PREDICATE-FUNCTOR LOGIC WITH OPERATION SYMBOLS 95
PREDICATE-FUNCTOR LOGIC WITH OPERATION SYMBOLS (%)

Teo GRUNBERG

This paper is a sequel to the present author’s A tableau system of
proof for predicate-functor logic with identity ?), or [TPF] for short,
and should be read together for ready reference. Given that predicate-
functor logic aims at ‘‘algebrizing quantification... with all the clarity
of the discrete and blocklike terms and simple substitutions characte-
ristic of algebra’ (*), it would be interesting to build also a predicate-
functor logic with operation symbols which retrieves all the occurren-
ces of free singular terms. The purpose of this paper is to construct
such a system, by extending Quine’s method of eliminating the bound
variables to first-order predicate languages with operation symbols,
and by applying then, our tableau method of proof.

1. Predicate-Functor Language with Operation Symbols: L,

Consider a first-order language L, whose vocabulary is the union
of a set of extralogical predicate- and operation-symbols, the set § =
{*~’,'e’, ‘3, ‘="} of standard logical constants, and the set X = {x,,
Xz, .. .3%;, ...} Of alphabetically ordered (individual) variables. We use
‘@’, 4’ as metavariables for formulas of Lg,. The predicate-functor
language with operation symbols corresponding to Ly, is the language
L, whose vocabulary is the union of the set of predicate- and
operation-symbols of Ly, and the set P = {*N°, *~*, p’, ‘ L, * \’,
‘I'} of (logical) predicate functors. We use as metavariables (for each
n=0) TI” for n-place predicate symbols, ‘0™ for n-place operation

(*) T acknowledge my great gratitude to Quine who has inspired and encouraged my
work on predicate-functor logic, and who has read (in August 1981) a first draft of this
paper with helpful comments.

(®) Journal of Symbolic Logic, 48 (1983) 1140-1144.

(%) See W.V. QuINg, Algebraic Logic and Predicate Functors, in The Way of
Paradox and Other Essays (Harvard Press paperback, enlarged edition, 1976), p. 284.

96 T. GRUNBERG

symbols, and ‘n"’ for (possibly complex) predicates of degree n. A
predicate n" of degree n is defined as in [TPF] by adding only a
clause stipulating that for any m =0, o™ xn" is a predicate of degree
m+n—1if n> 0, and of degree 0 if n = 0. Thus w™ operates here on a
predicate and is thus itself a 1-place (extralogical) predicate func-
tor(*). We see that the set of predicates of L, includes those of the
predicate-functor language L in [TPF] so that L, is an extension of L.
We define the height hg (n") of a predicate n” of L, as being equal to
the total number of occurrences in n" of the predicate functors ‘N’, ‘',
‘P’, ‘T, ' N’ and of operation symbols ‘@"’.

A structure \l with universe |il| for L, is the same as a structure for
Lgy. Instead of ‘[l]’ we write ‘U’ when no confusion results.
L IT") S U" and il (w") is a function from U™ to U.

(n")" is defined as in [TPF] by adding only the following clause:

{<Uysenns Upyn >+ U™ NHy 5oy 1), W
"Y'= U, > @)}, ifn=1;
@), ifn=0

m+l..,

A sequence u = (u,, Us,..., 4;,...) of elements of U satisfies-in-\l the
predicate n", or ul, " for short, in case

<Uy,...u,> € @Y.

A predicate nt" is called satisfiable in case it is satisfied in some
structure by some sequence, and it is called universal in case —n" is
unsatisfiable.

2. Predicate-Functor Language with Singular Terms: L,,

By adjoining to the vocabulary of L, the set X of variables we obtain
an extension L., called the predicate-functor language with (opera-
tion symbols and) singular terms. The predicates of L, are defined as
those of L, and the singular terms as those of L;,. We use as
metavariables ‘t’, ‘c’ for singular terms. A formula of L,, is an
expression of the form " t,...t,, n = 0. In analogy to [TPF|, the height
hg (n"v,...1,) of such a formula is defined as being equal to sg ("). We

(%) We tacitly assume that L, contains an unwritten operator which (in the context
" n" operates on w” to form a 1-place predicate functor.

PREDICATE-FUNCTOR LOGIC WITH OPERATION SYMBOLS 97

say also that a string of singular terms 13...t, is (0,, 0,) — related to
string T, ...T, in case 14 ...t, differs from t,...t, only by replacing one of
the singular terms o,, 0, by the other.

A structure tl (with universe U) for L, is the same as a structure for
L, (or for Lgy). For any sequence u, define (x)" = u,, (0"ty...1,)" =
H")@,",..., T,"), and

u=, " 1;...1, (u satisfies-in-tl " 1,.. 1,) iff <1,°,..., 1,"> E@"".

Satisfiability and validity of a formula are defined as usually.

Definition: A reducible formula of L,y is one whose predicate be-
gins with *--’, ‘p’, * 57, ‘0™, or else, whose predicate has the form

“ 2 n®. The reduced transform J'm,, of a reducible formula is
defined by the following conditions:
LTy

--n")7y..1 = 2107,

5 TN ATy T, Taee Ty L3
L patty.T, =

n't..1,ifn=0,1,2

.

(S Tt = A" T2...T,, ;.
T
4.:‘/3150:_50'\
5. 0™ %" T T ™ KO (Fseeei Tai) Tairos Tupanngs 2= 10

6.m=n°.

The height of the reduced transform is below the height of the
corresponding reducible formula.

Proposition: Any reducible formula of L,y is equivalent to its
reduced transform.

3. Elimination of Bound Variables

Consider the set of expressions consisting of the predicates of L,
and the formulas of L, and L.y. Any two of such expressions are
called equivalent in case they are satisfied in every structure by the
same sequences. We write ‘=’ between two equivalent expressions.

98 T. GRUNBERG

In case the equivalent expressions belong to different languages, we
write within parantheses, to the right of the equivalence, the names of
the respective languages.

Proposition: There is a (computable) function % from the set of
formulas of L,y to the set of formulas of Ly, such that for any
b il PN, 0

n'1y..T, AF (0" 14...7,) (Lpy, Lgy).

Proof: Define# by the following conditions:

1. ZF@"1y..3,) = I"1,..1,,2(01,1) = T, =1, -

2. 7((" Nny") .. 1, _5r= F@,"1y..1,) e F (" 1,...T,) -
3.7 (~my)' 1.7,) = ~F @' 1,...T,) L]
4. 72 (S n")t..T,,)= I F (" x;1y..01,,) L ifn=1.

where i is the least positive integer such that x; does not occur in the
string t;...T,_,.

5. F@"1,..1,) = 7 1,.. T if X'14...7, is a reducible formula.

Example : Using ‘F’, ‘G’ as predicate symbols, ‘f°, ‘g’ as operation

symbols, ‘a’, ‘b’ as 0-place operation symbols and ‘x’, ‘y’ as variables
we obtain:

F((FF*Ng'G*)abxy’) = ‘F*f* (a)bxy e G*g'(a)bxy’.

Proposition : For any string of singular terms t,...t, and a variable
x;, there is a (complex) predicate functor %, . (the reductor of string
1;...T,), and a complex predicate functorZ, . , (the reductor of string
T,...T, with respect to variable x,), such that

Tyt H @, W x (r=0),

where x; ,...,x; —in this order — are all the occurrences of variables in
string t,...T,; and

Ty T, G X 1.ty (4 =0),

where 15,...,t/ — in this order — are all the occurrences of maximal
x-free subterms of 1,,...,T,. (An x,-free subterm of t is a subterm of ¢
which does not contain x;.)

PREDICATE-FUNCTOR LOGIC WITH OPERATION SYMBOLS 99

Examples : (5)

‘Fxg*(y,a)z’ | ‘(aq,g*p FP)xyz’ = ,,z{,.,)zF’)ryz y
‘Pxg?(y,a)7’ F (qap18°p1FP)yxaz’ = "R,y FoIVx0Z

Theorem: There is a (computable) function % from the set of
formulas of Lgy to the set of formulas of L,,, such that for any formula
@, there is a predicate n" which satisfies the condition

@ HAa't..T,

where 1,,...,T, — in this order — are all the occurrences of maximal free
singular terms in @. (%)

Proof: Define ¢ by the following conditions:

1. ?(I'["tl t,) = II"1,...1,, g(T=T)= I'tl,tz

2. 9~y =)Ty, i F) = T

3. g(Yoy,) = (" X, " t1.. T, ..o T, ,(7) lf () = 1" 1.1,
and ¥(y,) = " .. T,

4. 9y)= (SR, .7) if $@) = n'1,..1,, and
Ty,...,¥/ —in this order - are all the occurrences of maximal x-free
subterms of 14,..., T,.

Example : % (‘~(Fg(a) @ ~ 3xFg(x))’) = ‘~(FN T - \, gF)g(@)’.

4. Tableau System of Proof for Predicate-Functor Logic with Singular
Terms

We shall show now that our tableau system of proof in [TPF] can be
extended to predicate-functor logic with singular terms, i.e. the logic

(®) In these examples we use the predicqte functors ‘p;’ dcﬁned in Quine, op. ci:
p. 300. We use also ‘g, as short for ‘p; (i.e., ‘p;p;...p;’ to i occurrences).
corresponds to Kuhn's ‘g;}’ and 'q;’ to ‘g;,,’. See S.T. Kuhn, Quantifiers as Modal
Operators, Studia Logica Vol. XXXIX (1980) 2/3 p. 150.

(®) It follows from the existence of the functions & and # that the languages Lpy and
Lgy are equivalent in Kuhn's sense. See Kuhn, op. cit. p. 152.

(’) ‘X’ (Cartesian multiplication) is defined in Quine, op. cir., p. 300 in terms of * *
and the heterogeneous intersection functor. But the latter is definable in terms of the
homogeneous ‘N’ as pointed out by T.S. Kuhn. See [TPF], n.1.

100 T. GRUNBERG

underlying the language L,,. On the basis of the analogy between the
prefixed predicates (of the form i,...i,x") of the auxiliary language L*
in [TPF] and the formulas (of the form x",...t,) of L., we classify the
formulas of L,y also into component-free ones and into a-, -, y-, 8-,
(a.p)-types. The tabulation of types and components for the formulas
L., results from the tabulation for L*, by merely substituting
“T1’40e0y'T,’, ‘T’ (and moving them to the left of the predicate) for
‘iy’,..'1,7, ‘i7 respectively, and also, by adding to the tabulation the
following rows:

Type Form Form

(@p): ET1 i o | TIE I + w"n’

(aP),: component £ X W™ (TyyeeesTp) Tos 1o+ Tomppe +n°
nz=1

In the resulting tabulation, the height of any formula of type a, B, v, 8,
or (ap) is always above the height of each of its components.

On the basis of this tabulation, we define a (cut-free, or analytic)
tableau for a formula n"v,...t, of L,y as a tree with origin x"1,...T,,
constructed by means of tableau rules for the a-, 8-, y-, 8-, (o p)-types
and a tableau rule for identity (®). The tableau rule for d-type is the
same as the correspondent rule in [TPF], while the other tableau rules
result from the correspondent rules by merely substituting metavaria-
bles ranging over singular terms for those which are ranging over
position markers. A closed tableau for a formulan”t,...t, is defined in
the same way as one for a prefixed predicate. A closed tableau for
formula (-m")t,...1, is called a tableau proof for n"t,..x,, and
" 1,...T, is called then tableau provable.

(®) The tableau rule for identity has the following form:

If a branch © contains both a node +I1"1,...t, and a node 10, 0,, then we may
adjoin to § a node +IT"1]...x/, where t]...T is (0;, 0;)-related to T,...T,,.

This rule is a natural generalization of the corresponding rule in [TPF] which had been
suggested to me by the anonymous referee of the Journal of Symbolic Logic. 1
acknowledge again my gratitude to him.

PREDICATE-FUNCTOR LOGIC WITH OPERATION SYMBOLS 101

Example : Let us construct a tableau proof for the valid formula

-(FN K- 5gPFga):

1. -«(FN T - ygPFga) from:
2. (FN X - YgFg(a) (1)
3. Fg(a))
4. (K- HgF)ga) 2)
5.- NgF 4)
6. (-gFa 3
7. (-Fg(a) (6)

(closed by 3, 7)

Theorem (soundness): Every tableau-provable formula of L,, is
valid. The proof is similar to that of the corresponding Theorem 1 in
[TPF] and is based on the analogues of Lemmata 1, 2.

Theorem (completeness): Every valid formula of L,, is tableau
provable.

The proof is similar to the corresponding Theorem 2 in [TPF] and is
based on the analogues of Lemmata 3, 4. In particular a Hintikka set
of formulas of L,, is defined in analogy to a Hintikka set of prefixed
predicates, but the proof of the Lemma that every Hintikka set of
formulas of L, is satisfiable, differs somewhat from the proof of the
corresponding Lemma 3 in [TPF]. Therefore we must outline here the
proof of that Lemma.

Let then T be the set of singular terms of L,,. Given a Hintikka set
T, define a relation E on T, as the smallest subset of T2, such that for

r

€VETY T, TyseeesTps Tyseenslo:

1. ifltltz €T then T]ETz,
2. t1E",
3. iftyEty,...,1, ET, then 0" (x4,...,T,) E 0" (17,...,T)).

E exists and is an equivalence relation on T which satisfies the
following condition:

If +II",..1, €T, 0, E0,, and T{...1, is (§,, ,)- related to t,...T,,
then £ IT"1;...7, €T.

102 T. GRUNBERG

Define then a structure il with universe U for L,, and a sequence u
such that:

1. U= T/U (i.e., the set of equivalence classes [t] = {0 :0ETt},
T E€1);

2.0 = {<[ty],..., [t,]> : I"14..7, €T},

3. @) = {<[tl,..., [T]; [Tand]> ¢ [0"T10.7,] = [1,,4]};

4. u= ([x4], [x2]s...5 [x]5--2)-
We show then:

i, <[ty],..., [n,]> €U iff +1"1,..1, €T.
ii. W@™")([t4],--s [T,]) = [@"Tq...T,].
iii. ©° = [1].
iv. u5T, i.e., for every formula x",...t, of L,,:
Ifn"t,...1, €T then U= n"1;...1,.

Finally in order to prove the analogue of Lemma 4 in [TPF], we
consider an effective enumeration of the set T of singular terms of L., .

5. Elimination of Free Variables and Tableau System of Proof for
Predicate-Functor Logic without Singular Terms

Proposition : There is a (computable) function % from the set of
predicates of L, to the set of formulas of Ly, such that for every x* :

A F@") (Lp, Lgy).

Proof: Define & (") = x", .

Proposition : For any finite sequence of positive integers i,...,J

n?*

n =0, there is a (complex) predicate functor 0.;,..;>»(’) such that for

.....

PREDICATE-FUNCTOR LOGIC WITH OPERATION SYMBOLS 103

Theorem: There is a (computable) function % from the set of
formulas of Lgy to the set of predicates of L,, such that for every
formula @ :

eH %@ Ly Ly).°)

Proof: Define for any string 1,...t, the (complex) predicate functor
@.,..s,» Such that for every n":

%-‘l""‘nun = @‘:l’“....ir> g‘tl...t" nn! r= 0:

where x; ,...,x; —in this order — are all the occurrences of variables in
T3...T,. We call ?5}....1,, a&-predicate, and we can show that:

(1) 5'“__.,”3" Hr"ty...T, (Lp, Lpy).

Define then % () =¢,_, a", incase ¥ (@) =", , . This concludes
the proof.

We see that this last Theorem provides for the elimination of free
variables and, in general, of free singular terms. But, interestingly
enough, the eliminated free singular terms reappear as indices of the
metalinguistic expression ‘%57, and these indices are blocklike
terms subject to simple substitutions. Exploiting this characteristic,
we can obtain an intrinsic, sound and complete proof procedure for
the predicate-functor logic without singular terms underlying the
language L;. Indeed, on the basis of equivalence (1) which establishes
a 1-1 correspondence between the set of all formulas of L, and the set
of? -predicates of L,, we can transpose to L, the whole tableau system
of proof in L,y (with its tabulation of formulas, tableau rules, and
tableau constructions), merely by translating any formula n"Ty...T,
into the corresponding equivalent%’-predicate%’,l___tn n". Thus a tableau
for@, . m" is the translation of a tableau for n"t,...t,. A tableau for a
predicate ", which is not itself a%-predicate, is defined as a tableau
for the equivalent & -predicate Gy,

(*°) The existence of functions #, ¥ shows that the languages L, and Lgy are
equivalent in Kuhn's sense.

104 T. GRUNBERG

Let us conclude with the remark that L,, when devoid of operation
symbols, reduces to the predicate—functor language L in [TPF]. Then,
every@ -predicate has the form?@, s ", and this form reduces further
to O, ., -.n". We can then construe a prefixed predicate i,...i, " of
the aux111ary language L* in [TPF], as a shorthand for the predicate
0,,..,>7" of L. Alternatively we can construe i,...i,n" as standing for

.....

the formula n" x,,...x; of the language L,y wich corresponds to L.

Orta Dogu Teknik Universitesi Teo GRUNBERG
(Middle East Technical University)

Dept. of Philosophy

Ankara, Turquie

Abstract

We first extend Quine’s method of eliminating the bound variables
to first-order predicate logic with operation symbols; then we give a
device for eliminating also the free variables; and finally we extend
our tableau method of proof to the resulting predicate-functor logic
with operation symbols, with or without singular terms.

