complete with
respect to those possible worlds frames that are pre-orders in which
every node has a successor that is an end-point. This will not quite de
here: such orders may still lack maximal elements for all maximal
chains. But, a closer look at the actual proof techniques employed in
Segerberg (1971) provides more information. As is shown there, 54./
nontheorems may be refuted in finite reflexive transitive frames, in
which each upward path eventually ends in some reflexive end-point.
Now, an application of modal ‘‘bulldozing’’ methods will turn such a
counter-example into a partial order all of whose maximal chains have
maximal elements.

Other structural stipulations on data models might have produced
the even stronger modal logic S4Grz, or perhaps rather the weaker S4
itself. Interestingly, in this perspective the modal logic of the earlier-
mentioned Scott domains remains just 4. (The reason is, essentially,
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that one can use ascending omega-1-chains to model infinite upward
alternations 0 Cp & O & ~p (= ~ <&0Op), while obeying the letter of
the omega (i.e., omega-0) completeness requirement.)

B. A translation from data formulas to modal
formulas

With the understanding that O will mean *‘in all j Ji,”’ and < “‘in
some j i’ (as is usual in modal semantics), we define a translation by
simultaneous recursion:

pt = 0Op p- =0O~p
(~)* =@ (~9)~ =g*
@&y =o¢*&y? (@&Y)” =@ Vy~
evy)*  =¢*vy* (@ VY~ =@ &Y~
(- =0@" ->v") (@->y)” = Ot &y7)
(MAY @)* = Cot (MAY @)~ =0O~¢*
MUSTo)* = O<Cet (MUST @)~ = oOg.

Actually, the specific clauses are irrelevant here. The main idea
resides in the double recursion (an unusual feature in logical reduc-
tions), and the modal expressibility of the earlier truth conditions.

Now it remains to set up correspondences between the models for
these two languages.

C. From data models to modal models

Given a data model M = {I, [, V), set M* = {I, [, V*), with
V*(p) = (def) {i in I|either V,(p) = 1, or V,(p) # 0 and for some
J3i CVJ-(P‘) = 0}.

Claim: M=o@[i] iff M*E=@*[i]
M=qli] iff M*E=e[i.

There is a story to this particular choice of V*. It would seem more
natural to have V*(p) simply be equal to {i in|V,(p) = 1}. But then
M* could validate O ~p at some point i merely because of a lack of
p-successors, something which is not sufficient for V,(p) = 0 in data
semantics.

The claim is proved by induction on ¢. Since the translation has
been designed exactly to mirror evaluation in data semantics (with one
minor modification in the MUST-clause), the only nonevident case is
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that of the atomic formulas. The relevant reasoning goes as follows.

If Mi=p[i], then V,(p) = 1, and hence V,(p) = 1 for all jJi.
Therefore, M* =Cp[i]. Conversely, if M* =0p[i], then a fortiori
M*=pli]. Thatis, V,(p) = 1 (and we are done), or V,(p) = 0 and some
J i has V,(p) = 0. But, the latter contradicts M* =p j] (implying
V;(p) =0).

If M p[i], then V,(p) = 0 and V;(p) = 0 for all j Ji. Therefore,
M* =0~ p|i]. Conversely, let M* =~ p|i]. Consider any maximal
Jj4i. Since p fails at j, and V; was total, V,(p) = 0. Now, suppose
Vi(p) + 0. Then i would qualify as a member of V*(p) after all: guod
non. Therefore, V,(p) = 0.

A check for the MUST-case clinches the argument. Q.E.D.

Evidently, the existence of maximal points in data models plays an
important role in the above argument, even in the atomic case. It
would be of interest to extend the present reduction to the case where
no such existence is postulated, something which ought to produce an
embedding into modal S4.

D. From modal models to data models
Given an $4.1 model N = {I, C, V) of the kind obtained in step A,
set N' = (I, C, V'), with Vi(p) = 1 if N=0Opli], and V'(p) = 0 if
N E=0~p[i]. Again, an obvious inductive proof, this time also with an
obvious base step, establishes the following:
Claim: N'k=o@l[i] iff NEet[i]
N'deli] iff N [i].

It now remains to reduce the corresponding logics.

E. Strong consequence in data semantics redu-
ced

For a set @,,...,¢, of premises and a conclusion 1 in data semantics,
we have the following:

Theorem:  follows from @,,...,¢, in data semantics if and only if
y* follows from q,..., ¢ in $4.1.

Proof: Counter-examples to inferences can be transformed both
ways, as has been shown in steps C and D. Q.E.D.
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This result does not diminish the interest of the above partial
approaches as such. What it does provide is some direct information
about their meta-theory. For instance, §4./ is known to be decidable,
and hence so is strong consequence. Thus, traditional modal proof
techniques and results remain useful in the new setting. But, the
above reduction also shows that the traditional possible worlds
semantics, despite the frequent accompanying *‘totalitarian’’ ideo-
logy, can model partiality after all. (Actually, a similar use of the
modal system 54 has been around for quite a while — witness the next
sections.)

Much more could be said on the topic of *‘partial”> versus ‘‘total’’
interpretation of classical modal frameworks. Suffice it to note here
that, at least, Carnap’s original use of finite state descriptions as
possible worlds has a partial flavor. Philosophically, hard-headed
reification of complete possible worlds has only been one current in
the development of the subject.

3. Possible-worlds Models as Information Models

That the possible worlds set-up can also be interpreted partially has
been evident since the sixties, when Kripke presented his modal
semantics for intuitionistic logic, inspired by Godel’s translation of the
latter into modal §4. (Cf. Fitting, 1969, for a comprehensive exposi-
tion.) Briefly models {, C, V) are now thought of as partially ordered
“‘growth patterns’” (I, C), with pieces of information (‘*forcing
conditions’’) attached to every mode i in I. Unlike the earlier
approach, however, there is just one relation of truth (‘‘forcing’),
without the above ‘‘refutation.’’ In a sense, Kripke’s account is more
radical, as the aspect of information growth now shows, even in the
basic clause for negation:

ME=o&y[i] if MEg[i]and M =vyli]
MEg vyl if MgEglilor MiE=yl[i]
MiE=~qli] if for all j3i, not M =[j] (‘‘never”).

In addition, implication is treated ‘‘modally’ :

Mz=g-vy[i] if foralljdi, Mi=g[j] only if M =y[j].
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What this semantics shares with the earlier Kamp set-up is Persis-
tence (or ‘‘monotonicity’’):

if a statement holds at /, it will continue to hold at all extensions J3i.

This behavior will have to be stipulated for atomic formulas, of
course, and it then extends to complex formulas. (Notice that the
presence of additional modal operators may invalidate persistence in
general, as is the case in data semantics.) An additional important
feature of this approach is that traditional explications for logical
constants are reassessed, and sometimes have to be modified, in a
partial setting. (Eventually, one may also come to modify the explica-
tions given for & and V, employing further C-extensions. Cf. van
Benthem, 1984a.)

There is nothing intrinsically intuitionistic about this approach to
partiality, however:

Possible-worlds Semantics for Classical Logic

A plausible ‘‘partial’”’ criticism of current completeness proofs
(Henkin style) in standard logic objects to the use of an arbitrary
“maximally consistent’’ extension of a given consistent set, in order
to produce a model for the latter. (For an exposition, compare any
standard introductory text in mathematical logic.) But, in practice,
this additional information is never used, and hence one would prefer
a cleaner model construction, without this arbitrary indeterminacy.
(Cf. van Benthem, 1981.)

Now, the usual answer here is that merely consistent sets of
formulas do not **decompose’ their statements in the recursive way
required of a potential ‘‘truth set,”” whereas maximally consistent sets
are precisely the ones which do. But, this response loses force once
one considers the natural environment in a partial perspective, viz.
the complete universe of all consistent theories, ordered by inclusion.
For, there, the following reductions do apply for provability :

S-e&vy iff S—g@and Sy
S~ iff for all §' 28, not §' g
St@-y iff forall §'2S, §' @ only if §' .

The reduction for disjunction is somewhat more complicated (even-
tual, as opposed to immediate choice):
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S+ Vvy iff for all ' 28, there exists §" 28" with
either S" @ or §" .

(Compare the equivalence @ V1 — ~(~@& ~1).) Classical logic
does not enforce on the spot decisions at gun-point, as happened in
the earlier intuitionistic clause for disjunction.

Thus, the Henkin model of all consistent theories itself forms one
unique canonical model verifying consistent theories at their own
appropriate stages, when reinterpreted as a possible worlds model M
in the obvious way. (More precisely, we will have M =q[S] if and
only if S —q, for all ¢ and §.) A little care is needed to make the right
abstraction from here, however. One wants models {{, C, V) with a
partial order {{, C) upon which evaluation takes place according to the
above scheme. But, to obtain classical logic, two constraints are to be
enforced (starting with the assignment V.) One condition is Persis-
tence, as so often before. The other is Stability (or ‘‘cofinality’’):

if for all j _1i there exists some k _1j where ¢ holds,
then ¢ holds already at i itself;

or, equivalently,
if @ does not hold at /, then ~@ holds at some j _i.

In other words, lacking the information that ¢, there must still be
the possibility of obtaining further information excluding ¢ altogether.
This principle has been proposed by various advocates of partial
semantics (cf. Humberstone, 1981).

Simple though it is, this Henkin model forces one to reflect upon
certain semantic options in modelling partiality. For instance, the
consistent theories may explicitly embody both atomic information
(“*facts’’) and higher information (*‘generalizations’’). In general, this
seems to be quite a realistic view of what information people possess,
both ‘‘factual’’ and ‘‘higher-order.’’ But, if desired, one could also
allow direct access only to the facts — all higher information remaining
encoded, so to speak, in the pattern of possible extensions.

Another relevant issue is that of direct and indirect evidence.
Instead of deductively closed consistent theories, one might consider
all consistent sets of sentences ; doing so creates a distinction between
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““direct”’ evidence — @ €5 — and ‘“‘indirect’’ (*‘derived’’) evidence —
S —@. The latter notion can be rewritten as

for all $' 25, there exists $" 25’ with ¢ €5".

Notice that “‘growth’’ now involves both additional information and
fresh consequences of old information. If one defines a valuation on
this Henkin model, setting V(p) = {S|p in S}, while defining the
logical constants as above, there will be no direct equivalence
between provability and truth at S, but rather

MpE~~g@[S] iff S+e.

A Modal Henkin Model

Many of the above clauses have a modal ring. So, let us introduce
two operators [ (“‘in all extensions’’) and < (“‘in some extension’’),
to make this modality explicit. Thus, our language can now also
express consistency of its statements. Moreover, Persistence may be
formulated as the validity of the implication from ¢ to g, while
Stability amounts to the transition from O O (i.e., ~ ~@) to @.

This simple addition makes the logic of the model much more
complex. In general, the truth relation S=q¢ can no longer be
recursively enumerable; as, for example # =< if and only if @ is
consistent, for predicate-logical formulas ¢. (For the case of proposi-
tional logic, the complexity may remain manageable.) Still, one can
study the modal logic of this scheme, consisting of the inferences valid
at each point. There are some interesting phenomena here. For the
operator [, the logic becomes at least §4, with, for example,
O@&y) - Op& Oy, Op—@, and Op—-O0g. But, < is no
longer its dual: <@ < ~ 0~ @ is not a valid principle ; and indeed, <
fails to satisfy even the basic minimal modal law (g V) —
<&@ VO, (The reason is that, on the above classical account of
disjunction, V is upward preserved, whereas <>(¢ V1) need not be.)
Actually, this difficulty will disappear once we take V to be the earlier
intuitionistic disjunction. (Cf. the corresponding move in Gabbay,
1982.)

Evidently, there are also attractive structural variations on the
above theme. For instance, the above observation about nonrecursive
enumerability of truth at stages seems a bit ‘‘extraneous.’’ It would be
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interesting to devise some kind of relative computability result,
separating traditional complexity problems from those (if any) indu-
ced by the Henkin structure itself. More radically, changes in the
latter structure might be studied, once the underlying system of
deduction is allowed to vary from classical logic to weaker variants.
With these speculations, we leave the above Henkin model as an
object for further study.

Finally, if a connection is to be established with the traditional
Henkin approach employing maximally consistent sets, one may
study the maximal chains through the Henkin model, and associate
models with these. (Cf. the corresponding idea of a maximal search in
data semantics.) Again, the relevant questions of total representation
for partial stages will not be addressed here.

Nonmonotonicity

Classical logic seems to obey the maxim of ‘‘what we have, we
hold”. Likewise, situation semantics stresses the persistence of
information once obtained. This close connection between classical
inference and monotonicity is studied in van Benthem (1984b), where
(in a suitable generalized quantifier setting) classical entailment is
shown to be the only notion of inference which allows strengthening
of antecedents with weakening of consequents.

On the other hand, classical model theory does not hold that
statements true in a model would hold in all extensions of that model.
Neither does classical modal 54 imply that if <, then O e for all
statements @. In other words, nonmonotonicity is a term with various
senses, and hence some distinctions are needed.

4. Varieties of Nonmonotonicity
In a logical semantics, three levels of monotonicity may be distin-
guished. First, at the indices of evaluation, one may have
1. iE=@,iCj onlyif jEg.

Then, in the object-language, an implication connective may satisfy
the law
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II. e—->YEp&y—y (strengthening of antecedents).

Finally, in the meta-language, a notion of consequence may obey
addition of premises:

III. o=y onlyif @, x=vy.

For example, the nonmodal fragment of the above data semantics
exhibits all three forms of monotonicity. However, the modal logic
84, with its usual notions of (object-level) entailment and (meta-level)
semantic consequence, has only II and III. And other types of
behavior have occurred too. The counterfactual implication of Lewis’
possible worlds semantics fails to obey II, while, say, the original
notion of logical consequence found in Bolzano did not obey III (cf.
van Benthem, 1984c). Clearly, then, cumulation of information has
not always been taken for granted in the logical tradition.

Nevertheless, few logical studies have investigated nonmonotoni-
city as such. And yet, quite natural considerations induce a nonmo-
notone (in sense I) version of classical logic, employing the partial
perspective of the above Section 3. The following results have a
certain analogy with the basic nonmonotonic features of the earlier
“‘data logic™’ (again, cf. Veltman, 1981), but the presentation given
here shows that these features already arise wholly within a classical
logical framework.

Consider the propositional language with &, ~, and — only,
interpreted as before in models (I, C, V') with a partial order {I, C). As
we have seen, classical logic required the additional constraints of
Persistence and Stability, while intuitionistic logic still retained Per-
sistence. What this perspective suggests, evidently, is a ‘‘minimal
logic’’ without either presupposition.

Theorem: The minimal logic of &, ~, and — is given by the
following principles:
(1) the usual *‘structural’’ rules for -, such as reflexivity, transitivity,
and (sense III) monotonicity with respect to antecedents
(2) P&Y -9 Q&Y -Y; @, Y &Y
3) ¢, 9->Y=y;if P, o+, then P -1, provided that P is a set
of premises consisting of negations and implications only
4) @, ~@+; if P, g —false, then P —~ ¢, with the same proviso.
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Comments: First, negation may be regarded as a special case of
implication, with ~¢ = (def) @ —false. (Here, false is assumed to
imply everything; as usual.) Thus, principle (4) becomes a conse-
quence of (3), and we may omit it henceforth, concentrating on
conjunctions and implications (with the false). Now, the only diffe-
rence between the logic presented here and the usual calculus for
‘‘minimal logic™’ resides in the Conditionalization rule: in general,
here, conditionals can only be introduced in persistent contexts.

In fact, this may be the proper setting to observe that, by the above
result, unrestricted Conditionalization is actually equivalent to Per-
sistence — a result implicit in Gabbay’s proof that intuitionistic logic is
the weakest logic satisfying the ‘‘Deduction Theorem’’.

Proof: A formula ¢ is persistent everywhere if and only if the
following inference is valid: ¢ +—true — @ (with frue any universal
validity). Now, if Conditionalization holds generally, the latter is a
trivial consequence of @ -@; @, true —@ — and hence Persistence
holds. Conversely, if every formula is persistent, then Conditionali-
zation is valid. For, suppose that P, ¢ —{y; we need to show that
P —@ — . Let P hold at any stage i. Consider any j 1i where ¢ holds.
By Persistence, P still holds atj, and it follows that 1 holds there, by
the assumption. Q.E.D.

Proof of the Theorem: Obviously, all principles mentioned are
valid. (Notice the role of the proviso on Conditionalization: only
negations and implications are automatically persistent.)

Conversely, suppose that ¢,,..., @,+1. Consider the Henkin
model of all deductively closed consistent sets of formulas, with a
relation defined by

§,CS,; if all »>-formulas in §, are also in S,.
Thus, S, agrees with S;’s long-range predictions, while perhaps
disagreeing on atomic facts. This relation is a reflexive transitive
order. With a valuation V defined by V (p) = (def) {S |p in S}, one now
arrives at the basic Truth Lemma:

I, C, VYE=g[S] iff gisins.

Proof" For proposition letters, and for the &-case, the assertion is
obvious. For ¢ = 4 — ¥, the argument is as follows. If y — y is in §,
and S CS’, theny — y is in §' (definition of C). Now, ify is true at S,
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then v is in §' (inductive hypothesis), and hence y is in S’ (deductive
closure of §'): that is, x is true at S’ (again by the inductive
hypothesis). So, y — y is true at S. If, however, y — y isnot in S, then
{o— B[P in S} U{y} does not derive y (otherwise, y — x would be in
§ after all, by the special Conditionalization rule), and hence its
deductive closure is a counter-example to the truth of y — y at §.
Q.E.D.

Thus, in the deductive closure S of the above original premises
P15e.00 @, P Will become refuted.

The counter-example obtained in this way is not quite correct yet,
as [ is not necessarily a partial order: it might lack anti-symmetry.
But, standard modal ‘“‘unraveling’’ techniques will transform the
counter-example obtained into a partially ordered one. Q.E.D.

This proof does not answer all questions of semantic interest
concerning the above logic. Notably, the relational structures produ-
ced by the unraveling method may be quite exotic infinite partial
orders. One obvious issue, then, is whether some smoother class of
models suffices. For instance, it is known that the earlier intuitionistic
logic needs only finite partial orders for its models. But, that is not the
case here.

Example : The following principle is valid on all finite partial orders:

~~p—o~~(true - p).

It is not derivable in the minimal logic, however, being refutable in an
ascending omega-sequence with infinite alternation of truth and falsity
for p. (Compare the closely related McKinsey Axiom of S4.1.)

All the same, when ‘‘nonstandard” models are admitted with
possible loops, it turns out that finite models suffice after all. This may
be seen by embedding our language, with its intended semantics, into
that of the modal logic §4 — as was also possible in the intuitionistic
case. It then follows that our minimal logic is even decidable.

Another question, not to be answered here, remains. Can the
minimal logic be modelled using partial orders having chains of at
most order type omega?

Summarizing then, the basic logic of our earlier partial perspective
is nonmonotone in sense I. Further logics arise by concentrating upon
special classes of statements, satisfying additional preservation pro-
perties — of which Persistence and Stability are only two examples.
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One can certainly think of other attractive candidates. (Close to the
above interests, it might be useful to determine the logic of just
Stability, in the earlier form 0 <@ — @,” or its interesting variant
“0<Ce » &O@™ proposed by Roeper; cf. van Benthem, 1984a.)

Next, one may want to extend the above investigation to richer
languages. For instance, disjunction could be added by the earlier
classical definition (O (¢ Vy)). In the absence of Persistence,
curious phenomena arise then. For instance, not even ¢ = V1 will
be valid: as was noted before, the conclusion is persistent, whereas
the premise might be valid at just this one stage. In general, once
Persistence is given up as a general principle, one has to be extremely
careful with traditionally ‘‘evident’ inferences.

Thus, there is a good case for considering two kinds of disjunction
here: *‘choice disjunction’” (one of the disjuncts right now) and
““eventual choice’ as above. (Again, in the absence of Persistence,
these have become mutually independent notions.) In the resulting
logic, it is choice disjunction which will still obey its two ordinary
natural deduction rules.

But, then, there is also a case for adding two negations, one strong
(~ as above) and one weak, expressing mere absence of verification at
the present stage. A simple modification of the above completeness
argument will produce the new minimal logic. (Maximally consistent
sets of formulas are needed this time. Notice that the growth relation
C will certainly not be set-theoretic inclusion now: weak negations
may disappear when knowledge grows.) The additional rules obtained
are the classical natural deduction rules for weak negation —, together
with the “‘interaction principle’” ~ @+~ —¢.

By way of check upon this outcome, one may notice that the double
negation ~ — defines the earlier necessity operator O (*‘in all C-ex-
tensions’’), and then derive the usual $4-axioms for it from the above
rules.

Example: A derivation of O@— OO, that is, ~—qp —

eyt =4

~ =@, —~ —Q + false
~ =@ —~ @ — false
~ Pk~~~ —Q
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This completes our exploration of the minimal classical logic
without the presupposition of monotonicity. There are many obvious
further questions to be asked in the above spirit, of course.

By way of conclusion, another distinction should be mentioned,
however, one found in Moore, 1983. The above failures of monotoni-
city usually have a modal flavor: as our information grows, epistemic
possibilities disappear, and hence statements expressing these possi-
bilities are lost. This is the ‘‘auto-epistemic’’ source of nonmonotoni-
city. In addition, however, there are also nonmonotonic effects of
““default reasoning’’; that is, turning absence of information, tempo-
rarily, into additional (negative) premises. For instance, in logical
semantics, the role of ceteris paribus clauses in current theories of
counterfactuals would fall under the latter heading.

Right now, the perspective of this report has nothing to offer for the
latter case, which seems to involve nonmonotonicity at levels II and
III, rather than I.

Indeed, nonmonotonicity at level I is perfectly compatible with
monotonicity at level I1I, as it is still entirely up to us how we want to
define the notion of consequence. (Recall the earlier observation
about Bolzano versus Tarski consequence at the beginning of this
section.) Nevertheless, there may be good reasons for investigating
non-Tarskian, nonmonotone alternatives at level 1II. This topic has
been neglected in mainstream logic, though not in the more methodo-
logical areas of the philosophy of science, where Carnap and others
have studied the great variety of notions of ‘‘confirmation,’’ ‘‘deriva-
tion,”” ‘‘explanation,’’ etcetera, occurring in scientific, and ordinary
reasoning. (Cf. van Benthem, 1984c¢, on this point.)

For instance, the analogy with standard deduction may be mistaken
in studies of default reasoning, whose explications in terms of
“*minimal (closed) models’’ are more reminiscent of semantic analyses
of confirmation, as given by Hempel and other philosophers of
science.

Even so, the logical study of nonmonotonicity at level 111, or more
generally, of the variety of ‘‘argumentative connections’ certainly
deserves closer attention.

Postscript

One obvious limitation of this study has been the omission of
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quantificational logic. For instance, once quantifiers over individuals
are introduced, issues of Persistence soon become more problematic
(witness Barwise and Perry, 1983). Nevertheless, our claim about the
utility of classical paradigms is not invalidated here. For instance, it is
very easy to extend the earlier Beth tableau analysis to cover strong
consequence in predicate logic. Similarly, predicate-logical Henkin
models can be used to obtain ‘‘partial’’ decomposition clauses for
quantified statements as well. And finally, modal predicate logic is
still an excellent testing ground for the difficulties that arise for any
theory coming to terms with the notion of partial information suppor-
ting or refuting statements of generality.
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