A USER-FRIENDLY QUANTUM LOGIC

Peter GIBBINS

Quantum logic, a naturally user-hostile system, can benefit from
being given a user-friendly and user-familiar look. In this paper I make
quantum logic look as similar as possible to Lemmon’s well-known
version of the classical propositional calculus. (%)

Lemmon’s system has ten rules of inference and a definition of the
material equivalence connective. In this version of quantum logic we
restrict three of the rules, those that discharge assumptions: conditio-
nal proof, vel-elimination and reductio ad absurdum. To compensate
we add a second definition, that for material implication. One advan-
tage of the system is that we can give some justification for restricting
the rules that we restrict. The justification comes from simple facts
about quantum systems.

We depart from Lemmon in our treatment of what wffs are. We give
a BNF formalism for the context-free language which wifs should
form. This formalism includes Lemmon’s as a special case. No
binding conventions for eliminating brackets are needed. As a bonus it
leads to a simple recursive descent parser for withood. This is entirely
standard, and I incorporated such a parser into a proof-checker for
Lemmon-like quantum logic written in PASCAL.

Withood

Wffthood is a matter of convention but some conventions are
happier than others. Traditionally, logicians take something like
Lemmon’s line. The class WFFS of wifs is specified recursively from
a basis of atoms or propositional variables. Brackets are forced to
proliferate but conventions are supplied which allow one to omit
brackets from one’s representation of a wff. Thus Lemmon says
that (%)

(*) See Lemmon (1971).
() LEMMON (1971 pp. 44-48,
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(P>Q) V-Qer--P&Q

is not itself a wif but may be used as an abbreviated representation of
the wif

(P-Q) V-Q) <« (--P&Q)).
Lemmon’s definition of wffhood is:

(1) any propositional variable (atom) is a wff:

(2) ifaisawff, sois -a;

(3) if a and f3 are wffs, so are (a & B), (a V), (a—P) and (a —B);
(4) there are no other wifs.

In a BNF formalism this amounts to

<WFF>::= Arom |- <WI{f> | (<WIT> <20p> <WIff>)
<20p>:i=o || V]|&

Brackets are then omitted in practice in accordance with a convention
on the binding of the two-place operators.

The BNF formalism for Lemmon’s convention shows just how
unstructured it is. Better then to define wffhood so that no bracket-
dropping conventions are needed ; better then to define WFFS via an
operator precedence grammar in BNF form as follows.

<Wft> : : = <Cterm> | <Cterm> « <Wff>

<Cterm> : : = <Dterm> | <Dterm>— <Cterm>
<Dterm> : : = <Kterm> | <Kterm> V <Dterm>
<Kterm> : : = <Nterm> | <Nterm> & <Kterm>
<Nterm> : : = <Factor> | - <Nterm>

<Factor> : : = Arom | (KWIf>)

The terminal symbols are the atoms, the logical connectives and the
brackets. It is easy to see that whatever is a wff according to Lemmon
is a wif according to this definition. It is less easy to see, though
nevertheless true, that Lemmon’s conventions on binding and
bracket-dropping are automatically satisfied.

Sequents, Proofs and the Rules

In the matters of sequent, proof and rule of inference we follow
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Lemmon. Thus our proved items are sequents, objects of the form
['—a where T is a finite set of wffs and o is a wff. A proof is a finite,
non-empty sequence of sequents in which each sequent is derived
using one of the rules of inference together with a sequent or sequents
appearing earlier in the proof (except in the case of the rule of
assumptions). We represent a proof as a sequence of triples, each
consisting of a list of premise-names (usually numerals) naming the
elements of I', a wif and the justification for the step in the proof. The
rules are, for us, the important things and we give them as inferences
from sets of sequents to sequents. As usual, we let a, B, v etc. range
over wffs, and vy, v, etc. range over sets of wifs.

The Rule of Assumptions (A)
Infer a +a.

Modus Ponens (MP)
FromI'y+a and Ty —a—f3
Infer I'y, T'5 .

Modus Tollens (MT)
FromT'y~a—f and [, -
Infer I'y, T'; —-a.

Double Negation (DN)
From '+~

Infer I'—--a.

or

FromI't—--a

Infer I' —a.

Conditional Proof (CP)
From a+f3
Infer —a— .

&-Introduction (&I)
From I'y —a and T, +f3
Infer ['y, I'; —a & B.

&-Elimination (&E)

FromT't—a & 3

Infer either T —a
or '=p.
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vel-Introduction (VI)
From either T —a

or r'—p
Infer I' —a V.

vel-Elimination (VE)
FromI'~a VP; oty and p vy
Infer I" .

Reductio as Absurdum (RAA)
From o—-B & B
Infer +-a.

Lemmon has a single definition Df. « :
ap =4 (@-pf&P-oa)

To this we are required to add a definition for material implication
Df. -

a—p =4 -aV(@&p)

Our material implication is none other than the well-known Sasaki
hook.

%=<L,S,I,0, A9 V:-J->

For alla, b, c€L

(1) a<a

2) a<bandb=a = a=b
3) a=bandb=c = a<c
4) aAb =a

) aAb <b

(6) a<banda<c = a=sbAc
) a=<aVb
(8) b=<aVb
9 as=candb=c =aVb=c
(10) ava' =]

(11 aha' =0

(12) a=(a")’
(13) a<b =b'=a'

(14) (OM) a<b =b A(b' Va)=a.
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Fig. 1 The general orthomodular lattice.

We use the usual abbreviations: —a means ¢+—a; o[ means
{a}~B:T, a+p means I U{a} P and Iy, T, +a means I’y U, —a.

Call the resulting natural deduction system for quantum logic
NDQL. We now prove the soundness and completeness of NDQL in
the following sense: we show that the Lindenbaum algebra of NDQL
is a general orthomodular lattice.

Let adlp =4. a+—p and pa.

It is easy to see that {} is an equivalence relation on WFFS. The
soundness and completeness proof for NDQL then amounts to a proof
that the structure

<WFFS/|}, =,1,0, A, V, 1>
where for all a, p EWFFS

[a] AIB] = [a & B]
[a] VIB] = [a VP
I =laV-q]
0=lo&-aq
[a]' = [-a]

is a general orthomodular lattice, for which see Fig. 1.

Soundness and Completeness
As a simple preliminary lemma we note the &-regularity of NDQL.

Lemma 0 (The &-regularity of NDQL)
N-a iff &T'~a

where &I' can refer to any of the conjunctions of all the formulae in .
When I' is empty, &' means the empty set.

Proof
By induction on the size of I'. The base case, for empty I', holds by
identity. Assuming I' —a, & I' o follows by repeated applications of
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&E. Assuming &I'+—a, I't~a follows by CP, &I and MP. Both
induction steps naturally use A.
The &-regularity of NDQL enables us to infer

I iff [&T] < [a].

Theorem I (The soundness of NDQL)
o =B implies [a] = [B]
We write a = [a] etc.

Proof

By induction on the length of the proof of « p.

For the most part the steps are routine.

Thus, if the length of the proof is one, it must consist of an application
of the rule of assumptions A. But a =< a, so the base case is
established.

For the induction step we show that any proof of o B may be
transformed into a proof concerning the lattice. We give the cases for
MP, MT and CP as examples. In each we must use the definition of —.
MP

We must prove ¢;<a' V(aAb) and ¢, <a imply ¢; Ac, <b.

From condition (OM) a=<b implies b A (b' Va)<a.

Buta A b = a.Hencein(OM), substituting a A b for a, and b for
a, one has

aAb=aimpliesaA(a"V(aAb)<b,

soaA(a V(aAb))=b.

Hence by isotony (?)

cpAc;=aA(a V(aAb)=b

which is the required result.

MT

We must prove ¢y <a' V(a Ab) and ¢, <b'

imply ¢; Ac,; <a'

In (OM), substituting a" for a, and (a Ab)"' for b we have

(*) Isotony is that lattice property that
a=b and ¢ =d together imply a Ac=b Ad
andavVc=bVvd.
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aAb=a,soa =(aAb)', so that in (OM)
a'=(a Ab)" implies (b Aa)' A((bAa)" Va')=a'.
But b'=(a Ab), so

b*A(a' V(a Ab)) <a'.

Again by isotony

¢y Ac,=a'

which is the required result.

cp

We must prove a=<b implies / <a' V(a Ab).

a=b implies a Ab = a.

But/=<a va

so that / <a' V(a ADb).

Note that of all the ten rules of NDQL we require the orthomodularity
of quantum logic for the soundness of MP and MT alone.

Theorem 2 (The completeness of NDQL)
[a] =[pB] implies o 3.

Proof

Again we write a = [a] etc.

For each of the lattice conditions (1) to (14) we construct the
corresponding proof in NDQL. For the most part these constructions
are entirely routine. Thus (1) a=< a implies « —a,, which obtains via the
rule of assumptions A; (2) a=b and b=<a implies a = b, requires that
we observe that {} is an equivalence relation; (3) a<b and b<c
requires that from proofs of a3 and By we construct a proof of
o v, which is routine:

1 (1) o A
1 (m) p ?
2 (m+1) B A
2 (n) Y ?
(n+1) Py m+1,n CP

I (n+2) Y n+1,m MP
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The cases for conditions (4)-(9) are routine. But condition (10), the law
of excluded middle is less straightforward and requires an appeal to
the properties of the conditional. We prove that o V-q.

W W W N

(1
(2)
(3)
4)
(5
(6)
(7
(8)
9)

a
a—>o

-o Vo &a)
-a

aV-o
a&a

a

aV-a
aV-a

A

1,1 CP

2Df. —.

A

4VvI]

A

6& E

7 vl
3,4,5,6,8 VE

The cases for conditions (11)-(13) are again routine.

For the orthomodular condition (14) we must construct a proof of
B&(-P Va)a from a proof of a+p. This latter proof is to be
inserted in lines (6) to (m) of the following proof.

L= A e

—_—— O\ &

(1)
2
3
4
)
(©6)

(m)

(m+1)
(m+2)
(m+ 3)
(m+ 4)
(m+5)

B&(-BVa)
p

-BVa

-B

BVYP &a)

o

p

B&a
BVE &a)
BVE &a)
p-a

o

A
I1&E
1&E
A
4vI
A

?

m,6&1

m+ 1, VI
3,4,5,6,m+2VE
m+3Df.—>

m+ 4,2 MP

The soundness and completeness of NDQL follows directly from
theorems 1 and 2 and from lemma 0, so that

I'~a iff [&] <[a].
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Why restrict CP, VE and RAA?

We are dealing here with orthomodular logic of which quantum
logic is a special case. But we can ask what justification there is in
quantum mechanics for restricting the rules CP, VE and RAA in
quantum logic. One answer is that allowing any one of them to take its
unrestricted, classical form yields the distributive law as a theorem of
the logic. So all three rules must be restricted.

But in the case of RAA we can give a more direct answer. In
quantum mechanics we have pairs of operators that are totally
incompatible. The operators P for momentum and () for position are
totally incompatible, which is to say that there is no vector 1 in the
Hilbert Space on which they operate such that

[P, Qly = 0.

This implies that the Hilbert Space is infinite-dimensional, that the
lattice of subspaces of the Hilbert Space is non-modular and that for
any propositions p and q which restrict the momentum and position of
a quantum system to finite ranges, the conjunction p & q is a quantum
logical contradiction.(*) Suppose that p happens to be true. Then
neither q nor - q will be true. So for any «, we have

P,q mp&q
and p&kq Fa&-a
so that p,q Fa&-«

The classical RAA rule allows us to infer
pH-q

But p is true and - q is not true.
In quantum logic we do not allow this inference since {p,q} is not a
singleton. We do allow the inference to

H-(p & q)

which is fine ‘quantum mechanically’. The failure of classical RAA is

(*) See Gibbins (1981).
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one more instance of what Birkhoff and von Neumann called the
coherence of quantum propositions.
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