FREE INTUITIONISTIC LOGIC AND ITS S4 COUNTERPART*

Raymond D. GumMB

For the intuitionist, a proof that 3xA consists of proof that A(a/x)
for some term a and a demonstration that the term a denotes some
element of the intended domain. Similarly, the intuitionist’s account
of a proof that ¥xA also brings to mind the rendering of the quantifiers
in free logic. A number of logicians — including Fourman and Scott,
Posy, and Leblanc and Gumb - have been struck by this and have
developed various free intuitionistic logics. In the context of computer
programs, free logics provide a natural framework for expressing
assertions about nonterminating function calls and other execution-
time errors [9,10]. Using a free intuitionistic type theory as the
underlying logic, Plotkin has developed the denotational semantics of
programming languages in terms of cop’s without bottoms. Along a
somewhat different line, Schapiro, Myhill, Goodman, and others,
inspired by the translations of intuitionistic logic with the standard
quantifiers (IQC) into quantified S4 with increasing domains (QS4,
have investigated both constructive and classical mathematics within
the framework of QS4. QS4 and related logics have also been
proposed as ‘‘modal logics of programs’’, suitable for characterizing
properties of operating systems.

In this paper, we present free first-order intuitionistic logic with
equality (IQC+ =) and its free S4 counterpart under the Tarski-
McKinsey translation (QS4# =C), which has increasing domains and
invalidates the Fitch formula a = a >0a = a. Building upon the work
of Fitting and others, we provide semantics and axiomatizations for
both of our two logics, show that the Tarski-McKinsey translation
preserves validity and invalidity, provide a tableaux system for
IQC*=, and prove that Craig Interpolation Lemma holds for
IQC+ =. Finally, we sketch a correction to our defective proof of a

* This paper developed out of a paper presented at het American Mathematical Society
Special Session on Proof Theory, Denver, January, 1983.
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version of the Compactness Theorem for evolving theories based on
QS4+=C and certain other intensional logics.

A tableaux system and proof of the Craig Lemma for QS4% =C can
be found in [6,5]. Some of the reasons why the Craig Lemma is of
importance in computer science are mentioned in [8]. The tableaux
systems for IQC* = and QS4x =C and the algorithms that can be
extracted from the proofs of the Craig Lemma can be readily
automated, but we have not as yet written computer programs to
implement them.

1. Grammar

As primitive logical constants, QS4% =C has ‘~’, ‘=", * =", ‘¥, and
‘00’. The signs ‘&", *V’', * 3", and ‘<’ are defined in the usual manner.
In IQC+ =, all of the above nonmodal signs are taken as primitive. We
understand sentences and theories (sets of sentences) to be defined as
in [5]. Lg(I,P) (Lj(I,P)) is the language of QS4%=C (IQCx=)
restricted to the set of individual parameters I and the set of predicate
parameters P. A quasi-sentence is like a sentence except that it may
contain free individual variables.

2. Semantics

We modify the mataphor theoretic semantics of [5], which stands
between Leblanc’s truth-value semantics [13] and model theoretic
semantics, to suit the modal and intuitionistic cases. As for QS4% =C,
let Po be the property of being a reflexive and transitive relation, 3 be
a nonvoid set of possible worlds, R be a binary Po-relation on X, J and
J’ be sets of individual parameters with J nonvoid, g be a function
from J into J', G be the naturally induced replacement function from
Lg, (J,P) into Lgs (J', P), and d be a function which selects for each
possible world weX a subset of J' as the set of designating terms in
world w subject to the condition that d(w) =d(w’) for every w,w' X
such that wRw'. (Note that possibly d(w) = d(w’).) Finally, let oz be a
function from the Cartesian product of ¥ ant the atomic sentences of
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Lsq (J', P) into {T, F} subject to the condition [5, 13] that for any world
weZX and any a,a’e]J’,

() asg(w,a=a)=T,

(2) ass(w,a=a")=F if ae d(w) but ~ a’ e d(w), and

(3) ass (W, A) = ags (W, A(a'[a)) for any atomic sentence A if
ase(w,a=a")=T.

A QS4% =C-metaphor is an 9-tuple of the form

M34 = <Js P,E. R!J‘yf;d!aslis Asgns4>

where Asgns, is like Asgn [4] with the obvious modifications for the
modal case. That is, we understand a sentence A e L, (J', P) to be true
on Asgng, (Mgg, W) (weX) if

(1s4) agq(w, A)=T when A is atomic,

(2s4) B is not true on Asgn(Ms,, w) when A= ~ B,

(3s4) B is not true on Asgng, (Mg, w) or C is when A= B oC,

(4s4) B(a/x) is true on Asgng, (Mgs, w) for every a & d(w) when
A= ¥YxB,

(5s4) B is true on Asgng, (Mgs, w') for every w'eX such that
wRw’ when A=[B.

A sentence Aelgy (J,P) is true on Mg, (w) if G(A) is true on
Asgng, (Mgy,w). The theory S is QS4x% =C-satisfiable if there is a
QS4x% =C-metaphor Mg, such that every sentence AeS is true on
Mg, (w) for some weX. A sentence A is a QS4% =C-logical conse-
quence of a theory S if S U {~ A} is not satisfiable (i.e. not
QS4x =C-satisfiable). A sentence A is QS4x =C-valid if A is a logical
consequence of . Other semantic notions are defined as in [5].

As for IQC* =, M; is to be like Mg, except for a; and Asgn,. Let q
be like ags subject to the additional requirement that a; (w', A) = T
whenever o; (w, A) = T for some weX such that wRw’.

Understand

M, = <J,P, 3,R,V,f,d,a;, Asgn;>

to be an IQC* =-metaphor, where truth on Asgn, (M,, w) is defined
recursively as follows:
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Ael;(J',P)is true on Asgn; (M;, w) if

(1) a;(w,A) = T when A is atomic,

(2;) either B is true on Asgn; (M;,w) or C is when A= B vC,

(3;) B and C are true on Asgn; (M;,w) when A= B &C,

(4;) B is not true on Asgn; (M, w’) for every w’'eX such that
wRw’' when A=~ B,

(51) either B is not true on Asgn;(M;,w’) or C is for every
w’eX such that wRw’ when A= B =>C,

(6;) B(a/x) is true on Asgn;(M;,w) for some aed(w) when
A= 3xB,

(7y) B(a/x) is true on Asgn; (M,, w’) for every w'eX such that
wRw’ and every aed(w’) when A= ¥xB.

Let A be a sentence and let S be a theory of IQC* =. Understand
Ael;(J,P) to be true on M;(w) (weX) if G(A) is true on As-
gng (M, w). S is IQC* =-satisfiable is there is an IQC* =-metaphor
M; such that for some weX every BeS is true on M;(w). A is
IQC* =-valid if A is true on M, for every IQC* =-metaphor M; and
every weZ such that AeL;(J,P). A is an IQC* =-logical conse-
quence of S if A is true on M;(w) for every IQC#* =-metaphor M, and
every weX such that SU{A} <L;(J,P) and every BeS is true on
M, (w). Other semantic notions are defined in the obvious manner.

Note that in IQC* = a truth-value assignment ¢ is a total function.
However, in a semantics for IQC, a truth-value assignment might best
be left partial to avoid soundness problems. In this respect, the
semantics of IQC* = is simpler than that of IQC.

3. The Translation

Let A, B, and C be quasi-sentences of IQC* =. The translation N of
a quasi-sentence A of IQC#* = into a quasi-sentence of QS4% =C is
defined inductively as follows [17]:

N(A) = OA if A is atomic,
N(B) VN(C) if A=B v,
NB)&NOC)if A=B&C,
O~NB)if A=~B,
O(N(B) oN(C)) if A= B =C,
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IxN(B) if A= dxB, and
O VxNB)if A= ¥xB.

We have:

THEOREM (McKinsey and Tarski, Rasiowa and Sikorski):
Let A be any sentence of IQC* =. A is IQCx =-valid iff N(A) is
QS4% =C-valid.

Proof that the translation N preserves validity and invalidity readily
follows from:

FITTING’S LEMMA: Let M; and Mg, be as before and also be

such that A is true on Asgn(M;,w) iff (JA is true on

Asgng, (Mgy, w) for any we 2 and any atomic sentence Ag Ly (J', P).

Then for any weX:

(a) Forany AeL;(J',P), A is true on Asgn; (M, w) iff N(A) is true
on Asgng, (Mg, , w).

(h) For any AeL;(J,P) A is true on M;(w) iff N(A) is true on
Mg, (W).

Proof: (a) Let AeL;(J',P). The proof is by induction on the com-
plexity of A. When A is atomic, the proof is immediate from the
assumption. As the cases for the propositional connectives are similar
to those in the literature, we give only the cases for the free
quantifiers.

Case: A= 1xB. By the induction hypothesis, B(a/x) is true on
Asgny (M, w) iff N(B(a/x)) is true on Asgng, (Mgs, w) for any ael’. So
Ix B is true on Asgn; (M;, w) iff B(a/x) is true on Asgn; (M;,w) for
some a & d(w) iff N(B(a/x))= N(B)(a/x) is true on Asgng, (Mg4, w) for
some a g d(w) iff IxN(B)= N(3xB) is true on Asgng, (Mg, W).

Case: A= VxB. By the induction hypothesis, B(a/x) is true on
Asgnp (M, w') iff N(B(a/x)) is true on Asgng, (Mg, w') for every ael’
and every w'eZ. So VxB is true on Asgn; (M,, w) iff B(a/x) is true on
Asgn; (M, w') for every w’eX such that wRw’ and every a e d(w’) iff
N(B(a/x))= N(B)(a/x) is true on Asgng, (Mg, w') for every w' ¢ Z such
that wRw' and every aed(w') iff O VxN(B)= N(VxB) is true on
Asgngg (Mgq, W).

(b) Let AeL;(J,P). By part (a), G(A)eL;(J’,P) is true on As-
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gny (M;, w) iff N(G(A))e Lg4 (J', P) is true on Asgng, (Mgs, W). So A is
true on M; (w) iff G(A) is true on Asgn; (M;, w) iff N(G(A)) = G(N(A))
is true on Asgng, (Mgy, w) iff N(A) is true on Mg, (w).0

4. Axiomatization

Our axiomatizations of QS4%=C and IQCx=, having modus
ponens as the only rule of inference, are shown in Table 1. The
soundness of Q84+ =C is easily had. The proof of completeness uses
Leblanc’s construction for QS4% (free S4) [13] supplemented with a
treatment of equality as in Barnes and Gumb [1,5]. The interested
reader can find a brief account of Leblanc and Gumb’s somewhat
inaccessible work on the completeness and soundness of IQC* = in
[ 14, 12]. Proof of the soundness of the identity-free version of IQC* =
is immediate and completeness follows by the same considerations
discussed in Barnes and Gumb [1, pp. 207-8]. (In our proof, Barnes
and I appealed to a result in the literature which had a defective proof.
The defect has since been discovered and corrected [12].)

5. Tableaux

A Kripke style tableaux system for QS4% =C has been developed
and demonstrated correct with respect to our semantics [5, 6]. As for
IQC*=, we employ Kleene tableaux much as in Fitting [2], and
unless indicated otherwise, we follow Fitting’s notational conven-
tions. We understand TA (read ‘true A’) and FA (read ‘false A") to be
signed sentences if A is an (unsigned) sentence. Note that we do not
follow Fitting’s convention of taking A to be atomic.

Let S be as et of signed sentences containing at most one F-signed
sentence, let S; = {TA: TAe S}, let eq(a,b) be eithera=b orb=a,
and let e.g. in reduction rule KT V, TA VBeS. As shown in Table 2,
the reduction rules are as in Fitting except that we add closure and
reduction rules for = and modify the reduction rules for ¥ and 3 to
suit the free case. In reduction rules KT 3 and KFY the individual
parameter « is foreign to S (and to A).
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A set of signed sentences is closed if either (1) Fu=ae S for some
individual parameter a or (2) TA, FAe S for some sentence A. Other
definitions and conventions are as in Fitting. The striking feature of
Kleene tableaus is that the set of signed sentences generated contain
at most one F-signed sentence. Proof that the Kleene IQC*=
tableaux system is sound and complete is similar to that sketched by
Fitting for the Kleene IQC tableaux system.

6. The Craig Interpolation Lemma

A version of the Craig Lemma has been established for QC# = (free
logic with equality) [7] and for QS4% =C and certain other modal
logics [6]. Here, we establish the Craig Lemma for IQC* = using
Kleene tableaux much as in Fitting [2]. The Craig-Lyndon Interpola-
tion Lemma for IQC+* = can be proven using the same construction.

Following Fitting, we write [A] ([S]) for the set of all individual,
sentence, and predicate parameters occurring in the sentence A (the
set of sentences S). Not that = is a logical constant (not a predicate
parameter). As an immediate consequence of the lemma stated below,
we have:

THEOREM (Craig Interpolation Lemma for IQC* =):
If —A oC, then there is a sentence B such that -A oB, —B =C,
and [B] c[A] N[C].

Before stating the lemma, we need some definitions. A block is a
finite set of signed sentences having no more than one F-signed
sentence. An initial part of a block is a subset of the T-signed
sentences in the block. If S is a set of sentences, we take S, and S, to
partion S. Let B and U be unsigned sentences and let S be a set of
unsigned sentences. Understand U to be an {TS, FB}/{TS,} (read ‘U
is an interpolant for the block {TS, FB} with respect to the initial part
{TS,}") if [U] =[S] N[S, B] and both {TS,, FU} and {TU, TS,, FB}
are inconsistent.

LEMMA': An inconsistent block has an interpolant with respect to
every initial part.

Proof: As in Fitting, the proof is by induction on the length of the
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closed tableaux for the block. The basis and the cases in the induction
step for the propositional connectives and for KT 3 and KF ¥ are much
as in Fitting. We modify Fitting’s proof by using Vx(x = x) and its
negation instead of t and f, thus obviating the need for rules of
combination for t and f. We sketch the proof for the case in which the
first reduction rule used is KT V. (The cases for KT=, KF=, and KF 3,
are similar [7].) The block is {TS, TVx A, T 3x(x=a), FB}, and {TS,
TA(a/x), FB} is inconsistent. In each case, we construct the interpo-
lant U.

Case 1: The initial part is {TS,}. By the induction hypothesis, there
is an 1 such that

Iis an {TS, TA(a/x), FB}/{TS,}.
Take U to be I.

Case 2: The initial part is {TS,, TVxA, T3Ix(x=a)}. By the
induction hypothesis, there is an I such that

Lis an {TS, TA(a/x), FB}/{TS,, TA(a/x)}.
Take U to be 1.

Case 3: The initial part is {TS;, T3Ix(x=a)}. By the induction
hypothesis, there is an I such that
Lis an {TS, TA(a/x), FB}/{TS,}.

Case 3.1: ag[S,, B]. Take U to be Ix(x=a)& 1

Case 3.2: ~ag|S,,B|. Take U to be 3yl(y/a), where y is
foreign to I.

Case 4: The initial part is {TS,, T¥xA}. By the induction hypothe-
sis, there is an I such that
[is an {TS, TA(a/x), FB}/{TS,. TA(a/x)}.

Case 4.1: ae[S,]. Take U to be Ix(x=a) oL

Case 4.2.: ~ag|S,]. Take U to be Vyl(y/a), where y is foreign
to [.OJ
Finally, note that the following result for IQC*= (IQC with
equality) does not hold for IQC#* =: If - A >C, neither —~ A nor
C, and both A and C are =—free, then there is an =—free interpolant
B. Consider — ¥x(A & ~ A) > AxC. A similar negative result holds for
QCx= and QS4% =C [7,6].
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7. A Note on The Compactness Theorem for Evolving Theories

One version of the Compactness Theorem states that a theory is
satisfiable iff all of its finite subsets are. Stated in this form, compac-
tness holds for both QS4% =C and IQC* = in virtue of the (strong)
completeness results mentioned above. However, my proof of a
version of the compactness theorem for evolving theories [ 5, Theorem
8.2] based on QS4% =C and certain other intensional logics is defec-
tive, as Hanson [11] has pointed out. These evolving theories have a
restriction Pr on their accessibility relation possessing, like the
restriction Po for Q84+ =C and IQCx =, the computable Kripke
closure property [19]. Theorem 8.2 states that a Pr-evolving theory
having an amenable counterpart is Pr-satisfiable iff all of its finite
Pr-subsystems are. Hanson notes that there is a gap in the proof
because it is never demonstrated that Pr-satisfiability is preserved
under (strong) homomorphisms.

Since any property of relations Pr having the monotonic closure
property (and hence the computable Kripke closure property) is
closed under isomorphisms and subsystems [1Y], it follows that Pr is
closed under homomorphisms. Proof that Pr-satisfiability is preserved
under homomorphisms follows by an argument similar to that used in
the proof of Theorem 3.1 [5]. Hence, Theorem 8.2 does hold. The
proof can be made cleaner by adding, in the statements of Lemma 3.1,
Theorem 3.1, and Corollary 3.1, the supposition that Pr is closed
under homomorphisms to the supposition that Pr is closed under the
preimages of homomorphisms. The proof of Corollary 3.1 should be
amended as suggested by Hanson.

In any case, closure under homomorphisms should be added to
Weaver and Gumb’s list of laws [19,5] of properties of relations
having the monotonic and computable Kripke closure properties.

New Mexico
Institute of Mining and Technology Raymond D. GUMB
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Table 1: QS4: =C and IQC+ = Axiom Schemas

QS4=C Common Axioms IQC: =

A>(B>oA)
(A>(B =0)) o((A 2B) (A Q)
A >(B o(A&B))
A&B oA
A&V oB
A>SAVB
B-o>AVB
(A>2C)>((Bo2C)=>(A VB 20))
(~A>~B)>(BoA) (A>B)>((A>~B)o~A)
A o(~ A oB)
Vx(A oB) o(VxA o VxB)
A o VxA
VXA(x/a) if A is an axiom
Vx(A ©B) o(3xA o 3xB)
IXA DA
a=a
a=a' D(A oA(a’'fa)) if A is atomic
a=a’' D(A(a'fa) o A) if A is atomic
Vx3y(y = x)
VXA o(3x(x=a) D A(a/x))
Alalx) o(3Ix(x = a) o IXA)
O(A oB) o(OA oOB)
OA if A is an axiom
DA DA
DA >O0OA
X(x=a) 20 x(x=a



KTV

KT&

KT~

KT o>

KT=

KTV

KT1
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Table 2: IQC -= Kleene Tableaux Reduction Rules

S, TAVB

S, TAIS, TB

S, TA&B

S, TA, TB

S, T~A

S;, FA

S, TA oB

S,.FA 1S, TB

S, Teq(a, b), TA

S, TA(bla)
S, TVxA, T3Ix(x= A)

S, T(a/x)
S, T3IxA

S, TA(a/x), TIx(x=a)

KFV

KF&

KF o

KF=

KFY

KF 3

S,, FA VB

S;, FA
S;. FAVB

S,. FB
S,, FA&B

Sy, FA1S,, FB
Sy F~ A

S,. TA
S,. FA 5B

S,, TA, FB
S;, Teq(a,b), FA

S;, FA(b/a)
S,, F¥xA

S;, T3x(x=a), FA(a/x)
S, TIx(x=a), FIXA

S;, FA(a/x)
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