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§ 1. Introduction

Anderson [1] and Kanger [7] have given a constructive approach to
standard deontic logic (SDL), the so-called Anderson Simplification
[4]. It may be asked whether there is a comparable construction in the
case of dyadic standard deontic logic. Such a construction could offer
us a method of choosing between the bewildering variety of possibili-
ties when we go beyond SDL. In particular, Hansson [5] outlines
three possible alternatives to SDL but offers no way to choose
between them.

In the Anderson construction a special proposition letter (say v)
called the sanction is introduced and the obligation operator O is
defined through the use of this letter. In the following we shall proceed
constructively by recognizing that in dyadic logic the sanction v must
vary according to the conditions under which it is applied. It is shown
that such an approach yields under appropriate definitions an inter-
pretation of Hansson’s dyadic standard deontic logic 3(DSDL3).

§ 2. Construction of a dyadic standard deontic logic

We construct a logic DL based on an underlying logic L which we
assume is propositional calculus. In addition to the usual apparatus of
L we shall assume that there are two other operators V and - on L.
The operator V takes formulas of L into formulas of L, but the
operator  takes formulas of L into formulas of . I. where — A has the
usual interpretation: A is a theorem of L. The formulas of DL are the
following:

(a) the formulas of L, and
(b) the formulas that result from applying the connectives and
the operators V and + to the formulas of DL.
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We assume that the usual rules of deduction of propositional logic
apply including the deduction theorem and the rules of substitution
and replacement. In addition we assume that if A is a theorem of L
then+ A is a theorem of DL.

In the following we shall assume that all formulas A, B, and C are
SJormulas in the basic logic L. The results that we obtain can be then
extended to all the formulas of DL by the rules of substitution and
replacement.

We introduce now the dyadic operator O which has the following
intended interpretation: given formulas A and B, O(A/B) is the
obligation to see it that A is true under the condition B. Since v(B) is
to be interpreted as the sanction to be applied undercondition B, we
define O(A/B) as follows:

(1) O(A/B)ges. = H((~A & B) - v(B)).

In order to forestall a possible misunderstanding it may be observed
that the foregoing does not say that a given conditional obligation,
O(A/B), if true, is logically true, since the sanction V is not fixed by
logic but is, to some extent, arbitrary. But before we make further
remarks about V, let us note some elementary consequences of (1).

First of all, like absolute obligations, conditional obligations are
multiplicative, i.e.,

O(A & B/C)— O(A/C) & O(B/C).

Moreover, if T is a tautology and K is a contradiction, the following
are true for any formula A:

O(A/K), O(t/A), and O(A/A).

Returning now to the sanction operator V, we may more completely
characterize it as follows: First, because the standard rule of replace-
ment applies, we may infer that

(2) —(A=B) » HV(A)«~ v(B)).

Now let T be a tautology. It follows from (2) that v is (virtually)
constant on tautologies and therefore as usual we may identify O(A/t)
with O(A).

Because otherwise that identification would not make sense, we
assume that v(t) is neither a contradiction nor a tautology. Now,
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having assumed that v is defined on tautologies, we shall extend the
operator v recursively to the other formulas of L.

If we answer the question what happens to the formula A - v(C)
when the condition C is multiplied by B, we shall be able to make the
required extension. In the following we shall assume that the answer
depends on the logical relation between A and B, that is to say, on the
logical validity of the formula (B— A). (Note that B— A is a decidable
formula since L is complete). Taking our cue from examples such as

Chisholm’s paradox, we adopt the following as rules of inference in
DL:

(3) (@) HA- v(B & C))«~HA- v(C))
unless HB—- A).
(b) HA>v(B&C)) »-~(B & C)
whenever B A).

We shall show in article 3 that these rules together with def. (2) are
sufficient to determine that DL is a model of Hansson’s DSDL3. But
first we obtain some elementary consequences of (3).

An immediate consequence of (3) (b) is the following:

(4) If O(A/B) and O(~A/B) then+~B. To prove (4) assume O(A/B)
and O(~ A/B) are both true. By multiplicativity of obligations we have
O(K/B) which, by definition, is HB— v(B)). The result (4) then
follpws from 3(b).

An immediate consequence of (4) is that conflicting obligations
cannot occur. Such a consequence, pace von Wright [9], is necessary
if deontic logic is to have any practical value.

It follows also that O(~A/A) is false unless —~A.

To obtain further results it will be helpful to develop a pair of
lemmas:

Lemma 1. If ~(B & C) then —v(B & C) — v(C)).
Proof. According to 3(b), if ~(B&C) is not provable then

(B— v(B & C)) is not provable. The result then follows from substitu-
ting v(B & C) for A in 3(a).
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Lemma 2. If ~O(~B/C) then ~Hv(C) — v(B & C)).

Proof. The formula ~O(~B/C) implies (B & C) — v(C). The result
then follows from (3) upon substituting (B & C) for B and v(C) for A.

These two lemmas enable us to obtain a theory of conditional
obligation which is non ad-hoc and wholly constructive.

§ 3. DL as a model of DSDL3

We are now in a position to prove that a model of DL is a model of
Hansson’s DSDL3. In order for this to be the case the. dyadic operator
O(-/-) has to satisfy the following criteria: there is a reflexive,
transitive and total relation R defined on the class of all possible
worlds (or equivalently, all valuations on L) such that O(A/B) is valid
in DL iff all worlds satisfying A contains all R-maximal worlds
satisfying B. (Here x is an R-maximal world satisfying B provided that
x satisfies B and moreover for all y satisfying B we have xRy.)

In order to prove that DL satisfies these criteria we first define R.
We do this as follows: First divide the class P of all possible worlds
into three equivalence classes E,, E,, and E, defined as follows:
Let E, be the class of all possible worlds for which the formula v(7) is
false whenever T is a tautology. Such worlds may be said to be
deontically perfect. (We are assuming that v(7) is neither a tautology
nor a contradiction.) Let E, be the class of deontically imperfect
worlds in which, for every formula A, v(A) is false unless A is a
tautology. Such worlds although not perfect may be considered not so
imperfect as those worlds that belong to neither E, and E,. The latter
we denote by E;. Finally we define R as follows:

(4) xRy iff x€E,; and y €E; for some pair (i,j), i<j; i,j =
1,2,3.

It is easy to see that (4) defines a total, transitive and reflexive
relation.

Theorem 1. All R-maximal elements are neither in E; or E,.

Proof: Theorem 1 is an immediate consequence of the following:
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Lemma 3: There is a world x such that for all formulas A, if A isnota
tautology then v(A) is false for x.

Proof: Assume that no such world exists. Then there is a finite
sequence of formulas A;, A,, ..., A, such that the formula

~Vv(A)) &~ v(A) & ... &~ V(A,)
is a contradiction. It follows that
V(A;)V V(AZ) V... VV(A,)

is a tautology, whence v(t) is a tautology contrary to the definition of
DL.[{

Corollary: A world x satisfying B is R-maximal (with respect to B)
provided:

(a) xisin E,,
or (b) x is in E; and there is no deontically perfect world
satisfying B.

Theorem 2. A formula O(A/B) is valid in DL iff the class of all possible
worlds satisfying A contains all R-maximal worlds satisfying B.

Proof: Suppose O(A/B) is valid in DL. Since if A is a tautology or B is
a contradiction there is nothing to prove, suppose in addition that
neither A not ~B is provable. Then it can be shown that A is not
provably false. Let x be an R-maximal element satisfying B. Then —
by definition — B is true for x and it follows from Theorem 1 that x is
in E, orin E,. If x is in E, then — since v(1) is false for x — it follows
that v(A) is false for x. Similarly, if x is in E, then by definition v(A) is
false for x. Consequently — in either case — v(A & B) is false for x.
Since #+ A > (~A)&B it follows that - (~A)&B - v(A & B),
whence A is true for x. This completes the proof.//

Corollary. DL is a logic of type DSDL3 of Hansson.



110 A. A. JOHANSON

§ 4. Conclusion

We have given a rather natural construction that extends SDL to a
model of Hansson’s dyadic logic DSDL3. From this construction it
appears that of all Hansson’s logics, DSDL3 is the most natural
extension. There may however be other dyadic logics superior to
Hansson'’s, but it is beyond the scope of this paper to examine these
here.
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