A COMPANION TO MODAL LOGIC - SOME CORRECTIONS

G.E. HUGHES and M.J. CRESSWELL

At three places in our recently published [3] we offer proofs of
certain results which we have since found to be fallacious. The
purpose of this paper is to diagnose the errors in these purported
proofs and to show how they can be replaced by valid ones.
Fortunately, in each case the result itself is correct. The results in
question are the non-compactness of K4.3W and of $4.3.1, discussed
on pp. 105-9, and the completeness of K4, discussed on pp. 145-8.
There is also a consequential error in Exercise 6.6 on p. 110.

KW (also known as G — see [1]) is the system obtained by adding to
the minimal normal modal system K the single extra axiom

W L(Lp op)>oLp
K4.3W is obtained by the further addition of
D1, L((Lp-p) >q) V L((Lq -q) >p)

On p. 105 we noted (correctly) that all frames for K4.3W are transi-
tive, irreflexive and weakly connected. But we also claimed, incor-
rectly, that all generated frames for the system are finite. To see that
this is not so, consider the frame <W,R> in which W consists of the
natural numbers and a single ‘infinite’ world, w, and for any j and
k=W, jRk iff j>k. Let us call this frame the w-frame. It may be
pictured thus:

01...i...w

This frame is transitive, irreflexive and weakly connected, it is
generated (by w), and it is obviously not finite ; but it is easy to check
that neither W nor D1, can be falsified at any world in it, even at w,
and therefore that it is a frame for K4.3W. What is more to the point
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here, however, is that our argument for the non-compactness of
K4.3W on pp. 106-7 proceeded by. claiming that although every finite
subset of

(A) {Mp,MMp,...Mp,...}

is simultaneously satisfiable in some frame for K4.3W, A itself is not
simultaneously satisfiable in any frame for the system. But this is
incorrect, since every wif in A is true at w in a model based on the
w-frame in which p is true at every finite world. ()

Nevertheless K4.3W is non-compact, and this can be proved by a
similar argument using another set of wif in place of A. We can in fact
use a set which was suggested by Fine for proving the non-compac-
tness of KW, and which is mentioned for this purpose in Exercise 6.5
on p. 110. This is

©) {Mp,,Lp, SMpy),....L(p;, oMp,,),...}
We shall show that what we incorrectly claimed about A really does
hold about 8, viz. (1) that it is not simultaneously satisfiable in any
frame for K4.3W, but (2) that every finite subset of it is simulta-
neously satisfiable in some frame for K4.3W (and that therefore the
whole set is K4.3W-consistent); and the existence of such a set is
sufficient to prove non-compactness.

To prove (1) we first define a chain in a frame <W,R>> as a (finite or
infinite) set of distinct members of W,wy,w,,...,w,,... such that wg R
wiR...Rw;R ... (Note that the w-frame, though it contains infinitely
many chains, contains no chains of infinite length ; for even if we take
o as the w, of the definition, w, must then be some finite world, and
the chain will terminate in a finite number of steps.)

We next show that any transitive irreflexive frame in which 0 is
simultaneously satisfiable contains at least one infinite chain. The
proof is this. Suppose that in some transitive irreflexive model
<W,R,V> there is some w, €W at which every wff in 0 is true. Then
since Mp, is true at wy, there is some w, €W such that w, R w, and P1

(") That A could not be used to prove the non-compactness of K4.3W in fact follows
easily from theorem 3 on p. 41 of Fine’s [2]. For all the members of A are made up from
a single variable, and Fine's theorem shows that K4.3W has the property he calls ‘weak
compactness’, viz that any consistent set of wff made up from a finite number of
variables is simultaneously satisfiable on one of its frames.
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is true at it ; and since R is irreflexive, w; #=w,. Now suppose there is a
chain in the model, wy,...,w;, such that p, is true at w,. Then since
L(p; oMp,,,) is true at wo and R is transitive, p, SMp,,, is true at w,,
and therefore so is Mp,,,. Hence there must be some w,,, €W such
that w; R w;,, and p,,, is true at it; and since R is irreflexive and
transitive, w,,, must be distinct from w; and any earlier world in the
chain. This is sufficient to show that the frame of the model contains
at least one infinite chain.

No frame containing an infinite chain, however, can be a frame for
K4.3W (or even for KW). For consider a model based on any such
frame in which p is false at every world in the chain in question and
true everywhere else. Since the chain is infinite, Lp” will be false at
every world in it, and therefore Lp >p will be true at every such
world. Since p is true at every world not in the chain, Lp Sp is true at
all those worlds as well. Thus Lp op is true everywhere in the model,
and therefore so is L(Lp >p). As aresult, W is false at every world in
the chain. This shows that the frame is not a frame for any system that
contains W, and thereby proves (1).

To prove (2) we note that any finite subset of 0 is a subset of some
(finite)

6, = {Mp,,L(p, DMp,),....L(p,_, oMp,)}

It is therefore sufficient to exhibit a frame for K4.3W in which 0, is
simultaneously satisfiable ; and such a frame is provided by the frame
in which W = {w,...,w,} and w; R w; iff i <j. For every finite strict
linear ordering is a frame for K4.3W, and if each p, (1 <i/ <n) is true at
w; and false everywhere else, then every wif in 0, is true at w,,.

As we noted earlier, (1) and (2) suffice to prove the non-compac-
tness of K4.3W. But the proof we have given in fact establishes the
non-compactness of KW and every extension of it which is contained
in K4.3W. The reason is that every frame for KW, and therefore for
any extension of KW, must be irreflexive and transitive ; so the proof
of (1) shows that 0 is not simultaneously satisfiable in any frame for
any such extension. And since the frame used in the proof of (2) is a
frame for K4.3W, it is also a frame for any system contained in it.
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II

There is a similar situation with $4.3.1, i.e. S4+
D1 L{Lp oq) VL(Lq op)
and
N1 L(L(p >Lp) op) >(MLp >p)
We claimed on p. 109 that the set
A A{ag,....0...} U {MLp}

where ay =p,a; =M ~p,andeacho,,, (i=1) = M(~p -M({p -q,_)),
is not simultaneously satisfiable in any frame for $4.3.1. But this is not
so. Consider the frame which is like the w-frame except that R is
reflexive (i.e. jRk iff j = k). Let us call this the reflexive w-frame. Like
the w-frame it contains no infinite chains, though o can see infinitely
many worlds. We shall show firstly that it is a frame for S4.3.1, and
then that all the wff in A can be true together at .

The reflexive w-frame is clearly reflexive, transitive and connected,
and as is well known, every such frame validates all theorems of S4.3
(i.e. S4 + D1). So to show that it is a frame for S4.3.1 all we need to
show is that N1 is valid on it. In fact we can show that the stronger
formula

J1 L(L(p oLp) op) op

(from which N1 easily follows by PC) is valid on it, and thus that it is a
frame even for K3.1 (i.e. $4.3.1 with J1 replacing N1). It is convenient
here to consider J1 in its obviously equivalent form

JU" L(~p>oM(p-M~p))op

Suppose that at some w €W, J1' is false. then at w, L(~p SM(p -
M ~p)) is true and p is false (and therefore ~p is true). Since R is
reflexive and transitive, we then have ~p SM(p -M ~ p) true at every
w'=w; and so, since ~p is true at w, M(p - M ~ p) is also true there.
Hence w can see some world at which both p and M ~ p are true ; and
since p is false at w, this must be some world, say n, which is less than
w, and therefore finite. Moreover, since M ~ p is true at n, n must be
related to some m at which ~p is true; and since ~p is false at n,
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m<n, and a fortiori m <w. Hence ~p DM(p -M ~p) is true at m;
and so, since ~p is true at m, M(p -M ~p) is also true at m, which
must therefore be related to some &, with k <m, at whichp and M ~p
are true. Thus the position with w and » repeats itself with m and k,
and as a result there must be an infinite chain of worlds beginning with
w, n. But this is impossible, since there are only finitely many worlds
between n and 0. Thus J1 cannot be falsified at any world in the frame,
and hence neither can N1.

The reflexive w-frame is therefore a frame for $4.3.1; but if we let p
be true at w and at every even world, and false at every odd world,
then every wff in A will be true at w. Thus our purported proof of the
non-compactness of $4.3.1 fails.

As with K4.3W, however, we can repair the proof by using another
set in place of A. To define this set, we leta, = p, DM(~py ... - ~p;
Pi+1). Then the set is

(W) {MLpo, ~po,M(~po-p1)} U{L'a:i=1}

By using W we can in fact prove the more general result that every
modal system that contains N1 and is contained in K3.1 (i.e.
S4 + D1 + J1) is non-compact. (Since N1 is derivable frm J1, this
range of systems clearly includes 54.3.1.)

Let S be any system in this range. Our proof will have the same
structure as the one given above for K4.3W; i.e. we shall show (1) that
¥ is not simultaneously satisfiable in any frame for S, but (2) that
every finite subset of it is simultaneously satisfiable in some frame for
S.

To prove (1), suppose that in some model <W,R,V> there is some
wo €W at which every wiff in W is true. Then in that model: (a) Since
MLp, is true at wy, wy must see some world w* at which Lp, is true.
(b) Since ~ py is true at wo, w* cannot see wy. (c) Since M(~p, 'p,) is
true at wy, wo must see some world w, at which p, is false and p, is
true. But given a chain w,,...,w,(n = 1), such that we R w, and that
each p,(1 <i=<n) is true at w;, the truth of L" ¢, at w, requires that a, is
true at w,, and therefore that w, can see some w,,, at which p, , , is true
and each of py,...,p, is false ; and since each world among w,...,w, has
one of p,,...,p, true at it, w,,, must be distinct from any of its
predecessors in the chain. There must therefore be an infinite chain of
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worlds, beginning with w,, throughout which p, is false. From this it
follows (d) that w* cannot see any world in the chain in question,
because Lp, is true at w*. In summary, the frame of any such model
must contain (i) an infinite chain of worlds w,,...,w,,..., and (ii) a pair
of worlds wy and w* such that w, can see both w, and w* but w* can
see neither wy nor any world in the chain. (This is not meant to
exclude the possibilities that some or all worlds in the chain might also
see earlier members of the chain, or w*, that w, might see other
worlds in the chain as well as w4, or that w, might be identical with one
of the worlds in the chain; but these possibilities do not affect the
proof.) It is, however, impossible for any such frame to be a frame for
S. For consider a model in which p is false at w,, true and false
alternately throughout the chain (false at all the odd worlds if wg is
identical with one of these, false at all the even worlds otherwise), and
true everywhere else in the frame ; then N1, which is a theorem of S,
will be false at wo. This may be seen as follows: Let w be any world in
the model. If p is true at w, then obviously so is L(p oLp) op.Ifp is
false at w, then w is either w, or some world in the chain, and in either
case w can see some world at which p is true which can in turn see
some world at which p is false; thus at w, L(p oLp) is false, and
therefore again L(p oLp) op is true. Thus L(p oLp) op is true
everywhere in the model, and so L(L(p oLp) op) is true at w,. Next,
since w* cannot see either w, or any world in the chain, Lp is true at
w*, and so MLp is true at wy,. However, p is false at w,, and therefore
so is N1.

This suffices to prove (1).

To prove (2) we first note that every finite subset of ¥ is a subset of
some (finite)

v, = {MLPov ~Ppo, M(~po-p4), Lay,..., L" Ol,,}

Now consider the frame <W,R> where W = {w,,...,w,,,} and R is
linear over W in the sense that for any w, and w; eW.w, Rw, iffi <j. It
is a straightforward matter to show that every finite linear frame, and
therefore <W,R>, is a frame for K3.1; so, since K3.1 contains S,
<W,R> is a frame for S. And if we let p, be true at w,,, only, and each
p; (1 <i=<n+1) be true at w; only, then every wif in ¥, will be true at
w;.
(1) and (2) together establish the non-compactness of S.
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(It should be noted that a consequential error occurs in Exercise 6.6
on p. 110 of [3]. The set mentioned there — the A of p. 109 with the
omission of MLp — does not yield a non-compactness proof for K3.1
in the way claimed. We have, of course, just shown that ¥ can be
used for this purpose, but in fact, if we were only concerned to prove
the non-compactness of systems in the range from K1.1 (i.e. S4 + J1)
to K3.1, the simpler set {po} U{Lo, : i =0} would do instead.)

I11

The third error concerns our claim to have given on p. 147 a proof
of the completeness of KW with respect to the class of all finite
transitive irreflexive frames, using the method of filtrations. The proof
we give here to replace our defective one is due to Warren Goldfarb,
and we are grateful to him for permitting us to use it. (%)

Briefly, the argument on p. 147 proceeds by taking an arbitrary
non-theorem of KW, a, and then defining a filtration <W* ,R* V*> of
the canonical model <W,R,V> for KW, through @, (the set of all
sub-formulae of o). We defined W* by letting it consist of precisely
one final world in each equivalence class in W with respect to @, : i.e.
a world which is not related (by R) to any world in its own equivalence
class. We defined R* by saying that for any w and w' e W*, w R*w' iff
(a) w =w' and (b) for every wff LB ®,_, if V(LP, w) = 1 then both
V(LB,w') = 1and V(B,w') = 1. V* was defined in the usual way, as
the restriction of V to the members of W*, Now as far as we can see,
there was nothing wrong in our proof that <W#* R*,V*> is a filtration
of <W,R,V> through ®,. Nor was there any fault in the proof in the
preceding passage (pp. 146-7) that every relevant equivalence class
contains some final world. But for the overall proof to succeed, R*
must be irreflexive and transitive, and we were incorrect in claiming
that it is in all cases. It is, indeed, obvious by condition (a) that R* is
irreflexive, but there is nothing in our definition to prevent there being
two distinct worlds, w and w', in W* such that both w R*w' and
w'R*w, and in such a case, since we cannot have w R* w, transitivity
fails.

(*) Goldfarb's proof, of which we have learned from a private communication, dates
from 1979. Goldfarb also has a completeness proof, using a similar method, for K1.1
(S4Grz in his terminology — see [3], pp. 111-162).
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A simple counter-example may make this clearer. Let a be p. Then
®, is {p}, and the canonical model for KW will split into two
equivalence classes of worlds, (A) those in which p is true (i.e. which
contain p), and (B) those in which p is false (i.e. which contain ~ p).
Now it is easy to show that {p, L ~p, M ~p} is KW-consistent, and
also that any maximal KW-consistent set of wff which includes it is
final in A. Similarly, {~p, Lp, Mp} is KW-consistent, and any maxi-
mal KW-consistent set which includes it is final in B. So let W* =
{w,w’}, where w and w' include these two sets respectively. Then
since w =w’, condition (a) for wR*w’ is satisfied; and since ®,
contains no wif of the form L, condition (b) is also (trivially)
satisfied. Thus we have w R*w’. And for the same reason we also
have w'R*w. Moreover, not only does this particular R* fail to be
transitive in such a case, but no R* whatsoever which is suitable in the
sense explained on p. 138 of [3] could be both irreflexive and
transitive when defined over the w and w’ we have just been
considering. For condition (1) for suitability, as applied to the present
case, requires that if in the canonical model for KW we have w Ru for
any u =w', then we must have w R*w'. Now since w contains M ~p,
it must be related in the canonical model to some world which
contains ~p, i.e. to some world in B. Thus if R* is suitable, we have
wR*w’. Similarly, since w' contains Mp, we have w'Rv for some
v €A, and therefore w' R*w. As a result, if R* is transitive we have
both w R*w and w'R*w’, and so it cannot be irreflexive.

Nevertheless, it is possible, following Goldfarb, to define an R*
which, though not suitable in every case, yields for any wff which fails
on the canonical model for KW a model <W*, R*, V*> which is finite,
transitive and irreflexive, and for which we can prove an analogue of
the fundamental theorem for filtrations (Theorem 9.1 on p. 139 of [3]),
sufficient to show that that wff also fails on <W* R* V*>,

As before, we start from an arbitrary non-theorem of KW, a. We
then define <W* R* V*> as follows. W* is to consist of one world
from each equivalence class with respect to @, in the canonical model
(though this time it need not be a final world in its class). V* is again to
be simply the restriction of V to W*. But R* is now defined by saying
that for any w and w’ e W*, w R*w’ iff

") For some Lye®_, Lyew' and '
(a") Fors Y o LYEW and y Eéw and
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(b’) For every LBe®,, if LB Ew, then both LBEw’ and
pew’.

(Note that (b’) is similar to our original (b), but stated in terms of
membership rather than value-assignments; (a’), however, differs
considerably from (a).)

Now R*, as thus defined, is both irreflexive and transitive. It is
irreflexive because if we ever had w R*w, then by (a’) we should have
to have some Ly(€®,) in w where ¥ was not in w; but (b’) requires
that on the contrary y is inw. And it is also transitive. For suppose we
have both w;R*w, and w, R*w,. Then since w, R*w,, (a') ensures
that we have Ly Ew; and y ¢&w; for some Ly<®,, and thus (a’) is
satisfied for w, R*w;. And furthermore (since i, Lp >LLp) whene-
ver we have L in w, we also have LLP in w,. Thus by (b"), since
wiR*w,, if any LBE®, is in wy, L is also in w,; and by (b") again,
since w, R*w;, we then have both Lf and B in w;. Hence (b’) also
holds for w, R*w;.

Our original proof in [3] proceeded by showing that the model we
defined there was a filtration of the canonical model for KW through
®,. Now the model we have just defined will not be such a filtration in
every case, since R* will not always be suitable. To see that this is so,
consider again the case decribed earlier, in which o is p and w and w'
include {p,L~p,M ~p} and {~p,Lp,Mp} respectively. If R* is
defined in Goltifarb’s way, then both w and w’ will be dead ends in
<W*,R*,V*>_ since there is no Ly ®, and so condition (a’) always
fails. Hence in this model R* is irreflexive and (trivially) transitive ;
but, as we showed above, no R* which is suitable can be both
irreflexive and transitive for these w and w’. However, the reason for
appealing to the suitability requirement is simply to be able to apply
the fundamental theorem for filtrations; and when R* is defined in
Goldfarb’s way, although we cannot prove that <W* R* V*> is a
filtration, we can, as we remarked earlier, prove that an analogue of
the fundamental theorem, which will do all the necessary work, holds
for it. For we can prove that if <W,R,V> is the canonical model for
KW and <W*,R*,V*> is defined as above, then for every wif p ed,
and every w EW*, V¥ (B,w) = 1iff g ew. (This result in fact still holds
where in place of ®, we have any set of wff closed under sub-formu-
lae.)
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The only non-trivial step in the proof is the inductive step for L. For
this we assume that Ly €®,, take as our inductive hypothesis that
V*(y,w) = 1 iff yEw (for every w €W*), and show that in that case
V¥*(Ly,w) = 1iff Lyew.

(i) Suppose first that Lyw. Consider any w’'€W* such that
w R*w’. By condition (b'), we have y €w’, and hence by the inductive
hypothesis, V*(y,w') = 1, for any such w'. So by the value-assign-
ment rule for L, we have V*(Ly,w) = 1.

(ii)) Suppose now that Ly €w. Then by the axiom W, L(Ly ov) €w.
So in the canonical model for KW there must be some # €W such that
wRu and Ly oy ¢u, and therefore Ly Eu and y &u. Now let w' be
the world in W* which is equivalent to ¥ with respect to ®,. Since
y€®, we then have y&w', and so, by the inductive hypothesis,
V*(y,w') = 0. So in order to show that V*(Ly,w) = 0, all that remains
to be proved is that w R*w'. The proof is this:

To show that condition (a’) holds, we note that, as we have shown
above, Lyeu and y<u. But Ly and y are both in ®,. Therefore
Lyew' and y &w'.

To show that condition (b’) holds, consider any Lf €®, which is in
w. Since gy Lp DLLp, we then have both LLB and Lf in w, and so,
since w Ru, we have LP €u and f €u. Hence, since both L and p are
in @, we have LB Ew' and B Ew’ as required.

This completes the proof.

In summary : Given that a is a non-theorem of KW, we know by the
general theory of canonical models that for some wEW in the
canonical model <W,R,V> for KW, a &€w. We have shown how to
define a model <W* R*,V*> in which W* is finite because &, is, in
which R* is irreflexive and transitive, in which o &w for some
w €W*, and for which every wff in ®_ (and therefore o itself) is false
at every world that does not contain it. This is sufficient to prove that
KW is complete with respect to the class of all finite transitive and
irreflexive models.
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