NEW SEMANTICS FOR THE LOWER PREDICATE
CALCULUS

Gary LEGENHAUSEN

Two non-standard semantics, SP and S', are presented in terms of
which the lower predicate calculus is proven strongly sound and
complete. In SP monadic predicates are interpreted as set-theoretic
elements, while individual terms are interpreted as sets of these
elements. In S’ individual terms and monadic predicates are interpre-
ted as sets. In the course of discussing the philosophical motivation
for these systems of semantics, formal semantics is distinguished from
the theory of reference, the extension and reference of individual
terms are distinguished, and analogical relationships between meta-
physical systems and systems of formal semantics are introduced. A
non-standard treatment of relations is also presented which permits
sentences in which polyadic predicates occur to be interpreted
without positing semantic values for such predicates.

The lower predicate calculus (LPC) is usually shown complete
relative to a set-theoretic semantics in which variables range over
members of a domain of entities while monadic predicate constants
are assigned subsets of this domain. An atomic sentence is then
interpreted as true if and only if the assignment of the individual term
is a member of the assignment of the predicate letter. In what follows
two semantic systems which depart from this procedure will be
presented. In SP individual terms will be interpreted as sets of entities
assigned to monadic predicates. Sf will provide interpretations of the
same set-theoretic type for both individual terms and monadic predi-
cates. A non-standard treatment of polyadic predicates will also be
introduced which makes possible the interpretation of relational
sentences on the same pattern as that of monadic predication.

It will be helpful to begin with Church’s distinction between a
logistic system and a formalized language. The former is an abstract
calculus for which no interpretation is fixed. LPC is a logistic system.
A formalized language, according to Church, is a logistic system
augmented by semantic rules which assign meanings ‘‘in some sense’’
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to the well-formed expressions of the system. (!) In what follows it will
be important to distinguish the senses in which a logistic system may
be provided with semantic rules. In particular, care must be taken to
differentiate between a system of formal semantics and a theory of
reference. A system of formal semantics for a logistic system provides
an interpretation function from the expressions of the logistic system
to the components of some other abstract structure, e.g. set theory,
algebraic theory. The value of the interpretation function for an
expression is the extension of the expression. A theory of reference
relates linguistic expressions to the objects to which those expressions
refer. In what follows, the term *‘semantics’” will be used in the sense
of a formal semantic system. Theories of reference will be explicitly
designated as such.

The exposition of the formal details of the semantic systems, SP and
S*, will be preceded by a discussion of three interrelated theses. All
three claims concern the relationship between semantics and meta-
physics. The significance of the proposed semantic systems, and the
motivation for their construction, will be explicated with reference to
these three theses.

1) Neither the traditional Tarskian semantics nor either of the
proposed systems requires a commitment to an ontology of any given
kind of entity. Also, the adoption of a semantics with a certain
structure does not commit one to a metaphysics which shares this
structure. One may accept Hintikka’'s game theoretic semantics while
denying that the world has the structure of a game. First-order logic,
including both syntax and formal semantics, is in this sense metaphy-
sically neutral in content and form.

2) The metaphysical neutrality of the proposed semantics may not be
apparent if one assumes that the extension of an individual term is
identical with its reference. The relationship between this assumption
and Quine’s dictum, ‘*To be is to be the value of a bound variable,”
will be explained below. It will be shown that the assumption of the
identity of the reference and extension of individual terms threatens
the ontological neutrality of the proposed semantic systems. The
adequacy of SP and S’ with respect to LPC indicates that there is no
need to identify extension and reference, and that the assumption that

(") CHurcH (1951), p. 100.
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the identification holds unneccessarily limits the variety of acceptable
semantic interpretations of LPC.

3) Although various systems of semantics may be metaphysically
neutral, the different structures of these systems may be found to
model opposing metaphysical claims. Thus, a semantic system may
provide an analogue for a certain metaphysical position without
committing one to an acceptance of that position. The notion that
semantic systems play a role as models for metaphysical claims will be
elucidated with respect to the proposed systems.

There are at least two senses in which first-order logic is metaphy-
sically neutral. First, our use of a system of semantics with a certain
structure does not commit us to the attribution of that same structure
to the world. In Tarski's semantics for first-order logic, individual
terms are interpreted as the elements of sets which serve as the values
of predicates. This feature of the interpretation function by no means
implies the metaphysical claim that the objects over which our
variables range are ontologically prior to, or simpler than, those things
with which we may associate predicates (e.g. universals). The ele-
ments and relations of a given formal semantics need not be held to
correspond to existing entities and their relations in the world. The
success of a semantic theory depends not upon isomorphism with real
world structures, but upon applicability in the world and upon the
coherent systematization of restrictions on truth-value claims for
various sentences, dependent upon their syntactic structure.

A similar concern to avoid confusion of logical issues with meta-
physical issues has been voiced by such philosophers as Carnap
(1947)(*), Cornman (1963), Nagel (1944), and Tarski (1944) (). Corn-
man, for example, urges that logic be distinguished from the theory of
reference. He, Carnap and Nagel deny that logic brings with it
ontological commitments. Tarski suggests that not only the use of
syntactic systems, but the employment of systems of formal seman-
tics as well, do not commit one to any particular metaphysical
position. This paper may be read as a further attempt to distinguish
formal semantics from metaphysics.

Second, even those who would go so far in linking ontology to

(*) “*Empiricism, Semantics and Ontology,” in Carnap (1947), pp. 205-221.
(*) Cf. especially section 19, **Alleged Metaphysical Element in Semantics.”
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semantics as to agree with Quine that ‘‘to be is to be the value of a
bound variable,”” may do so without deciding whether or not to
quantify over spacetime points, material objects, sense data, or some
other kind of entity. In this sense also, first-order logic is neutral.
Strictly speaking, then, the standard semantics for LPC is metaphy-
sically neutral. However, this semantics has a certain noteworthy
feature in relation to the theory of reference which is customarily
assumed in connection with it, viz. there is a fundamental assymetry
in its treatment of individual terms and monadic predicates. Individual
terms are typically understood in such a way that they form the major
link between LPC and its applications to the world. Individual terms
are taken to refer to individuals in the domain of discourse. Formal
semantics and the theory of reference coincide in theirassignments to
individual terms. Carnap, for example, offers the definition:

The extension of an individual expression is the individual to
which it refers (hence the descriptum, if it is a description). (*)

Predicates, on the other hand, are not understood in such a way that
they must be taken to refer at all. The extension of a monadic
predicate will be a set of individuals, but typically this is not taken to
mean that, just as individual terms refer to individuals, predicates
refer to sets. The extension of a given monadic predicate may be a set
of individuals, but reference is another matter. Of course, there is no
general agreement among philosophers of language and metaphysi-
cians on the issue of reference, but if one is prepared to accept the
claim that individual terms refer, one is faced with a fundamental
assymetry in the standard treatment of individual terms and monadic
predicates. Individual terms are taken to refer to the objects which
serve as their extensions, while monadic predicates either do not refer
at all, or, if they do, they do not refer to their extensions.

The identification of the object of reference and the extension of an
individual is not in itself objectionable. However, it is not necessary
and it should not be made a criterion for the acceptability of a
semantic system for two reasons:

1) The requirement that to be acceptable, a semantic system must
identify the object of reference of a given term with the extension of

(%) CARNAP (1947), p. 40.
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that term needlessly limits the range of acceptable semantic systems.
The requirement is unnecessary because alternative semantics may be
constructed which fail to identify the object of reference with the
extension of an individual term though they provide sound and
complete interpretations of first-order logic, with clear conditions for
determining the truth values of sentences. To require that the exten-
sions and objects of reference of individual terms be indentified is to
violate the metaphysical neutrality of semantic theory in the first of
the senses explicated above. By linking semantics and reference with
respect to individual terms, the requirement imposes a specific
correspondence between the world and semantic theory.

The distinction between reference and extension has already been
generally accepted with regard to predicates. At one time predicates
were thought to refer to properties. Today predicates are often taken
not to refer at all, but in any case, there is no confusion between the
reference of a predicate and its extension. Just as progress in semantic
theory was made by divorcing reference from extension with respect
to predicates, the distinction between reference and extension for
individual terms may also aid in the development of new semantic
theories. An example may help to clarify the point. One way to look at
the formal semantics of LPC is as follows. Consider two syntactic
structures, that of LPC and that of Zermelo-Frankel set theory. The
semantics for LPC defines a function from terms and formulae of LPC
to terms and formulae of ZF. In the standard semantics the individual
terms of LPC are mapped onto individual terms of ZF. It is natural to
assume that the individual terms of ZF refer to the same objects as
those to which the corresponding individual terms of LPC refer. But
this is not the only means by which ZF may be utilized to interpret
LPC. We may distinguish the set theoretic individuals which serve as
the extensions of individual terms from the individual objects to which
the individal terms of LPC refer. It is well known, for example, that
the natural numbers may be used to construct models for LPC, even
where the intended interpretation is not arithmetic. So there is no
temptation here to confuse extension and reference. But one might
also correlate the individual terms of LPC with sets of numbers, and
the predicates with individual numbers. This is like what is done in SP.
The alternative semantic systems proposed here, however, are not
merely technical routines for finding unintended interpretations.
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These systems provide adequate means for determining the truth
values of sentences without interfering with the intended reference of
the terms used in these sentences.

2) Questioning the assumption that the extensions of individual terms
are identical with their objects of reference throws new light on
Quine’s dictum of ontological commitment, ‘“To be is to be the value
of a bound variable.”” The dictum is ambiguous. The *‘value’ of a
bound variable might be taken to be either its extension, or its
reference, and, as we have seen, the two need not be identified. I
would suggest that if Quine’s dictum is true at all, it is with regard to
reference, and not extension, that ontological commitment occurs.
The sentence, **Someone is human,”” comes out true, according to the
semantics, because certain conditions are fulfilled by the extension of
the predicate, ‘‘is human,’” and the domain from which extensions for
individual terms are drawn. Suppose we use sets or numbers as the
extensions of individual terms which refer to human beings. Does that
mean that we are committed to the existence of sets or numbers when
we hold it true that someone is human? It does not if ontological
commitments are made with respect to reference but not necessarily
with respect to extension. How then are we to understand the
formulae of the metalanguage ? Sentences within the formal semantics
need not be considered to be literally true ; rather they are the vehicles
by means of which the sentences of the object language are assigned
truth value. We might agree with Quine’s dictum as a measure of
ontological commitment on the object-language level, while denying it
on the metalogical level. If I assert, ‘‘There is an x such that x is
identical to Socrates.”” I commit myself to the existence of the
referent of *‘Socrates’’. What the referent of ‘‘Socrates’’ is, is to be
determined through an investigation of the use of the term. The fact
that the number 470,399, or the set of properties which Socrates
exemplifies, serves as the extension of ‘‘Socrates’ in my favorite
semantics does not commit me to the existence of numbers, proper-
ties, or sets, and still less does it commit me to the identification of
Socrates with the number or set which I use as the extension of his
name. The fact that in the standard semantics there is an ‘‘intended
interpretation’” in which the extension of each individual term is
identified with its object of reference should not blind us to the fact
that for some purposes, systems of semantics might be preferred for
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which the intended interpretation does not require the identification of
extension and reference for individual terms. We may pursue a
formalist interpretation of the study of formal semantics, free from
questions of metaphysics. l

Although LPC, augmented by its customary formal semantics, is
metaphysically neutral, analogies may be drawn between the seman-
tics and more traditional metaphysical theories. For example, if
individual terms are taken to represent substances and monadic
predicate constants represent properties, the standard semantics for
LPC may be said to illustrate the view that substances are ontologi-
cally prior to their properties. Properties, in this illustration, are like
set theoretic constructions out of substances. A system of formal
semantics may be said to illustrate or to be analogous to a metaphysi-
cal system when elements and relations of the semantics model
elements and relations of the metaphysical doctrine. The fact that a
system of formal semantics illustrates a metaphysical doctrine sug-
gests that alternative metaphysical doctrines may provide clues for
the construction of non-standard systems of formal semantics.
Conversely, the consistency of certain metaphysical claims may be
demonstrated through their use in models for LPC, and other consis-
tent syntactical structures.

In short, systems of formal semantics are metaphysically neutral,
provided that it is not required that extension and reference be
identified. Metaphysical bias is introduced into the study of logic
when a system of formal semantics and a theory of reference are
conflated. Systems of formal semantics may, however, illustrate
metaphysical theses without being committed to them. These claims
will be reiterated below with respect to the two semantic systems, SP
and S

In SP each monadic predicate takes as its extension a set theoretic
element. The extension of an individual term in SP is a set of these
elements. The extension of an atomic sentence, "Pa’, is truth if and
only if the extension of the predicate, ‘P’, is a member of the
extension of the individual term, *a’. Thus we find in SP a simple
reversal of the standard semantics with regard to the interpretations of
individual terms and monadic predicates. Although the extension of
an individual term in SP is a set, this does not mean that those who use
SP must hold that individuals are really sets. There need be no
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identification of extension with the object of reference. Although we
may use individual terms to refer to individual objects, we need not
identify these individual objects with the extensions of the individual
terms which refer to them.

While SP is metaphysically neutral, it may be used to illustrate the
traditional empiricist view of the relation between substances and
qualities.

The idea of a substance... is nothing but a collection of simple
ideas, that are united by the imagination, and have a particular
name assigned them, by which we are able to recall, either to
ourselves or others, that collection. (°)

So writes Hume in Section VI, Part I, Book I of his Treatise. In order
to serve as a rough analogue to the empiricists’ *‘bundle theory™, a
semantics may interpret a particular name (individual term) as a
collection, instead of as a simple element. The simples of such a
semantics will be the properties or qualities which serve as the values
of monadic predicates. The domain over which the quantifiers range
will be, not the set of all collections of properties, since not every set
of properties corresponds to a substance, but instead, those sets of
properties which would be ‘‘united by the imagination.”” The domain
of discourse will thus be a subset of the power set of the set of
properties. Notice that SP, the property-based semantics, may in this
way illustrate the *‘bundle theory’’ without committing one to this or
any other metaphysical doctrine. This point is likely to be obscured by
the widespread tendency to assume that the extension of a term is
identical with its object of reference.

As will be seen in the proofs below, SP is not significantly more
complicated than the standard semantics. For some purposes SP may
even be preferred. Although this line of investigation will not be
pursued here, I suggest that SP will serve nicely for the interpretation
of free logics. Non-denoting singular terms may be interpreted as sets
which are not included in the domain of discourse. One of the major
problems with fictional entities is their incompleteness. Santa Claus
wears a red suit, but the suit is of no particular size. This may be

(5) HUME (1740), p. 16.
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reflected in SP by taking the extension of Santa Claus to be a set which
includes the extension of ‘‘wears a red suit,”” but which does not
include the extensions of predicates of the form, ‘‘wears a red suit of
size x.”’

In Sf both individual terms and monadic predicates take as their
extensions sets of set-theoretic elements. The extension of an atomic
sentence, ‘Pa’, is truth if and only if the intersection of the extension
of the individual term, ‘a’, with the extension of the predicate, ‘P’, is a
singleton. In Sf, unlike in the standard semantics, both individual
terms and monadic predicates have extensions of the same set-theo-
retic type. Once again a word of caution is in order concerning
reference and extension. If the reference and extension of individual
terms are identified, adoption of St will bring with it commitment to
the unsavory metaphysical position that all objects of reference of
individual terms are sets. No such view need be accepted by the
proponent of S, provided care is taken to distinguish reference from
extension. The elements and relations of a system of formal seman-
tics, such as Sf, need not be held to correspond to elements and
relations of the actual world. Formal semantics may in this way be
treated instrumentally rather than realistically.

The adoption of an instrumentalist attitude toward Sf should not
prevent one from appreciating that this formal semantics may be used
to illustrate various metaphysical positions. For example, Frank
Ramsey (°) has suggested that the difference between universals and
particulars is subjective, and that either may be treated as a proposi-
tional function. Whether we say ‘‘Socrates is wise,”” or **Wisdom is a
characteristic of Socrates,”” is a matter of style. Both sentences
express the same proposition, of which Socrates and Wisdom are
components. Ramsey noted that while Russell thought of the univer-
sal expressed by **... is wise’’ as a propositional function which would
take particulars as arguments, one might also take ‘‘Socrates ...”” as a
propositional function which would take universals as arguments.
This suggests that we might interpret individual terms and monadic
predicates as sets of propositions.

Ramsey cites with approval the Wittgensteinian view that the
objects of a proposition fit together like the links of a chain. If

(®°) RAMSEY (1925), pp. 17-39.
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individual terms and monadic predicates are interpreted as sets of
propositions this linkage could be modelled by the intersection of two
sets at a unique proposition, or state of affairs. In the Tractatus
Wittgenstein writes that *‘the possibility of the state of affairs must be
written into the thing itself.”” () It makes no difference in the structure
of the model whether the elements of S'are taken as propositions or as
states of affairs, or facts. The **writing into the thing itself”* mentioned
by Wittgenstein could be modelled by set membership. Monadic
predicates may then be interpreted as sets of facts. For example, *‘is
wise’’ may be interpreted as a set which contains the facts that
Socrates is wise, that Plato is wise, etc. Individual terms may be
interpreted in the same way. That is, **Socrates’” may be interpreted
as a set which includes the facts that Socrates is wise, that Socrates is
snubnosed, etc. The link between Socrates and wisdom, which makes
the sentence ‘*Socrates is wise’” true, is the fact that Socrates is wise.

Interpreting individual terms and monadic predicates as sets of facts
is analogous to certain features of Logical Atomism, but it conflicts
with some elements of that philosophy as developed by each of its
proponents. The point here is merely to indicate certain analogous
features which the formal semantics has with some views of the
philosophers alluded to above.

S' may also be used to illustrate a version of the Quinian view that
sentences are the primary units of meaning.

First we learn short sentences, next we get a line on various
words through their use in those sentences, and then on that basis
we manage to grasp longer sentences in which those same words
recur. (%)

Although Quine would frown on a semantic theory which posited facts
at its foundation, the fact-based semantics illustrates certain aspects
of the Quinian position. Certain patterns of stimulation are associated
with sentences containing a certain word, *‘Fido’’, for example. The
association of the sentences containing ‘‘Fido’’ together with their
corresponding stimulations leads to the ability to recognize circums-

(') WITTGENSTEIN (1921), 2.012, p. 5.
(®) QuUINE (1982), p. 3.
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tances as being of the Fido type, and hence to the hypostatization of
Fido. The same sort of thing might go on in the learning of certain
adjectives, and other simple predicates. This may be expressed in
terms of the fact-based semantics by letting certain facts be initially
included in the interpretation of ‘‘Fido’’, on the basis of which other
facts or circumstances may be judged as also belonging to their type.

Acceptance of S' does not commit one to a form of Logical
Atomism, to a Quinian view of language acquisition, or to an ontology
of facts. While the semantics is analogous in certain respects to the
theories mentioned above, it remains metaphysically neutral. What it
requires is no more than a willingness to allow that the extensions of
individual terms and the extensions of monadic predicates are sets.
The members of these sets may be most naturally understood as
propositions, states of affairs, or facts, but there is no more need to
accept an ontology of such entities in order to employ S, than there is
a need to accept an ontology of substances in order to utilize the
standard semantics.

Some final comments regarding the treatment of relations in SP and
in S' are in order. The distinctive features of SP and S’ concern the
interpretation of individual terms and of monadic predicates. There is
no natural extension of the non-standard treatment of monadic
predicates to relations. Some philosophers may feel that the diffe-
rence between the interpretations of monadic predicates and relations
is awkward. These philosophers see polyadic and monadic predicates
as two species of the same genus, all of whose members deserve
uniform treatment. This view is questionable. However, in order to
accommodate those who wish a uniform treatment of all atomic
sentences, regardless of whether they contain monadic or polyadic
predicates, a non-standard treatment of relations will be introduced.

The basic idea is to provide no direct interpretation for polyadic
predicates at all. Sentences containing polyadic predicates are to be
interpreted by assigning values to strings consisting of an n-place
predicate followed by n—1 individual terms and a place holder. These
strings may then be interpreted in the same manner as are monadic
predicates. Both this non-standard treatment of relations, as well as
the customary practice of assigning to each n-place relation a set of
n-tuples could be given for SP, for S, or for the standard semantics. In
the formal work to follow the non-standard treatment of relations is
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incorporated into the presentation of S', while relations are given the
customary treatment in the presentation of SP.

In what follows it is shown how, for any model of the standard
semantics given for LPC, S°, a model of SP (S) can be constructed
which preserves the truth assignments of the standard model. From
this it follows that if there is no S (Sf) model for G+{-A}, where G is
any set of wffs, there is no standard model for G+{-A}. By the
maximal consistency of the set of sentences true in a model, then
GEPA = G A (GE'A = GE=* A). The strong completeness of
LPC relative to the non-standard semantics is a corallary of this
result. Since LPC is strongly complete relative to the standard
semantics, i.e. GE°A = G~ A, it follows that GEPA = GHA,
(GE'A = Gr+A). The converse is also demonstrated. For any
non-standard model, there is a standard one which preserves truth
assignments. Hence, G= A = GEP A (GE* A =G A). Since LPC
is valid, or sound, relative to the standard semantics, LPC is valid
relative to the non-standard semantics. Hence, GE?P A & GE A =
G+ A. Note that these proofs occur entirely on the semantic level ; no
essential use is made of provability results.

The Property-Based Semantics : S°

An SP model is a pair <P,J> where P is a non-empty set whose
members will serve as the extensions of monadic predicates. The
members of P will be called properties in order to emphasize the
analogy between the formal structure of SP and the bundle theory.
This is just an analogy. It should be recalled that the use of SP need not
commit one to the existence of universals, nor to anything else. J is an
interpretation function defined as follows:

1. J(P) is a subset of the power set of P, minus the null set, and
-(J(P)={}). J(P) is the domain of discourse for <P,J>. The empty
domain is not countenanced. The domain of discourse is a non-empty
subset of the set of all the non-empty sets of properties. The
extensions of individual terms are sets of properties which are
members of this domain, over which the quantifiers range.

2. If a is an individual term, i.e. an individual constant or an
individual variable, J(a) €I(P).
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3. If P is a monadic predicate, J(P) P.

4.1f P is an n-place predicate, n> 1, J(P) € (J(P))", that is, J(P) will be
a set of n-tuples of members of the domain of discourse, just as in
canonical models. Relations are given a standard interpretation.

5. If A is a wif of the form Pa, so that P is a monadic predicate,
J(A) = T iff J(P) €J(a). Monadic predication is true iff the property for
which the predicate stands is a member of the set of properties which
is the interpretation of the individual term.

6. If A is a wif of the form Pa,...a,, n>1, then JA)=T iff
<J@j),...,J@a,) > €JP).

7. If A is a wif of the form (x)B, J(A) = T iff for each d which is a
member of J(P), Jx/d(B) = T, where Jx/d is the interpretation which
differs from J only by assigning d to x.

8. If A is a wff of the form -B, J(A) = T iff -(J(B) = T).

9. If A is a wff of the form (B—C), J(A)=T iff -(J(B)=T) or
IO ="T.

10. If A is a wff and -(J(A) = T) by clauses 1 through 9, J(A) = False.

S§? Completeness

In order to prove the completeness of LPC relative to SP it will be
shown how for any S* model to construct an SP model in which exactly
the same wffs are true. Begin with an S* model <D,I> where D is the
domain of quantification and I is the standard interpretation function.
The first step in the construction of an SP model <P,J> corresponding
to <D,I> is to find a set of properties corresponding to each member
of D. It is not sufficient to look merely at monadic predicates in the
search for the appropriate properties, since the same set of monadic
predicates may apply to different entities. Even the inclusion of
properties designated by relational predicates will not provide suffi-
cient distinctions among entities. An example will help to clarify the
point.

Example 1: Suppose that <D,I> and <D',I’> are two standard
models. D= {d,,d,}. D'={d,,d,,d;}. For all individual terms a,
I(a)=I'(a)=d;. (P = {<d,,d,>, <d,,d,>}, while
I'(P?) = {<dy,d\>, <d3,d,>, <ds,d;>}. For all n-place predicates P
other than P?, let I(P) = I'(P) = { }. In <D’,1'> d, and d; are indiscer-
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nible in the following sense: for every individual term a and wff A
which contains an occurence of a, I'a/d,(A)=1"a/d;(A). In both
<D, I> and <D’,1'> this wff is true: (x)(P*xx), but with respect to
the sentence, (1), the models differ. In <D, I>, (1) is false, while it is
true in <D',I'>.

1) (Ex)Ey)(Ez)(-P*xy & -P*xz & -P*yz).

The construction of an SP model for which the same wffs are true as
are true for <D’, 1> will have to distinguish between d, and d;, even
though d, and d; are indiscernible relative to <D',1'>, in the sense
given above. This means that among the properties associated with d,
and d; must be found at least one for which no predicate or sentence
abstract stands, by means of which ¢, and d5 may be differentiated.
The analogue of this point in metaphysics is that the bundle of
properties associated with Socrates, for instance, should include not
only properties which Socrates shares with other things, but a
property unique to Socrates, Socrateity, even if there is no word for
such a property.

In order to construct an S? model <P, J> for which the same wiffs
are true as are true for an S® model <D, I>, the notion of a property
will first be introduced. If P is a monadic predicate, P will be called a
property. If d €D, d will also be called a property ; more specifically, d
may be called an haecceity, although such language will not be used in
the completeness proof. Since relations receive the standard treat-
ment here, there is no need to include relational properties among the
properties.

Let P be the set of all properties.

J(P) will be the domain of discourse, and will be constructed by
finding sets of properties which correspond to each of the members of
D. If d €D, d® will be called the property-set which corresponds to d,
and will be defined as follows:

a) If A is of the form Pa, P is a monadic predicate, and
la/d(A) =T, let P be a member of dP.

b) If d €D, let d be a member of dP.

¢) Let nothing be a member of d®P except by (a) and (b).

1". Let J(P) be the set of all and only such dP as specified in (a), (b) and
(c), that is, J(P) is the set of all and only those property-sets which
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correspond to the members of D. Note that the correspondence
between D and J(P) is one to one.

2'. If a is an individual term and I(a) =d, let J(a) = dP.

3'. If P is a monadic predicate, J(P) = P.

4’ If P is an n-adic predicate, n> 1, and I(P) is a set of n-tuples such
that <d,,...,d,>€I(P), let J(P) be a set of n-tuples such that
<dPq,...,d°,> €J(P).

This completes the definition of the model <P, J>.

In order to prove that all and only those wffs which are true for
<D, I> are true for <P, J>, it is first demonstrated that for any 1’ and
J" which are like I and J with the possible exception of the assignments
made to the individual terms, such that 1'(a) =d iff J'(a) = ¢®, for all
wits A, I'(A) =J'(A). From this it follows that I(A) = J(A). The proof
is by induction on the complexity of wffs. Degree of complexity is to
be understood in the usual manner. The inductive hypothesis is that
for all such 1" and J', for every wff B, whose degree of complexity is
less than n, I'(B) = J'(B). On the basis of this it will be found that for
all such I' and J', for any wff A whose complexity is of degree n,
I'(A)=T'(A).

5'. If Ais a wif of the form Pa, 1'(A)=T iff 1'(a) €I(P). (Since
I(P)=1'(P).) By (1), (2), (3), and the specification of the dP by
clauses (a), (b) and (c) above, I'(a) €I(P) iff J(P) €J'(a), iff J'(A)=T.
6'. If A is of the form Pa,...a,, I'(A)=T iff <d,,....d,><€l(P),
where for all i, | =i<n, I'(a;) =4, iff <dP,,...,d°,> €J(P), by (2'),
(4'), (a), (b) and (¢), iff J'(A)=T.

7'. If A is a wff of the form (x)B, I'(A) = J'(A) iff for each d which is a
member of D, and for each d® which is a member of J(P),
I'x/d(B) = J'x/d”(B). This is provided for by the inductive hypothesis
since I'x/d and J'x/d® differ from I and J only in virtue of the
assignments made to individual terms.

8'. If A is a wff of the form -B, I'(A) =J'(A) iff I'(B) = J'(B) which
follows from the inductive hypothesis.

9'. If A is a wff of the form (B—C), I'(A)=T iff -(I'(B)=T) or
I'(C)=T, by induction iff -(J'(B)=T) or J'(C)=T. iff J'(A) = T.

It is thus established that for all wffs A, I'(A)=J'(A). and hence
that for any standard model, <D, I>>, there is a property based model.
<P, J>, such that for any wif A, I{A) = J(A).



332 G. LEGENHAUSEN

The strong completeness of LPC relative to SP follows from the
above proof. If G is a set of wffs and G+ {-A} is consistent, then by
the strong completeness of LPC with respect to S%, G+ {-A} has a
standard model; so by the above proof, G+ {- A} has an SP model. So,
by contraposition, if GEP A, then G—A.

Note that for the weak completeness of LPC relative to SP it need
only be found that for any wff A, iff A is true in a standard model, it is
true in an SP model. To establish this, there is no need to include
haecceities among the properties, that is, there is no need to include
the members of D in P. If A is a wff and <D, I> is a standard model
with some indiscernible members of D (that is, D contains members, d
and d’, such that for every wff A, la/d(A)=1a/d'(A)), then an SP
model, <P,J>, may be constructed such that I[(A) =J(A), by defining
<P, J> as above in (a), (b), (c) and (1') through (4") except that (b)
should be replaced by:

b’) For each d which is a member of D, take a different
monadic predicate P, such that P does not occur in A, and
let P be a member of P.

With suitable adjustments in the proof given it should not be
difficult to show by induction on the complexity of A, that for any wff
A, if there is a standard model for which A is true, there is a
property-based model for which A is also true.

Strong completeness cannot be established by this method. Where G
is an infinite set of wffs there is no appropriate adjustment of (b’)
which would insure that G has a model with no indiscernible mem-
bers. The compactness theorem for LPC states that every finite
subset of G has a model iff G has a model, but this result does not
extend to models which exclude indiscernibles. That is, it does not
follow from the fact that every finite subset of G has a model which
contains no indiscernible members that G has a model which contains
no indiscernible members. This point may be shown with reference to
Example 1, given above. Suppose G is the set of wffs which are true
on model <D’,1'> of the example. Then (1) is a member of G. Any
finite subset of G will be true in a model which distinguishes d, and ds
by means of some predicate which does not occur in that particular
subset of G. But where G is taken in its infinite entirety, there are no
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predicates or terms by means of which the indiscernible members of
D’ may be distinguished.

S* Validity

The proof to follow will demonstrate that for each SP model, there is
an S* model for which exactly the same wffs are true. Begin with an SP
model, <P,J>. A corresponding standard model <D,I> may be
defined as follows:

1”. Let D= J(P).

2", For each individual term a, let I(a) = J(a).

3". If P is a monadic predicate, let [(P)={d :d €D & J(P) €d}.
4", If P is an n-adic predicate, n> 1, let I(P) = I(P).

In order to show that I(A) = J(A) for all wffs A, it is first demons-
trated that for all I' and J' which are like I and J with the possible
exception of the assignments made to the individual terms,
I'(A)=J'(A). The proof is by induction on the complexity of A.
Assume for induction that 1'(B) = J'(B) for all I’ and J’ where B is less
complex than A.

5" If A is a wff of the form Pa, J'(A) = T iff J(P) €J'(a), by (17), (2")
and (3"), iff I'(a) EI(P), iff I'(A) = T.

6". If A is a wff of the form Pa, .. .a, by (2") and (4"), I'(A) = J'(A).
7". If A is a wif of the form (x)B, by the inductive hypothesis, (1”) and
(2"), for all members of D, d, 1'a/d(B) = J'a/d(B), so I'(A) = J'(A).
8"-9". These cases follow from the inductive hypothesis.

Together with the previous result of the strong completeness of
LPC relative to SP, it is established that for any set of wffs G’, G’ has a
property-based model if and only if it has a standard model, and hence
LPC is strongly complete and sound relative to SP,

GEPA ©eGE A @GHA.
The Fact-Based Semantics: S

An Sf model is a pair <F,H> where F is a nonempty set whose
members are called facts, and H is an interpretation function. The
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definition of H will employ an undefined metalinguistic symbol, “***,
which may be called a plug. The introduction of the plug and certain
other peculiarities of H pertain to the treatment of relations which is
presented here. This treatment of relations is not an essential part of
the fact-based semantics. Relations could be treated here as in the
standard semantics, as was done for the property-based semantics.
Also, the treatment of relations could be incorporated in an otherwise
standard semantics, or in a property-based semantics. The idea
behind interpreting relations with a plug is that relational predicates
are not directly interpreted at all. Instead, n-place relations, followed
by a sequence which includes a plug among n—1 individual terms are
to be interpeted in the same way that monadic predicates are
interpreted. H will be a function which takes as arguments: F,
individual terms, wffs, but instead of predicates, H will interpret
n-place predicates followed by a sequence including a plug among
n—1 individual terms; these sequences will be called ‘‘plugged
predicates’’.

The device of *‘plugging up’’ relations is utilized in Parsons (1980)
both syntactically and semantically, although for different ends than
those which constitute the aim of his exercise.

Since plugged predicates will be interpreted which contain indivi-
dual variables, the treatment of quantification will not be as straight
forward as is usual. It will not do, for instance, to say that a wif such
as (x)Rxx is true in model M iff for every d which is a member of H(F),
Hx/d(Rxx) = T. This will not do because as the value of x changes
from model to model, the values which are assigned to the plugged
predicates R*x and Rx* must also be made to change accordingly. It
should not be required that for (x)Rxx to be true, Rxx must be true no
matter how R*x and Rx* are interpreted. What is needed is a set of
models which are such that no two models in the set will differ in their
interpretations of plugged predicates containing certain variables, yet
give the same values to these variables themselves. The term **model
structure’ will be used (somewhat unconventionally) for the appro-
priate sets of models.

A fact-based model structure, p, is a set of models such that where
<F,H> and <F',H'> are both members of u, the following condi-
tions are satisfied:
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i) F=F

i) H(F)=H'(F’)

iii) if B is a plugged predicate; and if for all individual variables
x wich occur in B, H(x) = H'(x), then H(B) = H'().

iv) for each sequence of individual variables, <x;,...,X,>,
and each sequence of members of H(F), <d,,...,d,>,
there is a model <F, H"> which is a member of u, such that
foralli, 1=i=n, H'(x;)) =d,.

All and only those sets of models of the fact-based semantics which
satisfy the above conditions are fact-based model structures.

Models may be defined independently of model structures for
nonsentential arguments. The values of wffs will be relative to a
model structure. Note that model structures are defined as sets of
models which have certain features regarding their interpretations of
nonsentential arguments.

Where p is a fact-based model structure, an S* model in p is a pair,
<F,H>, where F is a nonempty set whose members are called facts,
and H is defined as follows:

1. H(F) is a nonempty subset of the set of all nonempty subsets of F.
H(F) is the domain of discourse for <F,H>. The individuals over
which the quantifiers range are represented as sets of facts.

2. If a is an individual term H(a) € H(F).

3. If Pis an n-place predicate and a,, . . ., a, are individual terms, then
H(Pa,...a;_{ *aj;q...a,) ©F. Plugged predicates are interpreted, like
individual terms, as sets of facts. Suppose, for example, that P is a
monadic predicate. Then technically P goes uninterpreted, but the
interpretation of P* is a set of facts.

4. If A is a wff of the form Pa, . . .a,, H(A) = T iff for eachi, ] <i<n,
there is an f which is a member of F such that the intersection of H(a;)
with H(Pa, ... a;_y *aj4,...a,) is {f}. A couple examples will help to
make this clear. It is true that Socrates is human iff the set of facts
associated by H with ‘‘Socrates™ and the set of facts associated with
*“* is human” have exactly one member in common. It is true that
Socrates is the teacher of Plato iff there is exactly one fact which
Socrates has in common with the property of being a teacher of Plato,
and there is exactly one fact which Plato has in common with the
property of being one of whom Socrates is the teacher.
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5.1f A is a wif of the form (x)B, H(A) = T iff for all members of H(F),
d, Ha/d(B) =T, where Ha/d is here and in what follows an interpreta-
tion like H in that <F, Ha/d> €p, and if a is an individual term other
than x, Ha/d(a) = H(a), but Ha/d(a) = d.

6. If A is a wff of the form -B, H(A) = T iff -(H(B) = T).

7. If A is a wff of the form (B—C), H(A)=T iff -(HB)=T) or
H(C)=T.

8. If A is a wff and -(H(A) = T) by 1-7, H(A) = False.

S Completeness

The strong completeness of LPC relative to Sf will be established
through the intermediary of the standard semantics by showing that
for any set of wffs G, if there is a standard model for G, there is an Sf
model structure, w, which contains a model for G.

Begin with an 5° model <D, I>. If <D and d €8, call <d,f> a
fact. If for all i, 1 <i<n, d; €D, and <d,, ...,d,> €[ where p<SD",
call the triple <d;, <d,,...,d,>, B>a fact. An S* model <F, H>,
corresponding to <D, I> may be defined as follows. Let F be the set
of all facts. For each d; which is a member of D, let ¢f; be the set of all
facts whose first member is d;. There is thus a one-one correspon-
dence between the members of D and the set of all d'.

1". Let H(F) be the set of all and only those df constructed as specified
above. Since D is not empty and for each d which is a member of D
there is a f§ such that d €f, H(F) is nonempty and H(F) is a subset of
the nonempty subsets of F.

2’. If ais an individual term and I(a) = d, let H(a) = ', where d' is as
specified above.

3'a. If P is a monadic predicate, let H(P*) = {<d,B>:d €D & d =B &
B=1P)}.

3'b. If P is an n-adic predicate and a,, . . ., a, are individual terms, let
H(Pa;...a_*aq...0,) = {<d;, <di,...,d,>, f>: for all j,
I=sj=n,if -(i=)), dj=1(a), ; ED & I(P)=PB & <dy,...,d,> =B}.
So each n-adic predicate followed by a plug among n—1 individual
terms is correlated with a set of facts.

Let p be the set of all S*models <F, H'> such that H' differs from H
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at most with regard to the values it assigns to the individual variables,
plugged predicates, and wffs in which there is some occurrence of
individual variables, as follows: if H'(a;) = d%,, for all i, and H' differs
from H with regard to the assignments it makes to some variables
which occur in sequences of the form Pa;...a;_; *aj4q...a,, let
H'(Pa,...a;_;*ai41...2,) be the set of all triples, <dj,
<dy,...,dy>,B>, where 1 <i<n, <d,...,d,> €p, and p = I(P).
In order to prove that I(A) = H(A), it is shown that for all I’ which
are like I with the possible exception of the assignments made to
individual terms, and for all H' such that H and H' are members of p,
and I and H' correspond in their assignments in the manner indicated
above, for all wffs A, I'(A) = H’(A). The proof is by induction on the
complexity of A. Assume that for all wffs B which are not as complex
as A, I'(B)=H'(B).
4'a. If A is a wif of the form Pa, and I'(A) = T, then there is a d which
is a member of D such that I'(a) =d and d €I(P). If I'(a)=d, and
I(P)=f, <d,p> H'(a) and <d, > €H'(P*), by (2') and (3’a). Since
only pairs with first member d are members of H'(a), and only pairs
with second member  are members of H'(P*), <d, > is the one and
only member which H'(a) has in common with H'(P¥), so H'(A)=T.
If I'(A) = False, then I'(a) is not a member of I(P), so <I'(a), [(P)> is
not a fact, so H'(A) = False.
4'b. If A is a wif of the form Pa,...a,, and I'(A)=T, then
<I'(ay),...,I'(ay)> €I(P). Then for all i, 1<i=n, if f=<I'(a),
<I'(ay),...,I'(ay)>, I(P)>, f is a fact and by (2') and (3'b), f EH'(a)
and f €H'(Pay...a;_1 *aj4;...a,). For any f’ which is a member of
H'(Pa,...a;-1 *ai4y...4a,), ' is a triple, <d;, <I'(a),...,1'(ai_y), d;,
I"(@is1), ..., I(ay)>, I(P)>, and if f' €H'(a;), I'(a,) is the first member
of f', so f'= f. IfI'(A) = False, <I'(a;), . . ., I(a,)> is not a member of
I(P), so f is not a fact, so H'(A) = False.
5'. If Ais a wff of the form (x)B, I'(A) = T iff for alld of D, I'(B) =T,
by the inductive hypothesis, iff H'a/d®(B) = T for all d* of H(F), by (1)
and the specification of p, iff H'(A) = T.
6'-7'. The cases for negation and the conditional are trivial.

This completes the proof from which it follows that LPC is strongly
complete relative to S, GE'A = G—A.
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S’ Validity

To show that LPC is sound relative to S* it will be shown that for
each S' model structure p, if <F,H> €y, there is an S°® model,
<D, I>, such that for any wff A, I(A) = H(A). Begin with an S’ model
structure, p, and a model in this structure <F,H>. A corresponding
standard model, <D, I> may be defined as follows:

1”. Let D= H(F).

2". If a is an individual term let I(a) = H(a).

3"a. If P is a monadic predicate let I(P) be the set of all ¢ of D such that
the intersection of H(P*) with d is a singleton.

3"b. If P is an n-adic predicate, n=2, let I(P) be the set of n-tuples
<d,....d,>, where d;€D, 1=<i=<n, such that there is a model
<F,H'> in u, and a sequence of individual terms <a,,...,a,>, such
that for each i, 1<i<n, there is a fact, f of F, and
H'(Pa;...a;_; *a;4, . ..a,) and d; have f as their sole common mem-
ber.

In order to show that for all A, I{A) = H(A), it is shown first that for
all H' of w and 1’ like I with the possible exception of the assignments
made to individual terms, where for all individual terms I'(a) = H'(a),
I'(A) = H'(A). The proof is by induction on the complexity of A. It is
assumed that the theorem holds for all wffs of complexity less than
that of A.

4"a. If A is a wif of the form Pa and H'(A) = T, then the intersection of
H'(P*) with H'(a) is {f}, where f €F. By (1”) and (3"a), I'(a) €I'(P), so
I'(A) = T. If H'(A) = False, the intersection of H'(P*) with H'(a) is not
a singleton, so 1'(a) is not a member of I(P), so I'(A) = False.

4"b. If A is a wff of the form Pa, .. .a, and H'(A) = T, then for each i,
| =i=n, the intersection of H'(a;) with H'(Pa,...a;_; *aj4q...ay) is
{f} for some f of F. Hence <I'(ay), .. .,I'(ay)> €I(P) by (1), (2"), and
(3"b), so I'(A) = T. If H'(A) = False, then there is no appropriate f of
F, so by (3"b), I'(A) = False.

5". If A is of the form (x)B, H'(A)=T iff for all d of H(F),
H'a/d(B) =T, by (1”) and the inductive hypothesis iff ['a/d(B) = T, for
all d of D, iff I(A)=T.

6"-7". The clauses for negation and the conditional are trivial.
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This completes the proof of the strong validity of LPC relative to S'.
LPC is strongly complete and sound relative to both SP and S,

GH'A ©GEPA &G A ©GrA.
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