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Introduction

Loosely speaking, classical deductive logic is constituted by the
classical first-order predicate calculus, with or without equality, plus
some of its standard extensions, such as some systems of set theory
(Zermelo-Fraenkel, von Neumann-Bernays-Gidel, Kelley-Morse-
Tarski,...) or usual type theory (essentially the higher-order predicate
calculus) ().

In this century, numerous new systems of deductive logic were
developed, whose roots, in various cases, may be found even in
Ancient Greece. Among these new systems, some are complementary
to classical deductive logic (for example, classical modal logic,
classical tense logic, and ordinary deontic logic). On the other hand,
there exist others which are, so to say, rivals of classical logic, and
whose principal aim is to replace it in some or in all domains of
knowledge (for instance, intuitionistic logic, paraconsistent logic, and
many-valued logic) ().

It seems reasonable to admit that usual, extant science is founded
on classical deductive logic, at least in principle. In other words, the
deductive part of the empirical sciences can be in principle codified by
the means of classical logic. Nonetheless, it is possible to show that
the same task can be performed by several non-classical logics, even
by logics which are rival of classical logic; this is, v.g. what does
happen with some systems of paraconsistent logic. The explanation of
this fact, at first sight surprizing, offers no difficulty at all, since some
powerful systems of paraconsistent logic do contain, in a certain
precise sense, classical deductive logic.

(1) This paper is a sequel to [9].
(2) On the notion of classical logic, non-classical logic, etc. one may consult [4].
() See [4] and [6].
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So, a natural question originates: since there are non-classical
deductive logics, are there non-classical inductive logics ? The aim of
the present note is to illustrate the possibility of building non-classical
inductive logics, corresponding to some non-classical deductive lo-
gics. In order that our discussion be well determined and sufficiently
precise, we shall accept as inductive logic, in its standard meaning,
the contents of von Wright’s book ‘A Treatise on Induction and
Probability’ (see [12]). To make our problem still more definite, we
introduce three systems of non-classical deductive logic, and try to
discover what portion of [ 12] can be reconstructed on the basis of such
systems.

1. The propositional logics B¢, B, and B,

In this section we define three basic propositional logics: o, B, and
B2. Their underlying language has the following primitive symbols: 1)
The connectives: — (implication), A (conjunction), V (disjunction),
and™ ](negation) ;— (equivalence) is introduced by definition, as usual.
2) A denumerably infinite set of propositional variables: p, q, r, s,...,
p’, q', r', s',... 3) Parentheses. The concept of formula is defined as
usual ; the atomic formulas are the propositional variables, and the
other formulas are called molecular,

Let us describe the postulates (axiom-schemes and primitive rule of
inference) of Bo. They are the following (capital Latin letters stand for
formulas):

1) A5(B>A)  2) (A>B)>((A>(B-C)—(A-0))
3) ALA-B/B 4) (A-B)»A)-» A
5) (AAB)> A 6) (AAB)»B  7) A-»(B—(AAB))
8 A-(AVB) 9) B> (AVB)
10) (A-C)»(B-C)-»((AVB)-»C))
11) (1A-»B)> ((1A-"1B)> A)
Restriction : In postulate 11, A and B are supposed to be molecular.

Therefore, f, is classical propositional positive logic to which we
have added scheme 11. If the restriction is dropped from the scheme,
then B, reduces to the classical propositional calculus, as can be easily
seen by the proofs of theorems 1-4 below.

The concepts of proof, deduction, the symbol—, etc. are defined as
in Kleene’s book [7].
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Theorem 1. - In By we have:+— T 1A— A, for A molecular.

Proof. - Let us assume " [ |A. Then, it results that "JA—"T JA and
~1A—-"1A by positive logic. Therefore, taking into account scheme 11,
[JA-A, and, by the deduction theorem, — | 1A— A.

Theorem 2. - In Bo: —A—"T 1A, for A molecular.

Proof. - Let us assume A. Hence, [ [ |1A— A, by positive logic, and
TTIA-"1A, by the preceding theorem. So, A~ [ 1A, and
A>T 1A,

Theorem 3. - In By:+(A— B)— ((A->"1B) - 1A), A and B molecular.

Proof. - In B, the scheme ((171A—B) - (T171A— "1B) » ~1A), for B
molecular, is valid. But, in iy, —A < "171A, if A is not atomic. So,
(A—-B) - ((A—"1B) — " 1A), where A and B are not atomic.

Theorem 4.- If A is a classical tautology and we replace its
propositional variables by molecular formulas, obtaining the formula
A', then A' is provable in B,.

Proof. - Consequence of the above theorems and of the fact that the
classical propositional calculus can be axiomatized by the postulates
1-10, plus the scheme (A— B) -» ((A-"1B) > " 1A) and T 1A— A (cf.
(7).

Theorem 5. - In By, if A is molecular, one has:
= T 1A—A, — KAATTA), HAVTIA, ~A-(1A-> B).

Theorem 6. - In By, the following formulas are theorems (p and q are
propositional variables, i.e. atomic formulas):

K pVak KqVp), + KpAq KqAp),
VT, +=KIPATP), 1T Ip

In what follows, F will denote the set of formulas of B,.
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Definition 1. - The function v, v: F— {0, 1}, is a valuation of B, if, and
only if (©is a meta-linguistic abbreviation for equivalence), we have :

1) (A»B)=1ov(A)= 0or v(B) = 1.,
2) (AAB) = 1 © v(A) = v(B) = 1,

3) iAvB)=1ev(A)= 1or v(B) = 1,

4) v('1A) = 1 & v(A) = 0, when A is molecular.

Employing the ideas and methods of [9], it is not difficult to prove
the following theorem:

Theorem 7. - B, is strongly sound and strongly complete relatively to
the semantics of valuation based on Definition 1.

To prove the preceding theorem, it is convenient the lemma that
follows:

Lemma. - If T A constitutes an abbreviation for XAV A), then "I
has all properties of classical negation. (" (A A A) behaves also as the
classical negation of A.)

Proof. - Relative to—, A, V, and™ I*, all postulates of classical positive
logic are true, as well as (T*A— B) » ((*A-"1B) - A). Conse-
quently, we have classical propositional logic valid for such connecti-
ves.

There are valuations v of B, such that v(A) = v(TJA) = 1, and
valuations v’ such that v/(B) = v'(TB) = 0, where A and B are
atomic. This means that, in the terminology of [9], B, belongs to the
class of paraconsistent calculi and also to the category of paracom-
plete logics.

Now we introduce another propositional logic, which we call p,. It
is defined as P, with the difference that in scheme 11 A can not be
atomic, but B may be.

Theorem 8. - The schemes AN 1A) and A— (1A— B) are valid inp,.

Proof. - We have in B;: —F(AATJA) > A and - (AATIA) - TTA.
Hence, — “KA A T1A). On the other hand, if A and T]A are assumed,
we obtain that A A T]A, “KA A T]A) ~ B, and, in consequence, that —
A-(C1A-B).
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Definition 2. - v: F— {0, 1} is a valuation of B, if it is a valuation of B,
and satisfies the following condition:

4') v(A) = 1= v(1A) = 0, for every formula A.

Theorem 9. - P, is strongly sound and strongly complete relatively to
the semantics of B-valuations (the valuations of B,).

Proof. - See [9].

Theorem 10. - p V "Ip (p is a propositional variable, is not provable in

P1-

Proof. - Corollary to Theorem 9.

In B, there exist valuations v for which v(p) = v("Ip) = 0. But in B,
no valuation v’ satisfies the condition v'(p) = v'("Ip) = 1. Thus, B, is
paracomplete, though not paraconsistent (see [9]).

Finally, we introduce a third system f,, which is the same as f3,, but
with a different restriction on scheme 11: B can not be atomic, though
A may be.

Theorem 11. - In B,: —AVT1A and — KAA 1A) » (A— (1A— B)).

Proof. - We have:

A, TKAVTTIA) - AVTIA
A, TKAVTIA) -TKAVTI1A)
“KAVTIA) -TIA
Similarly, "KAVT1A) —"T IA.
Therefore, — T KAV 1A) and — AV 1A.
The proof of -~ KAAT1A) » (A— ((1A— B)) is immediate.

Definition 3. - v: F- {0, 1} is a B,-valuation (or a valuation of B,) if it
is a Bo-valuation satisfying the following extra condition:

4) v(A) = 0=v(1A) = 1.

Theorem 12. - B, is strongly sound and strongly complete with
reference to the semantics based on the notion of B,-valuation.
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Theorem 13. - In B, :+"KpA Ip).
It is easy to verify that §, is paraconsistent, but not paracomplete
(see [9]). B is equivalent to system P; of [11].

Theorem 14. - B, contains the calculus C, of [3].
Employing the terminology of [9], we have in B,:

AATIA express that A is true and not well-behaved ;
ANTKAATIA) express that A is true and well-behaved ;
“TAATKAATIA) express that A is false and well-behaved ;

KAV 1A) express that A is false and not well-behaved.

Theorem 15. - By, By and B, are finitely many-valued calculi. Bo is
four-valued and B, and B, are three-valued.

Proof. - Consequence of the corresponding semantics of valuations of
the calculi By, B, and B,. (Observe that these semantics are two-va-
lued, though not truth-functional.)

The extension of the propositional calculi studied to predicate
calculi, with or without equality, offers no essential difficulties. Yet,
this extension will not be considered in this paper.

Among other applications, $,, B; and f, may be used as the starting
point of paracomplete as paraconsistent set theories (cf. [3]), of a
reconstruction of Meinong’s theory of objects (see [10]), and of logics
for the treatment of vague concepts in the senses of [1] and of [8].

2. Nonstandard inductive logic

According to von Wright [12], inductive logic has, broadly spea-
king, two fundamental parts, namely: elimination theory and confir-
mation theory.

Elimination theory is essentially a logic of conditions, especially as
constructed by Keynes, Johnson, Broad, and von Wright. Such logic
of conditions is conceived as encompassing the canons of eliminative
induction, i.e. Mill’s methods, in the new (extended and precise)
forms given to them by von Wright.

The central characteristic which makes possible the classical theory
of elimination, in von Wright’s formulation, consists essentially in the
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circunstance that appropriate sets of conditions constitute Boolean
algebras. The well-known definitions of necessary condition, suffi-
cient condition, necessary and sufficient condition, etc. and their
relevant properties, as well as von Wright’s generalization of Mill’s
canons of induction, depend solely on that circumstance.

Nevertheless, our investigation of the systems B4, §; and B, could
be extended to show that to each of them is associated a correspon-
ding logic of conditions. Moreover, one can check up that any of these
logics of conditions is almost identical to a Boolean algebra. The sole
significative difference reduces to the fact that the complement P of a
condition P behaves approximately as a condition independent from
P.

Really, with little effort one can extend to the logics of conditions
associated with our systems practically all results of von Wright’s
theory of elimination. We omit the details here, since they are in
general trivial.

Now, we pass to the question: what portion of classical confirma-
tion theory can be reproduced in our logics? When one examines von
Wright’s postulates for the probability calculus, one immediately
perceives that the existence of a classical (defined) negation in our
logics is sufficient to assure us that the postulates can be reformulated
within the field covered by our non-classical logics of conditions. In
effect, von Wright’s system of postulates does work because the
classical logic of conditions constitutes a Boolean algebra. So, in our
case, since the logics 8, B, and B, contain in a certain sense classical
logic, we are able to construct nonstandard confirmation theories
similar to that of von Wright. Even sophisticated topics such as
Bayes-Laplace’s theory of inverse probability, Laplace’s law of
succession, Bernoulli’s law of large members, and Keynes-Broad’s
theorem of confirmation are reproducible in our (possible) non-classi-
cal inductive logics.

Of course, all open philosophical problems of induction remain
unsolved whether or not we change our deductive logic, and in
consequence our inductive logic. In other words, a change of deduc-
tive logic, simply by itself, does not solve the basic questions
connected with induction, which we are unable to settle within the
domain of classical induction theory. However, what is important and
significant is to note that induction can also be treated and investiga-
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ted when we do not employ classical deductive logic as our organon of
deductive inference, but instead logics very different from it, for
instance paracomplete and paraconsistent systems.

We could demonstrate that other trends in the domain of induction
could be treated within the scope of our non-classical logics. For
example, the theory presented in [2] and all related later develop-
ments, de Finetti’s subjectivistic stance (cf. [5]), and extant statistics.

The moral to be drawn from the present exposition is that non-clas-
sical deductive logics are really surprisingly strong: in the logics here
studied, the derogation of principles so fundamental from the classical
stance, such as the laws of contradiction and of excluded middle, does
not hinder the functioning of the mechanism of induction.
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