DIALECTICAL DYNAMICS WITHIN FORMAL LOGICS.

Diderik BATENS

1. Introduction

A logic of the sort dealt with here was first described in my [1979]
and studied more completely in my [1985b] — while I am writing these
lines, the latter paper is still in print, viz. since 1981. I pointed to some
applications in my [1985a] and [198+]. The present paper contains an
essential improvement of the semantics and a closer look at the
dialectical properties of the logics.

The motivation for these logics need not derive from dialectics. 1
stress this, because the term ‘dialectics’ causes disinterest or even
enmity in many logicians. My paradigm case of an application is as
follows. Consider a theory T which is based upon classical logic, and
hence is intended to be consistent. If T turns out to be inconsistent,
but is still taken to be interesting — examples are well-known — one
will want to improve upon T by articulating some related T' which is
consistent, or at least is considered likely to be consistent. Unfortu-
nately, the theory which one wants to improve upon is not easy to
define. It is not, obviously, the trivial theory T, which contains all
sentences as theorems. Nor is it the set of axioms of T, for one will
usually want T’ to include certain theorems that are only derivable
from some inconsistent subset of axioms of T. One might expect to
find a solution by turning to the recently developed paraconsistent
logics — a logic is paraconsistent iff some inconsistent theories which
are based upon this logic are not trivial. Alas, the result obtained by
substituting some paraconsistent logic for classical logic in T is too
poor, because the paraconsistent logic restricts the rules of inference
globally ; e.g., it takes ~ A, A VB/B to be incorrect in general. In
order to define the theory we want to improve upon, we need to
localize inconsistencies and to apply the full classical logic, except
where, because of specific inconsistencies, its application would lead
to triviality. It is precisely this result which is arrived at by the logics
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studied below ; they enable one to reason ‘‘as classical as possible”’
with respect to inconsistent theories. (*)

I use the name ‘dynamic dialectical logics’ with reference to ‘static
dialectical logics’, a phrase which occurs in Routley and Meyer’s
[1976]. Another suitable name would be ‘inconsistency-adaptive lo-
gics’. One of their typical properties is non-monotonicity : for some a,
B and A, o +—A and a UB + A. However, they are quite different, both
in intended applications and in inferential properties, from all systems
dealt with in the Special Issue on Non-Monotonicity of Artificial
Intelligence (1980, vol. 13, nr. 1,2).

2. Rules for constructing proofs

In order to decide how the dynamic dialectical logic should behave
with respect to some inconsistency, we may turn to some obvious
paraconsistent logic, called PI in my [1980b], which in some simple
way departs minimally from PC (the classical propositional calculus).
Semantically P/ is characterized by deleting the clause

(1)  Ifv(A) = 1, then v(~ A) = 0.

from the standard semantics for PC. Incidentally, I want to point out
that the concept of truth remains completely classical; unlike, e.g.,
Professor von Wright in his contribution to the present volume, I do
not consider truth-value overlaps or truth-value gaps. Syntactically ()
PI is the positive part of PC, including ((A oB) o A) oA, together
with the axiom-scheme

2) (Ao~A) o~A

There is a nice and for our purposes extremely important relation
between PC and PI, viz.(®)

Thl +pc A iff there are (zero or finitely many) C,, ..., C, such that
Fp (Cy & ~Cy) V... V(Cp & ~C,) VA.

(!) The phrase ‘as classical as possible’ is not unambiguous; I consider some
alternatives in a subsequent section.

(*) The soundness and completeness proofs are in my [1980b]; they follow the
method of my [1980a].

(*) If a theorem is listed without proof, the latter is either trivial or spelled out in my
[1985b].
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From now on I shall write DK(C,,..., C,) to denote (C, & ~C,) V...
V(Cq & ~ Cy,) or any formula obtained from the latter by commutati-
vity. Both in PC and PI we have

Th2 B, ..., B, A iff —(B, &...& B,) SA.

Consequently, to any correct PC-inference B,, ..., B,+ A corres-
ponds either

3)
e (By &...& B,) DA

or, for some or more DK(C,,..., C,),

4)
p; DK(Cy,..., Cm) V ((B; &...& B,) DA)

The latter may be understood as follows: either one of the C; behaves
inconsistently, or else A is derivable from B,, ..., B,.

In order to define DPI from the previous results, one might try to
proceed as follows: if (3) obtains and B,, ..., B, are DPI-derivable
from «, then A is DPI-derivable from o ; if (4) obtains, B, ..., B, are
DPI-derivable from a, and DK(C,,..., C,) is not DPI-derivable from
a, then A is DPI-derivable from . In doing so, however, we face two
problems which I shall consider consecutively.

The first problem is that a definition of DPI according to the
previous lines, would be flatly circular. I solved this problem by
moving from the abstract level of the derivability-relation to the
concrete level of proofs, and by applying the idea of the previous
paragraph to the conditions under which a formula may be added to a
DPI-proof at some time. The times may be identified with the stages
of the proof: after the addition of a line, we are at a new time. A line of
a DPI-proof will consist of (i) a line number, (ii) the formula, (iii) the
set of line numbers referring to the formulas from which (ii) is derived,
(iv) the PC-rule by which (ii) is derived, or ‘premiss’, and (v) the set of
formulas the consistent behaviour of which is presupposed for the
derivation. The addition of a line to a DPI-proof will proceed as
follows: if (3) obtains and B,, ..., B, occur in the proof at some time,
then A may be added at that time (with no new formulas added to the
fifth element); if (4) obtains, B,, ..., B, occur in the proof at some
time, and DK(C;,..., C,) does not occur in the proof at that time, then
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A may be added to the proof at that time (on a line which has C,, ...,
Cn, in its fifth element). Moreover, lines will sometimes be delered.
Suppose that some line has been written by relying on the fact that
DK(C,,..., Cy) does not occur in the proof, whereas the latter is added
to the proof at some later time ; at this time, the line should be deleted,
and so should be all lines depending on it (the third element of these
lines contains the line number of the first). Intuitively, the aforemen-
tioned line is not derivable any more after DK(C,,..., C,) is added to
the proof; if the line were deleted, it could not be added again (with
only its line number adjusted). Incidentally, the fifth element of a line
indicates clearly the conditions under which it should be deleted.

The meaning of ‘A is DPI-derivable (at some time) from a’ should
be clear by now. If A is DPI-derivable from (a finite) o at some time in
some proof, and cannot be deleted at any later time (unless by
extending a), then A is finally derivable from a.

I previously announced a second problem. If proofs are constructed
according to the procedure which was vaguely described before, A
may be finally derivable from o in some proofs, but not be so in
others. Moreover, whether or not A is finally derivable from o will
depend on the accidental way in which the proof proceeds. This may
be all right, e.g., if the way in which the proof proceeds may be given
some specific sense, or if non-logical preferences enable us to want
some consequences rather than others. However, I shall define DPI in
such a way that A is finally derivabie from a in all proofs, if it is in
some. The matter may be clarified by the following example. If we do
not pay any special attention to the present problem, then, relying on
the absence of q & ~q, we may finally derive p from {p vVq, ~p,
~q}, whereas, relying on the absence of p & ~p, we may finally
derive q from the same set of premisses. However, once we derived p,
we may also derive p & ~ p, which prevents us from deriving q (or
obliges us to delete it if it were already derived); and vice versa. The
trouble is, of course, that (p & ~p) V (@ & ~ q) is finally derivable
from the set of premisses in any proof, but that the set of premisses
does not provide us with sufficient information to decide either in
favour of p & ~ p or in favour of q & ~ q. Consequently, from a purely
logical point of view — i.e. not taking extra-logical considerations into
account — one can neither derive p nor derive q. (See also the end of
section 4 of my [1985b].) I shall phrase DPI accordingly.
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I shall now present a precise articulation of the rules governing the
construction of DPI-proofs (from some set o). For simplicity’s sake, I
suppose that all correct expressions (3) and (4) are available. The
specification of the first, third and fourth element of the added lines is
obvious and will be omitted. The rule DEL must be applied whenever
a line has been added.

PREM: If A €q, then add the following line:
A 0  premiss ]

UNCOND: If (3) obtains and each of B, ..., B, occurs as the second
element of some line - let the fifth elements of these lines be B,

., Ba respectively — then add the following line g
A oo PaU... UB,

COND If (4) obtams eachof B,, ..., Bll occurs as the second element
of some line - let the fifth elements of these lines be B, ..., B,
respectively — and, for all D, ..., D, either DK(D,,..., D,, C,, ...,
C.) does not occur as the second element of some line or
DK(D,,..., Dy) occurs as the second element of some line the fifth
element of which is §, then add the following line:

s A B1 U... UB, U{C,4,..., Cyu}

DEL Any line of the proof which, if it were delcted could not be

added (with only its line number adjusted), should be deleted.

The role of the §; in COND and UNCOND may easily be understood
as follows: if B; is used to derive A, and B, was itself derived on the
supposition that C; behaves consistently, then this derivation of A
rests on the same presupposition. Incidentally, the specific condition
in COND (as opposed to UNCOND) may be phrased in many
different ways, and each formulation leads to different heuristics of
the proofs. Also, other characterizations of DPI-proofs are possible,
e.g., in terms of some finite set of rules of inference, or in terms of
some axiomatic system.
Here is a simple DPI-proof.

(1) p&~q - premiss 0
2) rvgq - premiss 0
(3) pos - premiss 0
(4) ~rv~p - premiss 0
(5) (rvs)yoq - premiss 1]
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6) p (1) A &B/A 0

(7) ~q () A & B/B 0

[(8) r (2)(7) A VB, ~B/A {q}] deleted at time 14
9) s (3)6) A-B,A/B ¢

[(10) ~p (4)(8) ~A VB, A/B {q,r}] deleted at time /4
((I1) p&~p (6)(10) A,B/JA&B  {q,r}] deleted at time /4
(I12) rvs (9) B/AVB ]

(13) q (5)(12) A-oB,A/B ¢

(14) q&~q (13)(7) A.BIA&B @

(15) ~r (4)(6) AV~B,B/A {p}

At time 7, r is derivable in view of the absence of q & ~ q and of the
PI-theorem (B &~ B) V (((A VB) & ~ B) o A); at time /4, r is not
derivable any more. On the other hand ~ r is not derivable at time 17,
but becomes derivable after time 14. At time 15, the proof is
essentially finished in the sense that no further lines will be deleted in
any extension and that only trivial consequences of already derived
formulas may be derived. In other words, the set of formulas that are
finally DPI-derivable from the five premisses, is identical to the set of
PI-consequences of {p, q, ~q, ~r, s}.

Some readers may think that it is possible to write down rather
uninteresting DPI-proofs, and they are certainly correct. However,
the situation is the same for all logical systems. In order to derive
interesting consequences in an interesting way, it is necessary to have
mastered the heuristics of the specific type of proofs.

Although the notion of a DPI-proof will be clear by now, some
readers might not be convinced that such proofs define an interesting
logic. This is why I at once move to the syntactic metatheory.

3. Syntactic metatheory

Th3 Pl is decidable.

Def a3, A (Aisfinally* derivable from a) iff there is a DPI-proof
from a, in which A occurs as the second element of a line
which will not be deleted in any extension of the proof.

Th4 By, ..., B, 35 A iff there are C,, ..., C,,(0=m) such that (i)
By, ..., By =5 AVDK(C,, ..., C,) and (ii) for all D, ..., D,,
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either By, ..., B, +, DK(Dy, ..., D, C;, ..., C,) or By, ...,
B, 5 DK(Dy, ..., Dy).

In other words, final* DPI-derivability from finite sets of premisses is

definable in terms of PI-derivability. In order to generalize this result

to infinite sets of premisses, we need two more definitions.

Def Anintelligent extension of a DPI-proof from a is an extension

such that, if the result of dropping some disjunct from DK(D,,
..., Dy) is PI-derivable from a, then this longer formula does not
occur as the second element of some line in the extension,
unless the shorter formula occurs as the second element of
some previous line the fifth element of which is empty.

Def otpp A (A is finally DPI-derivable from a) iff there is a
DPI-proof from «, in which A occurs as the second element of
some line which will not be deleted in any intelligent extension
of the proof.

If the set of premisses is empty, then, in view of the decidability of PI,

one might pick out a proof in which occur all PI-derivable disjunctions

of contradictions which do not contain any redundant disjuncts. This
may not be possible if the set of premisses is infinite. However, in the
latter case it is possible, whenever one finds out that DK(D,, ..., Dy) is

Pl-derivable, to check whether some of the disjuncts is redundant.

Def Cnppy (o) = {Alopy A}

Th5 atpe A iff there are Cy, ..., C, (0=m) such that (i)
ot A VDK(Cy, ..., Cp) and (ii) for all Dy, ..., Dy, either
o +=p DK(Dy, ..., Dy, Cy, ..., Cp) or a5 DK(Dy, ..., D).

Corl If, for some B, A+, B & ~ B, then a+p A iff o+ A.

In other words, final DPI-derivability is definable in terms of PI-deri-

vability.

Thé  For all finite o, a5z A iff s A

Th7 If a is consistent, then Cn,p () = Cnp(a).

Th8 If a is inconsistent but nontrivial, then Cnp(a) € Cnppla) <
Cnpc(@).

Th9 Cn,f(a) = Cnppla) iff there are Cy, ..., C, and an A such that
oty AVDK(C,, ..., Cy), a+p A and, for all D,, ..., D,
either a +,, DK(C,, ..., Cy, Dy, ..., Dy) or a —,; DK(D,, ...,
Dy).

Th10 If Cn,(a) is decidable and o+, A, then any DPI-proof from
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o may be extended in such a way that A is finally derived at
some line in the extended proof.

Thil 1If Cnpfa) is decidable, then all members of any finite p
Cn,,(a) are simultaneously finally derivable from o (and may
be simultaneously finally derived in an extension of any
DPI-proof from a).

Th12 For all finite o, Cnppi(a) is decidable.

I mention two theorems about (non-final) DPI-derivability.

Th13 Ifa is consistent, then A, ..., A, are simultaneously DPI-de-
rivable from « iff they are all PC-derivable from it (iff they are
finally DPI-derivable from o).

Thl4 Ifa isinconsistent, f ca,y ECn.(B), y is finite, and neither
nory contain some formula of the form DK(C,, ..., C,) (1=<n),
then all members of y are simultaneously DPI-derivable from
a.

The reader may easily verify that these theorems justify the claims I

made before. Most importantly, DPI is a decent formal logic, it is

paraconsistent and behaves as PC with respect to any inference in
which no specific inconsistency is involved. It is also easy to see that

DPI is non-monotonic ; e.g., to take a simple example, we have in DPI

that p Vq, ~p q, whereas p Vq, ~p, p+q.

4. Dialectics

There are several senses in which DPI may be called a dynamic
dialectical logic. The most obvious is this : contradictions do occur in
proofs and, in contradistinction to what is the case for paraconsistent
or static dialectical logics, they do form a problem and lead to a
change of the rules of inference. E.g., in the proof of section 2, r
ceases to be derivable from rVvq and ~q after q& ~q has been
derived.

It is quite obvious that DPI does not lead in general to the
‘‘resolution of contradictions’’. The derivation of one contradiction
may lead to the elimination of another contradiction; e.g., in the proof
of section 2, p& ~p is eliminated by the derivation of q & ~q.
However, this is clearly not the ‘‘strong resolution’’ which dialecti-
cians have in mind and which requires the introduction of new
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concepts. It seems to me that this strong resolution cannot be the

result of the mere application of a formal logic, but requires extra-lo-

gical means. (*) Yet, the dynamics of DPI-proofs displays a number of
structural properties which are typical for the strong resolution of
inconsistencies. In order to show this, I shall consider the conditions

set forth by Leo Apostel on pp. 83-84 of his [1979].

The strong resolution is described by Leo Apostel in terms of the
relations between consecutive theories. His eight conditions may be
summarized as follows.

(a) The strongest contradiction(s) of the theory T; is (are) eliminated.

(b) The inconsistent T; is replaced by an inconsistent T; , ,.

(c) The relation between T; and T;,; must be analogous to the
relation between T;_,; and T; (pragmatic notion dependent on
time).

(d) T, , is not a subtheory of T, but of some extension of T;.

(e) T, ; , contains statements and proofs that are on the average less
distant from the statements and proofs of T, than are the state-
ments and proofs of all alternative T'; , ; which also eliminate the
strongest contradiction(s) of T;. (This distance should be measu-
red in a way independent of any specific axiomatizations of the
theories).

() More specifically, T; , ; should contain (in comparison to T'; ; ;)
as much as possible of the proofs that lead in T; to ‘‘parts’’ of the
strongest contradiction(s) or in which such ‘‘parts’’ are employed
as premisses.

(g) T;, , should be weakly maximal with respect to the extension of
T; mentioned in (d). This means that, if any nontheorem of T; , ,
which is a theorem of this extension is added to T, , ,, then the
result contains a contradiction stronger than any contradiction in
T+

(h) T; ., should neither be the union nor the intersection of the
consequence sets of all weakly maximal subtheories of the exten-
sion (see d) of T;. This is an implicit rejection of a Rescher-like
solution of the problem (see Nicholas Rescher’s [1964], viz. his
“‘weak’’ and ‘‘strong’’ consequence).

(*) As suggested in section 6 of my [198+], the approach taken by Thomas Nickles in
his [1980] may be clarifying in this respect.
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I shall not discuss these conditions here, but merely show that most of
them are fulfilled by DPI, if interpreted in a specific way. To any stage
of a DPI-proof I shall associate a theory, viz. the PI-consequence set
of the formulas that occur in the stage of the proof. Incidentally, the
subsequent reasoning would also work if we considered DPI-conse-
quence sets, but I prefer the more classical approach and define
theories in terms of a static logic. First consider an application of a
rule of inference which is PI-valid. If no previous line is deleted, the
new theory is identical to its predecessor. If previous lines are
deleted, the new theory is a subtheory of its predecessor, and possibly
eliminates some of its inconsistencies. Next consider the application
of a rule of inference which is not Pl-valid but depends on the
consistent behaviour of some formula. If no lines are deleted, we face
an enrichment of the previous theory (the conclusion of this applica-
tion is not a PI-consequence of the previous theory). (°) If some lines
are deleted, we move at once to a subtheory of an enrichment of the
previous theory. The reader may easily verify that, under this
interpretation, DPI-proofs fail to satisfy conditions (a) and (c). Howe-
ver, each of (b) and (d)-(h) are exemplified in some DPI-proofs,
although they do not obtain in general between any two consecutive
theories.

As a final remark I repeat that the dynamical character of DPI is
displayed at the concrete level of proofs and to some extent at the
abstract level of (nonfinal) derivability, but not at the (abstract) level
of final derivability. The fact that the DPI-consequence set of some
set of premisses is determined before any actual proof is carried out, is
probably not puzzling from a dialectical point of view. It is puzzling,
however, that, as DPI is decidable (on the propositional level that is),
a handy person may avoid proofs in which any lines are deleted.
Nevertheless, even such proofs display dynamic dialectical properties
if theories are defined in terms of DPI-consequence sets.

(°) There is an exception: the conclusion of this application might be derivable in
another way by P/-valid means. Such cases would be taken care of if theories were
defined as sets of actually derived formulas.
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5. Semantics, soundness, completeness

The handiest approach is in terms of model sets (to any valuation v
corresponds a y = {A|v(A) = 1}). T, the set of PI-model sets,
contains the sets y of formulas such that
AoBey iff A¢y or Bey.

A&Bey iff Aey and B ey.
AVBey iff Ay or Bey.
If Ay, then ~A€y.(°)

Def T, = {yly<rl and acy}

Def o Aiff,forallyell,, Aey.

ThlS oakp A iff o, A.

Def K(y) = {A|JA&~Aey}

Def A,=T,— {yly=r, and, for some d €T, K(8) cK(y)}

Def ol Aldff, forallyeA, Asy.

Def A, = {Ma+, DK(\) and, for all u =), o+, DK(u)}

L1 y €A, iff y €T, and K(y) contains exactly one member
of each A€EA,.

L2 For all yeA,, DK(C,, ..., Cy) €y, iff, for all y T,
DK(C;, ..., Cp) Ey.

Th16 If oty A, then o=, A.

Proof. Suppose first that o +,,, A. It follows (by Th5) that there is a
(possible empty) & such that o+, A VDK() and, for any C,
o +p; DK(E Ug) or a ., DK().

Case 1. Cnp, (o) is trivial. Then a=,p A.

Case 2. A+p B & ~ B for some B. Then a +,, A by Corl, and hence
o =pp; A.

Case 3. Otrpp; ~A. Then arp,, A& ~A (by Corl) and hence
aEppr A.

Case 4. Cnp(a) is non-trivial, A +=,, B & ~ B for all B, and o. =, ~ A.
Second supposition: a -, A. Then there is a & €A _ such that A &§.
It follows that, for some C =g, C=K(d), and hence that there is a
AEA, such that C=)A. Consequently, there is a T such that

(®) The PC-model sets are those which moreover fulfill the condition ‘If A<y, then
~Agy.’



172 D. BATENS

a =, DK(C) and, for some A€A, ActUe and hence also
o -, DK(E Ug). This contradicts the first supposition. O

Th17 If a=yp A, then o i A.

Proof. Suppose that o t=,,, A. It follows that A €y for all y SN
Case I. a=p, ~ A or, for some B, A=, B& ~B. Then a =, A by
L2, and hence o+, A.
Case 2. d[W#, ~A and, for no B, A=, B&~B. Then either
I, — A,= 0, or there is an ¢ such that A VDK(e)eNl, and
DK(e) & UA,; in the latter case we have, for all §, DK({ Ue) NT, or
DK(§) €NT,. In both cases it is easily shown that o i, A. O
Reading ‘A €y’ as "A is true in model ¥ we obtain: A is a semantic
consequence of a iff A is true in all models in which all members of o
are true. For PI we consider all models (in I') ; for PC we consider all
consistent models (of I') ; for DPI we consider all models (of I') which
are as consistent as possible with respect to «.

6. Alternative logics.

There are (infinitely many) extensions of PI which are still paracon-
sistent and strictly weaker than PC. Any such logic determines a
dynamic dialectical logic. One might expect that the latter lead in
general to richer consequence sets than DPI, but the opposite obtains
(see my [1985b]); in general, all these logics lead to less suitable
results than DPI. The matter may be understood as follows : precisely
because PI is so weak, it is possible for DPI to maximally adapt to the
specific inconsistencies of some theory.

It goes without saying that a large number of dynamic dialectical
logics may be devised in a way different from the one in which DPI is
devised, e.g., by taking external preferences into account. It is even
possible to do so by introducing preferential procedures which are
based only on formal properties of formulas (e.g., their strength).
Finally, there are numerous open problems concerning dynamic
dialectical logics based on paraconsistent logics that are not exten-
sions of the implicational fragment of PC.
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7. Final remark.

Apart from all I said before, the logics dealt with here are interesting
because they open new perspectives on the nature of logic. Inciden-
tally, they are in this respect more interesting than the usual non-mo-
notonic logics, because they lead both to non-monotonicity and to
dynamic proofs in the absence of any special logical constants.
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