INTENSIONAL LOGIC AND SEMANTIC VALUE GAPS

Imre RUZSA

According to Frege and Carnap, a well-formed expression of a
language may have two semantic values called Sinn and Bedeutung by
Frege [1] and mentioned as intension and extension by Carnap [2]. In
our days, Carnap’s terminology is videly accepted (sometimes ‘refe-
rence’ is used instead of ‘extension’). In most cases, ‘meaning’ and
‘intension’ are used synonymously, although in some writings the
term ‘intension’ refers only to the set-theoretic representation of
meaning (a function from possible worlds into a set of extension). I
shall use the term ‘factual value’ instead of ‘extension’ (since it seems
to me somewhat perverse to speak of the extension of a sentence or an
individual name). Of course, by the factual value of an individual term
I mean the object (if any) denoted by the term and by the factual value
of a (declarative) sentence 1 mean its truth value (if it has one). The
factual value of any extensional functor (including predicates) is
assumed to be a function (in the set-theoretical sense) which may be
called its extension.

It may happen that a well-formed (meaningful) expression of a
language has no factual value. I shall use the term ‘semantic value
gap’ to refer to this phenomenon. The simplest case of a semantic
value gap is perhaps a definite description without an actual denota-
tion. If such a term occurs in a sentence in a de re position — as in the
traditional example ‘The present king of France is bald’ —, then the
sentence has no truth value (at least, it is claimed to be so by Frege
[1]). This is an example of the truth value gap.

However, semantic value gaps are not restricted to names and
sentences. Some philosophers and some linguists argue that there are
predicates which are undefined for some objects. For example, colour
predicates are undefined for numbers, the predicate ‘ruminant’ is
inapplicable to inanimate physical objects, and mathematical predi-
cates (such as ‘has a quadratic divisor’) are undefined for physical
objects. Even in the language of a science, some predicates and
operations are partial ones: Think of division in arithmetic, square
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root operation in the field of real numbers, limit operations, differen-
tiation and integration of functions in analysis. Accepting this view,
we have new sources of semantic value gaps. Moreover, we can
distinguish the emptiness of the extension and the lack of the
extension of a monadic predicate. For example, if our domain of
individuals is the set of the natural numbers, then the extension of the
predicate ‘even prime number greater than two’ is empty, whereas the
predicate ‘green’ — being totally undefined for numbers — has no
extension at all. Similarly, the predicate ‘child of Chronos’ has no
extension in worlds other than that of Greek mythology.

However, since Frege, there has been a constant effort to drive out
semantic value gaps from the realm of logic. In my view, this is the
wrong policy. Firstly, it seems that the appearance of semantic value
gaps is a real phenomenon. Secondly — and this is the most important
argument — a logical system permitting semantic value gaps provides a
natural means for a fine differentiation of meanings. To begin with
simple examples, we all have learned that pairs of tautologies such as
“A >A” and ‘B oB" are not distinguishable in logic, both being true
in all logically possible worlds (and at all moments of time), and
hence, their intensions must coincide. Similarly, sentences of the form
A and “'A & (B V~B)” are logically synonymous: their truth values
coincide in all logically possible worlds. Most linguists are not content
with these results of logic. They argue that there is a significant
difference between the meanings of these sentences. Now assume that
there is a logically possible world w in which sentence A has a truth
value but B has none. Then — assuming that the truth value gap is
hereditary via truth functions - “B 5B” and ‘A & (B V~B)"" have
no truth value inw, but A is true or false and “A A" is true inw. By
this, our linguists are satisfied: it is possible that ‘A A’ is, but
"B B’ is not, true in a world w, and hence, they are not synony-
mous. Similarly for the pair A and **A & (B vV~ B)"". (Of course, the
case that ‘B oB’’ is false, or that A is true and ““A & (B V~B)"" is
false remains impossible.) As a consequence, it is not automatically
guaranteed that A and A & (B V~B)" are interchangeable salva
veritate in all contexts. (They are surely not so as arguments of
intensional functors such as ‘thinks that’, ‘sees’ etc.)

A more striking example : Are the following tautological sentences
synonymous ?
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Bill' likes or does not like steak.
Steak likes or does not like Bill.

In general: are sentences of the form
“FabV~Fab”> and *‘FbaV~Fba"

synonymous ? If we admit the possibility that the two-place predicate
F is defined (true or false) for the couple (a, b) but is undefined for (b,
a), our answer is NO. Here lies the advantage of permitting partial
functions as factual values (extensions) of predicates.

As an objection against accepting partially defined predicates, one
might say that it is highly uncertain to limit the domain in which a
predicate is defined (is true or false). Most people perhaps agree that
‘ruminant’ is not defined for inert objects, but even these might be
confused in answering the question whether this predicate is applica-
ble to amoebas or protozoa. It seems to be a metaphysical dogma that
every predicate P has itw own ‘applicability domain’, a domain of
objects such that P is true or false of them. Is this a stronger dogma
than the assumption that every predicate has a clear-cut truth do-
main ? If you think that the latter is not a metaphysical dogma, but an
unavoidable idealization for practising logic, then anyone who (like
myself) wishes to maintain the use of partially defined predicates will
answer that this is another (hardly avoidable, but at any rate, useful)
idealization for the purpose of better practising logic. Moreover, we
can assume that in our actual world, every predicate is totally defined
(applicable to all assumed existing objects). To enjoy the benefits of a
logic with semantic value gaps it is sufficient to assume that there are
possible worlds in which the factual values of some functors are
partial functions. That is, you are requested to accept only the
possibility of partial functions, leaving open the problem of the actual
existence of such functions. However, I should like to stress that the
notion of partially defined predicates originates from a linguistic
intuition, and hence, it does not lack a real, empirical base.

In what follows, I shall outline a semantic system of tensed
intensional logic with factual value gaps. My first approach to this
subject was presented at a workshop 1979 (this was published in
Hungarian 1980, a Russian version is available in [3]). A somewhat
modified version in English [4] appeared in Studia Logica 1981. In the
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present paper, the basic ideas are the same as in my first approach
1979, but the details are refined and simplified in several respects.
Before the systematic exposition, it may be appropriate to make a few
informal, preliminary remarks.

Concerning type theory, my point of departure is the usual system
of extensional types. Thus, o and \ are extensional types — the types of
sentences and individual terms, respectively — and if a and B are
extensional types, so is («f3). However, I shall not introduce a new
symbol ‘s’ for senses — as R. Montague did in [5] — for creating new
types of names of intensions. Instead, I shall distinguish extensional
and intensional functor types (the latter will be called operator types).
The latter are defined as follows: if «, By,..., 3,) are extensional types
(k=1), then (a; By;...; By) is an operator type. In this way, I shall
avoid the unlimited iteration of intensions which endows Montague’s
system with a highly platonic character. The intuitive difference
between a functor belonging to type (o) and an operator belonging to
type (a;P) is, as one might guess, that the first one operates on the
Jactual value, and the second one on the intension, of its argument.

As primitive logical symbols, I shall use (besides parentheses) the
lambda operator (A), the identity sign (=), the descriptor (I) for
forming names from monadic predicates, the intensor (") for forming
names of propositions from sentences, and two temporal operators
‘since’ and ‘till’. Other connectives (~, &, V, o), quantifiers, modal
operators, and the usual past and future tense operators (P, F) can be
introduced by definitions.

An intensional language may contain nonlogical constants in all
extensional and operator types. On the other hand, variables will be
permitted only in the extensional types. But I shall use two sorts of
variables in all extensional types called extensional and intensional
variables, respectively. In the metalanguage, I shall refer with Roman
letters to the extensional variables, and with Greek letters to the
intensional ones. The main difference of the two sorts of variables is
as follows: an expression of form ‘‘(Ax A)”’ is an extensional functor,
whereas ‘‘(AE A)"’ is an operator (an intensional functor). Thus, if A
belongs to type a, and x and § belong to type §, ““(Ax A)"’ belongs to
type (of), whereas ““(AE A)"" belongs to the operator type (a ;).

An identity ‘(A = B)"" will be accepted as well-formed only if the
expressions A and B belong to the same extensioral type. Quantifica-
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tion will be defined by means of A-abstraction and identity. As a
consequence, only extensional variables (of the extensional types) are
quantifiable. Intensional variables will be proved to be eliminable
from closed terms and formulas. This means that intensional variables
are only auxiliary tools which are useful, for instance, for expressing
incomplete natural language expressions, but they disappear as soon
as the full sentence is built up.

The semantics begins in the usual way. We shall provide for all
extensional types a a domain D(a) of factual values and a domain
Int(a) = 'D(w) of intensions where [ is an index set of form W x T, W
is the set of worlds, and T is the set of time moments. (I use *’A’ to
denote the set of functions from B into A.) As regards operator types
Int (v;p) will be defined as "®Int(t), where B is an extensional type.
Furthermore, a function ¢ defined on W will provide the set of actual
individuals for all worlds w €W (with the proviso d(w)<D(1)). Quan-
tification in type 1 will be restricted to d(w) at index i = (w, 1) (a
remarkable difference from Montague's intensional logic).

The factual value of an extensional functor of type (af) will be a
partial function from D(B) to D(a). I assume that the factual value gap
is hereditary in extensional contexts; i.e., if A and B are well-formed
extensional terms, some occurrence of B in A does not lie in the scope
of an intensional operator in A, and B is without factual value at an
index i, then so is A. The semantic rules are in accord with this
assumption. Of course, the value gap need not be hereditary via
intensional operators. In the formal semantics, all value gaps will be
filled in by distinguished elements called zero etities. For each
extensional type o, its domain D(a) will contain a zero entity denoted
by ©(a).

If A is a sentence, “*"A” is a term denoting its intension and
belonging to type v. In accordance with this syntactic rule, the domain
D(1) will include sentence intensions as well. The set of actual
individuals of the world w — denoted by d(w) - always includes all
sentence intensions, but it is possible that it contains no other (real)
objects.

In the last section of this paper, I shall mention an extension of the
system by accepting ‘(A = B)"’ as well-formed in the case when A
and B belong to the same operator type. In this way, quantification of
intensional variables is definable. Then, our ontological commitment
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will be somewhat higher than before, but it still remains far from that
of Montague’s system. Iteration of intensions remains impossible.
(Other interesting extensions of the system will not be treated here.)

§ 1. Type theory

1.1. Type symbols. 1 shall use ‘0’ (omicron) and ‘v’ (iota) for
denoting the logical type (or category) of the (declarative) sentences
(formulas) and (individual) names (terms), respectively. If o and f are
type symbols, I shall use *‘(af})’" for denoting the type of extensional
functors which, combined with an argument of type B, yield an
expression of type a. Finally, ““(a;B)”” will denote the type of
operators (intensional functors) which might be combined with argu-
ments of type B to yield an expression of type a. More formally and
exactly:

The set EXTY is the smallest set of symbols such that:

(i) 0,  €EXTY and
(ii) a, p€EXTY = ‘“(«ff)” €EXTY.

And the set OPTY (of operator types) is the smallest set of symbols
such that

(iii) o, PEEXTY = *““(a;8)” €OPTY and
(iv) (t=€OPTY and $ €EXTY) = *‘(t;f)" €0OPTY.

Finally, the set of all type symbols is to be
TYPE =4 EXTY UOPTY.

In what follows, I shall omit the outermost parentheses surrounding
type symbols.
1.2. By a type-theoretical structure let us mean an eight-tuple

S=W,W, T, <,D, ©,Int,d)

where U, W, T are nonempty sets, < is an ordering on 7, D and © are
functions with domain EXTY, /nt is a function defined on TYPE, d is
a function from W, and the conditons (i) to (vi) below are fulfilled.
(Intuitively: U is a set of individuals, W is a set of (labels of) possible
worlds), T is a set of time moments, < is the relation earlier than
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(between time moments), the function D provides a domain of objects
for all extensional types, © selects an object called zero entity from
each of these domains, Int provides a domain of intensions for all

types, and the function d provides a domain of individuals for each
world w eW.)

(i) T is a set linearly ordered by <.

(ii) D(o) = {0, 1, 2} = 3, and ©(0) = 2. (Here ‘0’ and ‘1’ represent
the truth values falsity and truth, respectively, and ‘2’ represents the
truth value gap.)

(iii) D(v) = U U3 U{U} where
I=WXT,

and ©(1) = U. (The members of U may be regarded as primitive
‘“‘real”” individuals, and the members of ‘3 may be called sentence
intensions.)

(iv) If o, B SEXTY,
D(oB) =4 {€"PD(w): fOP)) = O},
and let ©(af) be the function such that for all b €D(B),
O(ap)(b) = O(a).
(v) Ifa €EXTY, Int(a) ='D(a). If e TYPE and p €EXTY, then
Int(t;B) = "Plnt(v).

(vi) For allweW, 3cdw)cU U’'3.

§ 2. Grammar

By an intensional language let us mean a quintuple
L™ = (LC, Var, Con, Op, Cat)
satisfying the following conditions (G1) to (GS5):

(G1) LC is the set of the logical constants of L™:
LC ={(,), ), =, 1, ", since, till}.

(G2) Var is the set of variables of L™:
Var = U, cgxry (Var™(a) UVar™(a))
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where Var™(a) = {x,: n €} and Var'(a) = {E,: n€w}.

(G3) Con is the set of (nonlogical) extensional constants of L™:
Con = Uycpxry Con(a)

where Con(a) is a (possibly empty) denumerable set of symbols called
constants of type a.

(G4) Op is the set of (nonlogical) operators (intensional constants)
of L™™:
Op = U, copry Op(T)

where Op(1) is a (possibly empty) denumerable set of symbols called
operators of type t.

(GS) Cat is the set of the well-formed expressions of L™:
Cat = Cat.ext UCat.int,

Cat.ext = U cgxry Cat(a), Cat.int = U .gpry Cat(t), where the sets
Cat(a) and Cat(t) are inductively defined by the items (S1) to (S7)
below. For the sake of brevity, the category of an expression A will be
indicated by writing “‘A_’’ where o is a type symbol.

(S1) a€EXTY = Var*(a) UVar™(a) UCon(a) € Cat(a),
and t1€O0OPTY = Op(r)SCat(r).
(52) o, BEEXTY ="C4(Bp)" €Cat(a), and
(t€TYPE, BEEXTY) ="C,4(Bp)" €Cat().
(83) o, BEEXTY =" (Axyd,)” €Cat(of)), and
(t€TYPE, BEEXTY) =" (AEA,)" €Cat(t;p).

(Here x €Var™(B), and E €Var™p).)

(S4) o €EXTY ="(A, = B,)"” €Cat(0).

(S5) “IA," €Cat(L).

(S6) ““"A," €Cat(1).

(S7) *“(A, since B,)’ €Cat(0), ‘*(A, till B,)”’ €Cat(0).

Free and bound occurrences of a variable in a term are distinguis-
hed as usual. Also, open and closed terms are defined in the canonical
way.
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3 3. Semantics

3.1. By a projection (or interpreting function) of L™ into a type-
theoretical structure S let us mean a function o on Con UOp such that:

(i) if C €Con(1), o(C) €U D),
(ii) if C €Con(a), a#, then o(C) €Int(a), and
(iii) if C €0p(7), o(C) Elnt(7).

Remark. The constants of type \ are to be considered as rigid terms
(like proper names); this is the reason of the difference between
clauses (i) and (ii). Non-rigid individual terms may be expressed as
descriptions, see later on.

3.2. By an assignment (or valuation) of (the variables of) L™ in the
structure S let us mean a function v on Var such that for all c eEXTY,
if x €Var™(a), then v(x) €D(a), and if £ € Var™ (o), then v(E) €Int(a).
Givel L™ and §, let us denote by S(V) the set of all assigments of Var
in §.- If xeVar*(a), a€D(a), E€Var™(a), f€Int(o), v, vy,
v, €8(V), and for 3€Var,

a,if 3 =x, f,if 3=E,
vi(3) = va(3) =
v( 3) otherwise; v( 3) otherwise ;
then we write “‘v[x:a]” for vy, and *““v[E:f]" for v,.

Remark. As one sees, the possible values of a variable v, are factual
values of type o, whereas those of &, are intensions of type «. This
shows the semantic difference between the two sorts of variables.

3.3. Intensions. Let o and v be a projection and an assignment of L™
into S, respectively. For all A =Cat, we define the intension of A in S,
according to o and v, denoted by *‘int] (A)", by the recursive clauses
(I1) to (I7) below. I shall write “int(A)" instead of “‘int] (4)"
assuming § and o to be fixed. - If A €Cat.ext, then int(A) is a
function defined on / = W X T; hence, it can be defined by determi-
ning int (A)(7/) for all i 1. 1 shall use this possibility in some clauses
below.

The category of an expression A will be indicated by a type symbol
superscript — as introduced in § 2, (G5) - at its first occurrence in a
rule. Further, if a €D(a) and w €W, then **[a],”" will be used in the
following sense:
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(), if a D) — dw),
la], =

a otherwise.
Of course, the case a €D(1) — d(w) may occur only if a = t.

(I1.1) If x eVar*™(a), E€Var™(a), and i = (w, 1) €I,
then int,(x)(}) = [v(x)],, and int,(E)() = [V(E)()],.
(I1.2) If C €Con(a), then
[0(O)], ifo=vandi = (w, ) eEl,
int(C)(i) =
o(C)(i) otherwise.
(I1.3) If C€0p, int,(C) = o(C).
(I2.1) int,(*‘Co5(Bp) (i) = [int,(C)(i)(int,(B)())],,
where i = (w, 1).
(12.2) int,(*‘C, 4(Bp)""()) = [int,(C)(int,(B))()],.
where i = (w,?).
(I2.3) If t#1, int,(*°C, 4(By)"") = int,(C)(int,(B)).
(I3.1) For all beD(B) — {6(B)},
int,(*“AxgA )" )i)b) = int, |, , (A)0),
and int,(""(xA)")O)OP)) = O(a).
(I3.2) For all felnt(B),
int, ("“(AEgA) ")) = int,;(A).

(14) 2 if int (A)()) = ©(a) or int (B)(i) = O(a),
int,(“(A, = B,)")(7) =41 if int (A)({) = int(B)(i) # O(a),
0 otherwise.

(I5) int,("'IA_’)(i) = uo provided i = (w,t) and
{usdw): int (A)i)u) = 1} = {ue};

in other cases int (*'IA)(i) = O().

(I6) int,(**"A.")({) = int(A).
(I7) int,(**A, since B,)"") = @, int,(“Atill B))") = ¥,

where @ and W are functions on I defined as follows:
21if forall ¢’ <t¢, int (A)w,t') = 2, or for all t' <¢,
int, (B)(w,t') = 2,
D(w,t) = ¢ 1if for some t' <t, [int,(B)w,') = 1 and for all 1"
such that t' <t" <1, int (A)(w,") = 1],
0 otherwise.
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2 if for all ¢’ such that r <t’, int,(A)(w,t’) = 2, or
for all ¢’ such that z <t’, int (B)(w,t') = 2,
W(w,r) = ¢ 1if for some ¢’ such that t <t', [int,(B)(w,t') = 1,
and for all " such that t <¢" <¢’, int,(A)(w ") = 1],
0 otherwise.

Remarks. (i) It is easy to show that if A €Cat(1), then for all i [,
int (A)({) €d(w) where i = (w,). — (ii) Extensional variables and
individual constants as well as names of sentence intensions of form
‘"4’ are rigid terms; cf. (I1.1), (I1.2), and (I6).

3.4. If A €Cat.ext, then

Al = int,(A)()

will be called the factual value of A at i (i €I), according to S, o, and v.
If A €Cat(a) < Cat.ext, then |A|,, =D(a). (Remember that the current
term for ‘factual value’ is ‘extension’.)

3.5. For A €Cat, int,(A) may be regarded as the contextual inten-
sion of A according to S, o and the ‘‘context’’ v. Of course, if A is
closed, int(A) does not depend on v. The absolute intension of A
(according to § and ) might be defined as a function ||4 || from S(V) by

veS(V)=|All(v) = int(A).

(Contextual and absolute intension is called by Montague ‘sense’ and
‘meaning’, respectively, cf. [5].)

3.6. The central notions of semantics. The couple (S, o) is said to be
an interpretation of the language L™ iff § is a type-theoretical
structure and o is a projection (an interpreting function) of L™ into S.
The quadruple (S, o, v, i) is said to be a representation of the set
[ SCat.ext (of L™) iff (S, o) is an interpretation of L™, v e5(V),
i€l = WxXT, and for all a €EXTY,

A€l NCat(a) = A, #+ O(a).

If, in addition,
A el NCat(o)=|AL, =1
holds, then we say that (S, o, v, i) is a model of .

Let K be a class of interpretations of L™, and T = Cat(0). Then I is
said to be K-satisfiable iff I has a K-model (S, g, v, i) where (S, 0) K.
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A sentence A €Cat(o0) is said to be a strong K-consequence of T iff
every K-representation of I' is a representation of {A} and every
K-model of I is a model of {A}; in symbols: I'||=¢A. — Further, A is
said to be a weak K-consequence of I iff A is false in no models of | I
in symbols: I' = A. The sentence A is said to be K-valid (K-irrefuta-
ble) iff A is a strong (a weak, resp.) K-consequence of the empty class
of formulas. K-valid sentences are true in all K -interpretations,
whereas K-irrefutable ones are false in no K-interpretations.

Terms B and C are said to be K-synonymous iff they belong to the
same (extensional or intensional) category, and their absolute inten-
sions coincide in all K-interpretations. We denote this relation by
“B:x=:C". - If K is the class of all interpretations of L™, we omit the
subscript ‘K"’ in the notations above.

Remark. If A €Cat.ext, then **(A = A)” is K-irrefutable (for every
class K of interpretations), but it need not be K-valid (for [(A = A)|, =
2 might be possible). However, “‘((Ax -x) = (Ax -x))" is valid (i.e.,
K-valid for every class K).

§ 4. Some semantical metatheorems

4.1. The law of replacement. Assume that A, B belong to the same
category, A is a part of C €Car, and denote ““C[B ,/A]” the expres-
sion obtained from C by replacing an occurrence of A not preceded
immediately by ‘A’ by B. Then:

(A:x=:B)=>(C:x=:C[B /A))

for all class K of interpretations of L™.

Let us say that B is substitutable for the (extensional or intensional)
variable 7) in A iff 9) and B belong to the same (extensional) type,
A €Cat, and whenever 3 is a variable occurring free in B, and
“(h3-C)” is a part of A, then no free occurrence of 1) in A stands in
“(A3-C)". Let us denote by ““A[B/9]"" the expression obtained from
A by substituting B for all free occurrences of ).

4.2. The law of intensional lambda-conversion. If B is substitutable
for the intensional variable E in A, then

(AEA)B):=A[B/E].
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Corollary : The eliminability of intensional variables. If A €Cat.ext
is a closed term, then there is a term A’ containing no intensional
variables such that

A:=A".

A term B €Cat.ext is said to be a rigid one iff int(B) is always a
constant partial function on /. Rigid terms are the extensional varia-
bles, the constants of type i, the sentence-intension names of form
““*A_”", and all extensional terms involving only bound variables and
logical constants.

By an intensional operator let us mean any term of Cat.int as well
as any of the logical constants since, till, and the intensor *"".

4.3. The law of extensional lambda-conversion. Assume that the
extensional variable x has some free occurrence in A €Cat.ext, B is
substitutable for x in A, and one of the following two conditions is
fulfilled:

(i) No free occurrence of x in A is a part of an argument of an
intensional operator.

(ii) B is a rigid term.

Then:

(A -A)B):=:A[B/x].

The term A €Cat.ext is said to be pure extensional iff it involves no
intensional operators and no intensional variables.

4.4. The hereditaryness of factual value gaps in extensional
contexts. Assume that A €Cat(a)SCat.ext, A is pure extensional,

B €Cat(p), B is a part of A, and no free variable of B is bound in A.
Then:

for all interpretations (S, o), for all v €S(V), and for all i 1.

§ 5. Definition of classical connectives and operators

In the following definitions, the category of a term will be indicated
by a type symbol subscript at its first occurrence. Some parentheses
will be omitted if no misunderstanding arises by their omission.
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5.1. The symbols ‘T, *|’, and ‘~’ (Verum, Falsum, and Negation,
respectively) are to be introduced as follows:

T =a"0wp)=0p p); | =a“0pp)=0p-1";
~ =g W =])";
where p is the first member of Var®™(o). - We write
“A#B" for “~(A = B)".

5.2. 'P’ and 'F’ (past and future tense operators) are defined as
follows:

P =4 ‘A (] since 1)"; F =4 “Ax (] till )" ;

where 7t is the first member of Var™(o).
5.3. The modal operators ‘(1" and ‘<’ (necessity, possibility) are
defined by

O =4 “Mr("m = A1) O =4 "M (AT # AMr# 7))

where m is as above. Note that ““~{{~A)"" and ‘‘0OJ(A)"" are not
synonymous, and that*‘[0(A)” and ‘“<{A)’’ never take 2 as their
factual value.

5.4. Quantifiers. If C €Cat(oa), the formula

(€ =x,7)

expresses that the (perhaps higher-order) predicate C holds true for all
members of D(a), whereas

(C = hx,(Cx = Cx))

expresses that C is false for no members of D(a). (In a semantics
without value-gaps, the two formulas are synonymous.) It is the latter
which we shall call the universal quantification of C. However, in the
case a = L we want to restrict quantification to d(w) instead of D(1).
By this, the general definition of the quantifier V, (of type a) is as
follows:

Vo =at Mo ((x =x) = Px) = Mx((x =x) = (Px = Px))]”.

If u # 1, this is synonymous with the shorter one:

Vu =daf “}\'PQ(A[P = ;\xu(Px = Px)]”‘
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Here P is the first member of Var®*(oa).
Now we can introduce the following abbreviations:

‘iVxG .AO” for e Va(}"xu -AD)”’
133 ku .Ao‘! for LL‘_' qu 5 ~AD’9,
“Ix.-A,” for “I0x, -A)"

And we have the following valuation rule:

2 if for all a €D(a), |A| i = 2.
|vx,A,l; = {0 if for some a €D(0), |A]
1 otherwise.

In the case a = 1, “‘a €D(a)”’ is to be replaced here by ‘‘a €d(w)”,
where i = (w,t).
Now we can introduce ‘&’ (conjunction) as Montague did in [5]:

& =af “M)o -Mo ’ vhoo[p = (hp = hqn”

where h is the first member of Var®(oo), and p, g are the first two
members of Var®(o). Of course, we write ‘“‘A &B”’ instead of
“&(A)B)”. If one of A, B takes the factual value 2, then so does
“A&B”.

The functors ‘ vV’ and * =’ can be introduced by using ‘~’ and ‘&’ as
usual. We do not need the biconditional, since ‘‘(A, = B,)”’ does the
same job.

vix:ald =0,

5.5. Subordination. Let us note that if B, C €Cat(ow), then
Vx (Bx =Cx)

does not mean that all B’s are C’s. (It only means that no B’s belong to
the falsity-domain of C; i.e., it is not excluded that C is undefined for
some B’s.) To express the latter, we shall introduce the functors ‘sub,’
as follows:

sub, =gt “MPAQ o, TR [(R = Q) D Vx (Px o ARx))]”

where P, Q, R are the first three members of Var®(oa).
We write ‘B, sub C_.”’ instead of ‘‘sub (B, )(C,,).
Then *‘B sub C’’ abbreviates the formula

VYR[(R = C) o ¥x(Bx o O(Rx))]
which takes the value
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2, if the factual value of B or of C is ©(oa),

1, if all B’s are C’s, and

0 in the remaining cases.
Note that “B sub C’* and ‘‘(Ax ' ~Cx) sub (Ax - ~Bx)’ are not
synonymous. The same holds for

“B sub Ax(Cx V~Cx)” and *‘‘C sub Ax(Bx V~Bx)".

Thus, if we translate a sentence of the form ‘““Every B is a C”’ as “‘B
sub C’, we get that the following sentences are not synonymous:

Every boy is or is not a pupil.
Every pupil is or is not a boy.

Again, this is a remarkable result of value-gap semantics.
A final abbreviation:

“‘B equ C’’ stands for “*(B sub C) & (C sub B).

§ 6. Extended intensionality

The semantics explained on the previous pages makes our ontologi-
cal commitment to admit intensional objects as moderate as it is
possible at all. A shortcoming of the system: the metalanguage
statement *‘int,(A) = int(B)”’ is not expressible in the object language
if A, B€CCat.int. (If A, B<ECat.ext,

NA=A)="B=B)& (A=B) = A =A)

is suitable for expressing their synonymity.) The way of the correction
is obvious: let us extend the syntactic rule (S4) — the use of identity
symbol — for intensional terms:

(S4') If A, B €Cat(v) S Cat.int, then ‘(A = B)"’ €Cat(0).

The corresponding semantic rule:

(14" If t=OPTY, then

1 if int,(A) = int(B),
t(At = Bt)ll'f =
0 otherwise.
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The increase in our ontological commitment is clearly indicated by the
fact that our intensional variables became quantifiable: if
C€Cat(o;a) and E Var™(a), then

(C=(0ME-E=¥)
expresses that C holds true for all f€int(a). Thus, we can write
“VE, A, for “(AEA,) = (ME-E=E)".

Of course, the intensional variables are no longer eliminable.

Another advantage of the extended use of identity is that one can
quantify in type L on U Nd(w). Let us call the members of U Nd(w) the
real objects of the world w eW. We define:

real =y *“(\x, - Vo (x # "m))”,

where n and x are the first members of Var™(o) and Var™(),
respectively. Then

Vx (real(x) oA,)
or, in a stronger form,
real sub (Ax A,)

expresses the universal quantification of A over the real objects of
d(w).
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