AUTOLOGIC

by
Charles G. MORGAN

0. Introduction

We will assume throughout that the reader is familiar with the
terminology, algorithms, and theoretical results concerning resolution
based theorem provers. For details, the reader may profitably consult
[10] and the more recent [9].

As usually implemented and employed, resolution based theorem
provers suffer from a number of severe limitations, among which are
the following: (1) Resolution assumes the logic to be classical propo-
sitional or first-order logic. Logics weaker than classical logic cannot
generally be handled. (2) Resolution techniques assume that the
language contains conjunction, disjunction, and negation. So gene-
rally, one cannot use resolution techniques even for a classical logic
which is restricted to a different set of connectives. (3) Resolution
assumes that all expressions can be put into clause form. Thus one
cannot use resolution directly for various logics, e.g. modal logics,
which are extensions of classical logic but for which the usual normal
form theorems fail. (4) Resolution based theorem provers generally
make use of only one inference rule (or some slight variations of it).
Thus such routines cannot be used to search for alternate proofs using
different inference rules.

In previous work, we have attempted to overcome some of these
shortcomings. In [6] we developed a resolution principle suitable for
any finite-valued logic whose syntax includes (i) either primitive or
defined auto-descriptivity operators, and (ii) sufficient resources to
define types of ‘“‘conjunction” and ‘‘disjunction’ permitting the
formation of conjunctive and disjunctive normal forms. In [7] we
developed techniques for non-classical logics which depend on em-
bedding either the proof theory or the formal semantics in a first-order
meta-language, and then treating the meta-language using normal
resolution schemes. Our recent investigations are closer in spirit to
those reported in [7]. It should be emphasized, however, that the

258 C.G. MORGAN

techniques described here depend only on proof theory and not at all
on any formal semantics for the systems under investigation.

The program AUTOLOGIC was designed to find object language
proofs of specified theorems in arbitrary axiomatic systems. We
began by investigating simple propositional logics whose only infe-
rence rule is modus ponens. Such logics are seldom, if ever, classical.
Thus, the usual resolution schemes are not applicable. Early in the
research, we realized that the system could be easily extended to
work with arbitrary axiomatic systems with arbitrary sentential ope-
rators and inference rules.

1. Backward proof tree generation

For the most part, our discussion will concentrate on propositional
languages. We will use x, y, and z, with and without subscripts, as
sentential variables. We will use p, g, and r, with and without
subscripts, as sentential constants. We will use = as a two-place
sentential operator representing an arbitrary (not necessarily classi-
cal) conditional. Other sentential operators will be introduced as
required. We will use parentheses as formula punctuation, and we
assume the usual formation rules. For convenience, we will frequently
drop the outermost set of parentheses when writing a formula.

To be completely correct, we should talk about two distinct
languages. The object language consists of those formulas which are
built up solely of constants, the connectives, and parentheses ; it is the
language under study and in which proofs are being sought. Students
given the task of deriving a theorem in some system of logic should
come up with a sequence of object language formulas constructed
according to certain rules. The meta-language is the language we use
to talk about the object language. We use the meta-language when we
wish to prove things about the system of logic under study. Certainly
when talking about people, no one would confuse the name of an
individual with the individual itself. But when talking about words,
formulas, and other more abstract objects, many people are easily
confused. In English it would not be correct to say: John is a word
with four letters. Instead, English uses quotation marks as a gramma-
tical technique to turn any word into a name for itself. So it would be

AUTOLOGIC 259

correct to say: “‘John’ is a word with four letters. Similarly, we
should not say: p >(q op) is an axiom. It would be more correct to
state the claim in the following manner: ‘“‘p >(q op)’’ is an axiom.
Over the years, logicians have stopped using quotation marks. Strictly
speaking then, the meta-language should contain a name for each of
the symbols in the object language. But for reasons of efficiency,
logicians are loathe to use English words where simple symbols would
do. Consequently, we have come to use the object language symbols
as names for themselves in the meta-language. This usage greatly
blurs the distinction between the object language and the meta-lan-
guage. In most applications, no serious consequences result from our
failure to maintain a strict hierarchy of languages, and we can rely on
our common sense to sort out the details where required. In our case,
formulas with sentential variables are formulas of the meta-language.
Formulas which contain no sentential variables may be regarded as
being part of either the object language or the meta-language, depen-
«ding on the context.

A proof theory for a logic is generally specified by listing axioms
and rules of inference. An infinite number of axioms may be specified
by using sentential variables instead of sentential constants; in such a
case, we use the phrase “‘axiom scheme’’ instead of “‘axiom’. It is
frequently much more convenient from a meta-theoretical point of
view to use axiom schemes so that a rule of substitution need not be
included with the inference rules. A rule of inference can generally be
specified by indicating a set of “‘antecedent’ formulas (or formula
schemes) and the allowed “‘consequent’” formula (or formula
scheme). Just as with axiom schemes, rule schemes represent an
infinite number of allowed inferences ; most logics are formulated with
rule schemes, and thus should be properly thought of as having an
infinite number of inference patterns. So, by a logic L, we mean a set
of axioms (or axiom schemes) and inference rules (or rule schemes),
each inference rule (rule scheme) being specified by a set of antece-
dent formulas (formula schemes) and an allowed consequent formula
(formula scheme). A proof in L is just a finite sequence of object
language formulas, each of which is either an axiom (instance of an
axiom scheme) or follows from previous members of the sequence by
an inference rule. We may give the following simple definition of
“‘theorem” of L:

260 C.G. MORGAN

T1. Every axiom (instance of an axiom scheme) of L is a
theorem of L.

T2. Suppose that (i) A,,..., and A, are all theorems if L; and
(ii) C is the consequent formula (an instance of the
consequent formula scheme) of an inference rule of L, the
antecedent formulas (instances of the antecedent formula
schemes) of which are A,,..., and A,. Then C is a theorem
of L.

Trivially, a theorem of L is just the last line of a proof in L.

For an arbitrary logic L, the most simple-minded theorem prover
would be a “‘backward’’ proof tree search. To be completely specific,
we will sketch the algorithm for the generation of such a tree.
Technically, our backward proof tree generation technique manipu-
lates formulas of the meta-language. Our tree generation technique
sometimes attempts to match formulas by using the unification
algorithm. Readers unfamiliar with the unification algorithm may
consult [9].

The root node of the backward proof tree for L is the proposed
theorem, which is to be regarded as a single-membered *‘sequence’”.
Note that since we are usually searching for a theorem in the logic
rather than a theorem about the logic, the root node will usually
contain no sentential variables, although we will specifically discuss
exceptions below. (If it contains no variables, then the root node is a
formula of the meta-language that serves as the name of the same
formula in the object language.) Subsequent nodes consist of other
ordered sequences of formulas. A node is expanced by considering as
a «target» formula the left-most formula in the sequence. (The choice
of left-most is arbitrary.) New nodes are generated in two ways:

(N.1) The target formula is checked to see if it can be unified
with any of the axioms. (Any variables in the axiom are
first changed so that the old node and the axiom have no
common variables.) For each match found, a new node
is generated by deleting the target formula from the old
node sequence and making the unification substitutions
in the remaining formulas of the sequence.

(N.2) The target formula is checked to see if it can be unified
with the consequent of any rule of inference. (Any
variables in the rule are first changed so that the old node

AUTOLOGIC 261

and the rule have no common variables.) For each match
found, a new node is generated by replacing the target
formula in the old node sequence by the sequence of
antecedent formulas from the rule in question and ma-
king the unification substitutions in the resulting se-
quence.

When an empty node (here designated by ¢) is generated, a proof of

the original theorem has been found.

Note that free variables may occur in the statement of the axioms
and inference rules, and that free variables may also occur on the
nodes of the tree. Free variables occurring in the axioms and in the
inference rules are implicitly universally quantified. The implicit
meta-theoretical claim with regard to each of the axioms is that for all
values of the variables, the corresponding formula is provable. The
implicit meta-theoretical claim with regard to each of the inference
rules is that for all values of the variables, if the antecedent formules
are provable, then the corresponding consequent formula is provable.
The characterization of the free variables on the nodes of the tree is a
bit more complicated. As long as the root node contains variables,
then intuitively the claim made about each node is that for all values of
the variables, if all of the formulas on the node are provable, then the
formula on the root node is provable. Since the root node contains the
desired theorem, the implicit claim being made is that for all values of
the variables, if all of the formulas on the node are provable, then the
original theorem is provable. As an example, suppose the desired
theorem is T, and suppose T contains no variables, which will usually
be the case for reasons explained above. Suppose the logic includes an
inference rule scheme which sanctions the conclusion y from the two
antecedents x and x oy. Consider a node generated by N.2: it would
contain only the two formulas x >T and x. The node actually
represents the meta-theoretical claim “*For all x, if x > T and x are
both provable, then T is provable.” If T has no free variables, then
this meta-theoretical claim is equivalent to the claim **If there is an x
such that both x T and x are provable, then T is provable.”” Thus
the free variables on the nodes may in some cases be regarded as in a
sense being existentially quantified. But we may use the unification
algorithm to match target formulas on the nodes with axioms because
in another sense the free variables on the nodes are universally

262 C.G. MORGAN

quantified. We may state these considerations more formally in the
following theorem.

Theorem 1 : Suppose E is the root node of a backward proof tree for L,
and E has free variables x,,..., xx. Let Fq,..., F,, be all of the formulas
on any node of the tree, and let x,, ..., X, be all of the free variables
occurring in the F;. Then there is a formula E’ which is a substitution
instance of E such that:

Forall x4, ..., all X, all x,, ..., and all x,, if F,, ..., and F,, are all
theorems of L, then E’ is a theorem of L.

Proof: The proof is by a simple induction on the levels of the tree. For
the basis step, consider level 0. Trivially:

(1.1) Forall x4, ..., and all x, if E is a theorem of L, then E is
a theorem of L.

For the induction step, suppose the theorem is true of all nodes at
level n—1; we must show that it holds at level n. So, consider an
arbitrary node at level n, which has been generated from a node at
level n— 1. The inductive assumption tells us that:

(1.2) Forall X4, ..., all Xy, all yq, ..., and all y, if G4, ..., and G;
are all theorems of L then E” is a theorem of L.

Of course E” is a substitution instance of E, the G; are the formulas on
the parent node on level n — 1, and the y; are the free variables in those
formulas. We may suppose that the node at level n contains the
formulas F;, ..., and F, with free variables x,, ..., X;. There are only
two cases to consider: the new node was either generated by N.1 or
by N.2. First consider the case of node generation by N.1. Then there
must be an axiom (scheme), call it AX, such that G; and AX are
unifiable. But clearly where the z; are the free variables in AX:

(1.3) Forall z;, and ..., and all z,, AX is a theorem of L.

The unification algorithm simply finds ‘‘minimal’’ substitutions for
the variables in (1.2) and in (1.3) so that after the substitutions, AX
and G, are identical. After the substituions, G, becomes Fy, ..., G;
becomes F,, and E” becomes some substitution instance E’ of E. It

AUTOLOGIC 263

thus trivially follows from (1.2) and (1.3) that:

(1.4) Forall x4, ..., all x,, all x,, ..., and all x, if F,, ..., and F,
are all theorems of L, then E’ is a theorem of L.

For the second case, consider node generation by N.2. It must be the
case that there is some inference rule (scheme) whose consequent is
unifiable with G,. Let the antecedents of the rule be A,, ..., A, let the
consequent of the rule be C, and let the free variables of the rule be z,,
..rs Z,. Then we know:

(1.5) For all z,, and ..., and all z, if Ay, ..., and A are all
theorems of L, then C is a theorem of L.

Then just as with the first case, the required (1.4) follows trivially
from (1.2) and (1.5).

Since every formula in ¢ is a theorem of L (there are no members of
the empty sequence), the “‘correctness’ of the backward proof tree
generation technique trivially follows from Theorem 1. To make it a
bit easier to state this and subsequent results, we adopt the notation
“S€BPT(L, E, n)”” to mean that the ordered sequence of formulas S
is a node of the backward proof tree of logic L, with root node E, at
level n. Unless explicitly stated otherwise, we do not assume that E
has no free variables.

Theorem 2: Let E be an arbitrary formula, and suppose that
¢ =BPT(L, E, n), for some n. Then there is some substitution
instance E’ of E, which contains no free variables, such that E’ is a
theorem of L.

Note that if E has no free variables, then the only substitution
instance of E is E itself. Thus, if the root node of the tree has no free
variables, and the empty node occurs on the tree, then Theorem 2
guarantees that E is a theorem of L. Note also that if the empty node is
found on a tree whose root node contains free variables, then the free
variables are appropriately regarded as being existentially quantified.
For example, if we place x ©>x on the root node of a tree and ¢ is
subsequently found, we know only that there is some formula of the
form x >x which is provable. Universal questions may be asked by
formulating them using constants which do not occur explicitly in the
meta-theoretical statements of the axioms and inference rules. That

264 C.G. MORGAN

is, suppose p does not occur explicitly in the statements of the axioms
and inference rules. Let E, E’, and E” be any object language formulas
such that E' is the result of uniformly substituting E” for p in E. Then
for logics of the sort discussed here (those that can be formulated
using axiom schemes and inference rule schemes as discussed above),
it is easy to show that if E is provable, then so is E’. Simply make the
substitution in each line of the proof of E, and note that axiomhood is
preserved as are applications of the inference rules.

We will now prove a sequence of theorems leading to the complete-
ness of the backward proof tree technique. In all theorems and proofs,
we treat trivial variable variants as the same formula. For conve-
nience, we will assume that ordered sequences of formulas are written
from left to right, each formula followed by ;.
Theorem 3: Let E; and E, be formulas, and let S; and S, be ordered
sequences of formulas. If S; EBPT(L, E,, k) and E;; S, €BPT(L, E,,
m), then for some n <k + m and some substitution instance S, of S,, it
must be the case that S4 S, e BPT(L, E,, n).

Proof: The proof of the desired conclusion is by a trivial induction on
the level k. For the basis step, suppose k = 0. Then S, is just the
sequence E;;, and the desired conclusion follows trivially from the
hypothesis of the theorem. For the induction, assume the theorem
holds at level k — 1; we must show that it holds at level k. Suppose the
hypothesis of the theorem is true. Let S be the node on level k — 1
which is the immediate predecessor of S; on level k. The induction
assumption assures us that there is some substitution instance S,. of S,
such that SS,, =BPT(L, E,, n — 1). Node S; was obtained from node S
by either N.1 or N.2. In either case, exactly the same step of the
algorithm will obtain S, S, from SS,. where of course S, is a
substitution instance of S,. and hence of S,. It trivially follows that
S: S, €BPT(L, E,, n), as required.

For the proof of the next theorem we will have to be more explicit
about substitutions. A single substitution may be thought of as a pair,
frequently written “*E/x"", in which “*E’" is a formula and X’ is a
variable. To apply such a substitution to a formula, one simulta-
neously and uniformly replaces all occurrences of x by the formula E.
We use 9, g, 0, and = to represent ordered sequences of substitutions.

AUTOLOGIC 265

We permit the empty sequence to be considered as an ordered
sequence of substitutions. Trivially, concatenation of two ordered
sequences of substitutions is an ordered sequence of substitutions.
We use the notation ““Eo’" to mean the formula which results from
applying the ordered sequence of substitutions in o to the formula E.
We will use similar notation when applying an ordered sequence of
substitutions to an ordered sequence of formulas ; note that in such a
case, each substitution in the substitution sequence is to be applied to
every formula in the formula sequence. Where no confusion will arise,
we will use *‘substitution™ instead of **ordered sequence of substitu-
tions™’.

For the next theorem, we will also need the notion of one logic
being more general than another. In the definition, we regard an
inference rule (scheme) as an ordered sequence of formulas (formula
schemes), such that the first member is the consequent and the
subsequent members are the antecedents of the rule. We will say that
logic L is more general than logic L’ just in case: (i) for every axiom
(scheme) AX' of L', there is an axiom (scheme) AX of L, and some
substitution o such that AX' = AX o and (ii) for every inference rule
(scheme) IR’ of L', there is an inference rule (scheme) IR of L and
some substitution o such that IR' = IR g.

Theorem 4 : Suppose logic L is more general than logic L’ and that for
some n, S'EBPT(L’, E, n). Then there is a sequence of formulas S
such that S" is a substitution instance of S and S €BPT(L, E, n).

Proof: The proof is by induction on the level n. For the basis step,
suppose n=0. Then S’ has E as its only member, and trivially S will
also have E as its only member. For the induction step, suppose the
theorem holds for level n — 1; we must show that it holds for level n.
Let C';S, be the predecessor node on level n— 1 to S’ on level n,
where C" is some formula. Thus we know that C’'; S, €BPT(L’, E,
n—1). By the induction hypothesis, we know that C; S, €BPT(L, E,
n — 1), where for some substitutiont, C'; S, = (C; S;) . Now, S’ had
to be generated by either N.1 or N.2. First suppose S’ was generated
by N.1. Then there is some axiom (scheme) AX' of L' such that after
the variables of AX' are changed so that they differ from those of C’,
AX" and C’ are unifiable. But AX' is a substitution instance of axiom

266 C.G. MORGAN

(scheme) AX of logic L, so there is some substitution ¢ such that
AX'=AXo. Since the variables in the axioms are just treated as
dummy place holders (they are always changed by the tree generation
technique to be different from the variables in the node under
consideration), we may without loss of generality assume that the
variables of AX and AX' are distinct from those in both C’ and C.
Hence the substitutions t and o are completely independent, and
furthermore C'=Cmno and AX'=AXmp. Since C' and AX' are
unifiable, there is a substitution & such that C'6=AX'd and
S§'=S,. 8. It follows trivially that the substitution 7t 0 d unifies C and
AX; that is, C and AX are unifiable. Thus N.1 will generate at level n
in the backward proof tree of E in logic L anode S = S,0, where o is a
substitution found by the unification algorithm. Now. by the induction
hypothesis, S, = S @, so S, = S,mp since m and @ are completely
independent and @ has no variables in common with S,. Thus it
follows that 8’ = S0 = S, 0 d. Since the unification algorithm finds
a minimal unifying substitution for C and AX, call it o, and we know
that w0 & is also a unifying substitution for C and AX, it follows that
S,mEd is a substitution instance of S,o; that is, S’ is a substitution
instance of S. The case for N.2 is very similar. The only difference is
that the sequences of rule antecedents are concatenated onto the left
of S, and S, before the substitutions are made to obtain S’ and S,
respectively. But the rule antecedents for L’ are just substitution
instances of the corresponding rule antecedents for L. The desired
result will then follow by the same argument used for the N.I case.

Theorem 5: Let E and E’ be any formulas such that E’ has no free
variables and for some substitution 0, E’ = Eo. If E’ is a theorem of
L, then ¢ EBPT(L, E, n) for some n.

Proof: Suppose E, E’, and ¢ are related as described, and suppose
that E’ is a theorem of L. Consider the logic L, which consists of the
actual object language axioms cited in the proof of E’ and the
instances of the rules actually used in the proof of E’. Then the axioms
and rules of L' contain no variables, and the proof of E’ in L
constitutes a proof of E' in L. Further, L is more general than L’. The
remainder of the proof has three main steps. (1) First we claim that
¢ EBPT(L', E’, n) for some n. The proof of this claim is by induction

AUTOLOGIC 267

on the L' proof of E’. For the basis step, suppose E’ is an axiom. Then
trivially by N.1 we know that ¢ EBPT(L’, E’, 1). For the induction
step, suppose that E’ follows by an inference rule. The consequent of
the rule must be E’, and the antecedents of the rule must be L’
theorems, say A,,...,A,. As hypothesis of the induction, we may
assume that for each i there is an n such that ¢ EBPT(L’, A;, n).
Further, N.2 of the generation technique assures that
Aq;...;Ax€BPT(L', E’, 1). Then using the induction hypotheses, k
applications of Theorem 3 will yield $ EBPT(L’, E’, n) for some n.
That ends the induction. (2) We claim on the basis of the previous
result that ¢ EBPT(L', E, n) for some n. The argument for this second
claim is quite simple. Note that ¢ cannot occur on level 0, since there
is no “‘empty’’ formula. Comparing the trees for E and E', it is easy to
see that they are identical at level 1. If a node on level 1 of the E’ tree
is generated by N.1, then that node must be ¢ and E’ must be one of
the axioms. Since E’ is a substitution instance of E, it follows that E
and E’ (one of the axioms of L) are unifiable, and hence ¢ will also be
on level 1 of the E tree. On the other hand, if a node on level 1 of the
E’ tree is generated by N.2, then that node must be A,;...; A, and L’
must have a rule with E’ as consequent and the A; as antecedents. But
again, since E’ is a substitution instance of E, E and the consequent of
the same rule are unifiable. Since the A; have no free variables, the
node on the E tree will just be A, ;...; Ay, the same as the correspon-
ding node on the E’ tree. So the two trees are identical at level 1. Since
they are identical at level 1, they are identical at all lower levels.
Hence ¢ €BPT(L’, E, n) for some n, as claimed. (3) Finaily, we
obtain the desired result that ¢ EBPT(L, E, n) by applying Theorem 4
to the previous claim and noting that ¢ is the only substitution
instance of ¢.

Theorem 5 is the desired general completeness result for backward
proof tree generation. As a special case of the theorem, note that if E
is a formula with no free variables that is a theorem of L, then the
empty node will be generated at some level of the tree with root node
E. Thus backward proof tree generation can be used to determine
whether or not a particular formula is a theorem. As noted above, it
also follows that the technique can be used to check ‘‘universal’
claims about theoremhood, since for the type of logics we are
considering, substitution of a formula for a “‘non-special’” sentential

268 C.G. MORGAN

constant in an L theorem is always an L theorem. In the general case,
note that if E has free variables and some substitution instance is an L
theorem, then the empty node will be generated at some level of the
tree with root node E. So Theorem 5 justifies our earlier claim that
free variables on the root node may be regarded as existentially
quantified. In short, simple meta-theoretical claims may be checked
using the tree method by applying a ‘*Skolemization’ process to the
meta-theoretical claim, replacing universally quantified variables by
constants and existentially quantified variables by free variables.

2. Modus ponens as the only inference rule

The inference rule known as modus ponens (*‘detachment of the
conditional’’, **implication elimination’’) sanctions the inference from
a conditional, *‘if A, then B, and its antecedent, “‘A’’, to its
consequent, “*B*". A great many logics are normally presented as a set
of axioms (or axiom ‘‘schemes’) with modus ponens as the only
inference rule. Examples include classical logic [5], various **partial”’
systems [2], quite a few many-valued logics [8], intuitionistic logic [3],
several modal logics [4], and various systems of “‘strict’” implication
[1]. Sometimes these systems are formulated with modus ponens and
a rule of substitution. In such cases, the rule of substitution can be
eliminated by replacing axioms with axiom ‘‘schemes’, i.e., by
allowing an infinite number of axioms represented by formulas using
sentential variables instead of sentential constants. For the reasons
mentioned above, resolution based theorem provers are not really
suitable for the investigation of such logics. While investigating logics
with only modus ponens, we incorporated an additional node genera-
tion method which sometimes greatly improved the general technique.
We will discuss the new method in this section.

If modus ponens is the only inference rule of L, then we may give
the following simple definition of ‘‘theorem™ of L:

MPT1. Every axiom (instance of an axiom scheme) of L is a
theorem of L.

MPT?2. If x is a theorem of L and x oy is a theorem of L, then
y is a theorem of L.

AUTOLOGIC 269

We will use this characterization in the proof of the theorem below.
The theorem was used as a basis for an extended version of modus
ponens which is incorporated in AUTOLOGIC. For reasons which
will become obvious, we call the extended version ‘‘axiom chain’’
modus ponens.

Theorem 6: 1f B is a theorem of logic L, which has modus ponens as
its only rule of inference, then either (a) B is an axiom of L, or (b) there
is an axiom of L which has the following form:

Ei>(...>(E, 2B)...)

where each of the E; is a theorem of L.

Proof: The proof is by an easy induction on the set of theorems of L,
as defined in MPT1 and MPT2, above. The basis part of the proof is
trivial, since every axiom of L is characterized by (a) above. For the
induction, we assume that (i) B follows by modus ponens from the two
L theorems A DB and A, (ii) either (a) or (b) is true of A, and (iii)
either (a) or (b) is true of A > B. Consider inductive assumption (iii). If
(a) is true of A oB, then (b) is true of B, since the inductive
assumption (i) assures that A is a theorem of L. On the other hand,
suppose (b) is true of A > B. Then there is an axiom of L which has
the following form:

Eio(... 2(E, 2(A>B))...)

where each of the E; is a theorem. But inductive assumption (i)
guarantees that A is a theorem, so (b) is true of B.

Briefly put, Theorem 6 states that for any logic L whose only rule of
inference is modus ponens, every theorem of L which is not itself an
axiom of L must occur as the consequent of a conditional chain which
is an axiom of L and each of whose antecedent formulas is an axiom of
L.

While generating a backward proof tree, if modus ponens is among
the inference rules of the logic and N.2 is applied to a given node n
times in a row, then one of the formulas on the resulting node will
have the form:

Xq Sl « DR DAY o26)

270 C.G. MORGAN

Applying step N.1 to such a formula as target assures that the general
backward proof tree search examines instances of the sort anticipated
by Theorem 6. However, the examination of such instances requires
the expansion of the tree to some considerable depth. In certain cases,
some efficiency may be gained by adding the following node genera-
tion technique to the tree generation procedure.

N.3 Apply the following algorithm to each axiom:

a. Set F to be the present axiom under consideration.
(Change the variables in F to be distinct from those in
the node being considered.) Set S to be the sequence of
formulas in the node being considered for expansion,
minus the target formula. Go to step b.

b. If F is not a conditional, then exit. But if F js a
conditional, break it into its antecedent and conse-
quent, designated by ANT and CON, respectively.
Add ANT to the sequence of formulas in S. Go to step
c.

c. Check to see if the target formula and CON are
unifiable. If so, then form a new node consisting of the
formulas in S with the required unifying substitution. In
either case, go on to step d.

d. Set F to be CON. Go to step b.

This routine simply checks to see if the target formula can be regarded
as the right-most formula of a conditional chain which is an instance of
an axiom. If so, then a new node is generated with the target formula
replaced by the appropriate set of antecedent formulas. Note that the
maximum ‘‘length” (in the sense of ‘‘number of antecedents’’) of a
conditional chain that is checked by N.3 is the maximum number of
occurrences of > in any axiom. However, in conjunction with N.2,
“new’’ target formulas will be generated at subsequent levels with an
arbitrary number of ‘‘vacuous’ antecedents. These ‘“‘new’’ targets
will also be tried as consequents in conditional chain axioms. So, N.3
will not generate nodes that would not eventually be generated
anyway. That is, as long as the inference rules of the logic include
modus ponens, then Theorem 2 (correctness) and Theorem 5 (com-
pleteness) both hold even when the tree generation technique includes
N.3.

AUTOLOGIC 271

The value of N.3 is that it anticipates nodes which would otherwise
be generated only at greater depths in the search. For a simple
example, we will consider a standard problem in partial propositional
logics. Suppose we wish to derive p op from the following axiom
schemes, using only the rule of modus ponens.

AX.1 x D(y 2X)
AX.2 (x o(y 22)) o ((x Dy) o (x 2)

Using only N.1 and N.2, the interesting branch on the backward proof
tree would look like the following:

level 0 pop root
level 1 x; o(p op):xy N.2
level 2 X3 o(xy 2(p op));X2:%; N.2
level 3 po(yop);p oy N.1, axiom 2
level 4 poy N.1, axiom 1
level 5 ¢ N.1, axiom 1

However, if N.3 is included in the tree generation algorithm, then the
following branch occurs:

level 0 pop root

level | poy;p>(yop) N.3, axiom 2
level 2 po((z op) op) N.1, axiom 1
level 3 ¢ N.1, axiom 1

Thus, including N.3 would result in a saving in terms of the number of
levels in the tree that must be generated. We refer to this phenomenon
as level saving.

Our example is not at all misleading with regard to the general case.
Given Theorem 6, it is easy to see that if modus ponens is the only
inference rule, then the inclusion of N.3 will always result in some
efficiency in terms of the number of levels required to be generated.
Suppose A is the desired L theorem. Then by Theorem 6, there is an
instance of an axiom of L which has the following form:

Eio(...2(E, DA)...)

where each of the E; is an L theorem. Step N.3 will search for such
axioms prior to the level at which this general form would be
generated as a target formula by N.2 alone. The precise number of

272 C.G. MORGAN

levels “*saved’’ will depend on the number of occurences of = in the
corresponding axiom (scheme). In addition to the level saving in the
search for A, there may also be level savings in the search for the
other theorems required in the proof of A, namely the E;. For any E;
which is not an (instance of an) axiom (scheme), there will be level
saving in the search for its proof. It should be clear that level saving is
additively cummulative.

It should be noted that when the logic under investigation includes
rules other than modus ponens, then Theorem 6 may not hold. As a
simple example, consider the following logic:

Axioms: ~(p or) >~q
q

p
Rules: Infer x from ~x o~y and y.
Infer x from y ox and y

It is easy to see that r is a theorem of this logic but it does not occur on
the right of a conditional chain axiom. So when rules other than
modus ponens are included, there is no guarantee that N.3 will result
in any level saving at all. In the example above, N.3 would not add
any new nodes. But if we include an axiom scheme like x >(y ox),
then more nodes will be generated by N.3. So there are many
pathological examples to show that inclusion of N.3 sometimes leads
to an inefficiency when the logic includes rules other than modus
ponens.

3. The efficiency of level saving

Of course there is a price to be paid for the level saving due to N.3.
The price is the increase in the number of nodes generated at each
level. We need to consider the general question of whether or not an
increase in the number of nodes generated at each level is worth a
decrease in the number of levels that must be generated. We will
briefly discuss both time-like and space-like efficiency considerations.

If time is the major concern, then the total number of nodes
generated is an appropriate statistic to consider. For an arbitrary
problem, let N be the average number of new nodes generated per old

AUTOLOGIC 273

node considered, and let L. be the number of levels searched, both
using some arbitrary tree generation scheme, call it *“TGS.1”’. Let M
be the average number of additional nodes generated per old node
when some other tree generation scheme, call it “*“TGS.2", is used;
i.e., when TGS.2 is used, on average M more new nodes per old node
will be generated than when TGS.1 is used, resulting in an average of
N+M new nodes per old node. Let S be the total level saving from
using TGS.2 as opposed to TGS.1; i.e., using TGS.2, only L-S levels
are generated. In a real example, the process would be terminated
sometime during the generation of the last level, but since there is no
way to tell how much of the last level will actually be required, we will
assume the entire level is generated. We will use the notation ‘‘n exp
m’’ to represent n raised to the m power. The total number of nodes
generated using only TGS.1 will be:

TotNodes (TGS.1) = (1 = N exp (L + 1))/(1 = N)
The total number of nodes generated using TGS.2 will be:

TotNodes(TGS.2) = (1— (N+ M) exp (L—S + 1))
(1=(N+ M)

Consequently, if TGS.2 is to result in an efficiency in terms of total
number of nodes generated, then we must have:

TotNodes (TGS.2) < TotNodes (TGS.1)

In the situation of interest to us at the present time, we are
comparing tree generation using N.1 and N.2 alone with tree genera-
tion using N.1, N.2, and N.3. In the worst case the only level saving
will be from a single anticipated conditional chain, and that saving
may be only one level. However the increase in the number of nodes
per level will be on the order of the sum of the number of occurrences
of > over all the axioms. So in the worst case, the inclusion of N.3 will
not result in any efficiency. Happily, experience has shown that the
worst case is seldom the real case.

For the logics we have studied, N is generally no greater than about
5, while M is of the order of the number of axioms, and often smaller.
The best way to get a feel for the possible efficiencies is to examine
Table 1. We have tabulated values of N and L, along with the total
number of nodes that would be generated by TGS.1. Then for values

274 C.G. MORGAN
of level saving (designated by S) from 1 up to 4, we have calculated a
maximum increase in the average number of new nodes generated per

old node (i.e., maximum values of M) if TGS.2 is to be more efficient
than TGS.1.

TABLE 1: Time-like Considerations

maximum values of M for values of S

N L totnodes S=1 S=2 S=3 S=4
2 5 63 0.48 1.57 5.39 60.00
7 255 0.29 0.77 1.69 3.97
10 2,047 0.18 0.43 0.79 1.36
15 65,535 0.11 0.24 0.41 0.62
20 2.10E + 06 0.08 0.17 0.28 0.40
3 5 364 1.07 3.77 15.56 360.00
7 3,280 0.65 1.82 4.29 11.51
10 88,573 0.41 1.01 1.93 3.49
15 2.15E + 07 0.25 0.57 0.99 1.54
20 5.23E+ 09 0.18 0.40 0.66 0.98
4 5 1,365 1.80 6.74 32.44 1360.00
7 21,845 1.10 3.16 7.89 23.61
10 1.40E + 06 0.69 1.72 3.39 6.40
15 1.43E + 09 0.43 0.98 1.70 2.70
20 1.47E + 12 0.31 0.68 1.13 1.69
5 5 3,906 2.63 10.40 56.99 3900.00
7 97,656 1.60 4.74 12.42 40.71
10 1.22E + 07 1.01 2.55 5.14 10.00
15 IBIE+ 10 0.62 1.43 2.53 4.06
20 1.19E + 14 0.45 0.99 1.67 2.51

From the table, three trends should be quite clear: (1) The greater
the level generated, the smaller the value of M for which a given level
saving actually results in an efficiency.(2) For any given level of
generation, the greater the level saving, the larger the value of M can
be and still result in an efficiency. (3) The greater the value of N, the
greater M can be and still result in an efficiency, all other things being
equal.

AUTOLOGIC 275

With regard to trends (1) and (2), one should bear in mind that
generally speaking, the longer a proof (i.e., the greater the value of L),
the more likely it is that there will be several ‘‘opportunities’’ for level
saving. Thus the longer the proof, the more likely it is that the level
saving will be great. So it would not be appropriate to conclude that
adding N.3 to N.1 and N.2 would be unwise if the expected length of
proof is large. However, with regard to trend (3), one should be very
careful in using N.3 if the value of N is quite small.

If considerations of space are of primary importance, then the total
number of nodes generated may not be the appropriate statistic to
consider. In order to generate the nodes at level L, it is not necessary
to have all previously generated nodes available ; rather, one requires
only the nodes from level L. — 1. So the number of nodes that must be
stored in order to generate the nodes at level L is the number of nodes
generated at level L — 1. A measure of the space requirements for
TGS.1 is then given by the following:

StrdNodes (TGS.1) = Nexp (L— 1)

A measure of the space requirements for TGS.2 is given by the
following:

StrdNodes (TGS.2) = (N+ M) exp (L—S— 1)

In order for the use of TGS.2 rather than TGS.1 to result in an
efficiency, we must have the following:

StrdNodes (TGS.2) < StrdNodes (TGS.1)

In Table 2, we have tabulated values of N and L, along with
corresponding values for the number of nodes at level L — 1. Then for
values of level saving, S, from 1 through 4 we have tabulated the
maximum values of M for which the level saving strategy results in an
efficiency. Table 2 is very similar to Table 1, exhibiting the same
trends noted before. In fact, the maximum allowed values of M do not
in general differ by very much. So we can draw the same conclusions
from Table 2 as we did from Table 1.

276 C.G. MORGAN
TABLE 2: Space-like Considerations

maximum values of M for values of S

N L strnodes S=1 S=2 S=3 S=4
2 5 16 0.52 2.00 14.00
7 64 0.30 0.83 2.00 6.00
10 512 0.18 0.44 0.83 1.48
15 16,384 0.11 0.24 0.42 0.64
20 524,288 0.08 0.17 0.28 0.41
3 5 81 1.33 6.00 78.00
7 729 0.74 2.20 6.00 24.00
10 19,683 0.44 1.11 2.20 4.22
15 4.78E + 06 0.26 0.60 1.05 1.66
20 1.16E + 09 0.19 0.41 0.69 1.02
4 5 256 2.35 12.00 252.00
7 4096 1.28 4.00 12.00 60.00
10 262,144 0.76 1.94 4.00 8.13
15 2.68E + 08 0.45 1.04 1.84 2.96
20 2.75E + 11 0.32 0.71 1.19 1.79
5 5 625 3.55 20.00 620.00
7 15,625 1.90 6.18 20.00 120.00
10 1.95E + 06 1.11 2.92 6.18 13.12
15 6.10E + 09 0.66 1.54 2.76 4.52
20 1.91E + 13 0.47 1.04 1.76 2.68

Other speed-up techniques

Space limitations prohibit the detailed discussion of the wide
variety of speed-up techniques which might prove useful in various
situations. We will briefly mention a few of those with widest
applicability.

In many situations, one is only concerned to determine whether or
not a given expression is an L theorem, without caring about the
details of the proof. In such situations, the user may be familiar with
other theorems and derived inference rules which might be relevant or
useful for the problem at hand. The backward proof tree technique is

AUTOLOGIC 277

quite amenable to the inclusion of such information. In fact, in our
implementation, AUTOLOGIC, no distinction is made between pri-
mitive and derived inference rules, nor between axioms and other
known theorems (**derived’” axioms). For just one example, suppose
we know that the deduction theorem holds for our logic and we wish
to check a formula of the form A 5B for theoremhood. Then we may
add A to our list of “*axioms”’ and look for a proof of B.

There is a simple technique for reducing the required level of tree
generation by one, at no increase in the number of new nodes per old
node generated. Whenever a node with a single formula is generated,
it may be checked against the axioms (step N.1) immediately, rather
than waiting till the next level. If the node and some axiom are
unifiable, then a proof has been found and tree generation may cease.
On the other hand, if the node is not unifiable with any axiom, then no
additional node has been generated. Of course implementation of such
a procedure means that single formula nodes need not be checked
against the axioms at the next level. Now, it is easy to see that as we
have described the tree generation algorithm, the empty node can be
generated only from a single formula node and only using N.1. Hence,
the procedure described here will always result in a level reduction of
one, regardless of the logic under study. For obvious reasons, we call
this technique the ‘‘unit node’’ technique.

A reduction in the number of nodes which must be generated on the
last level can be obtained by ordering the nodes at the previous level
before beginning to generate the nodes at the next level. By conside-
ring the nodes from the previous level with the fewest number of
formulas first, the empty node will in general be produced sooner on
the last level. We call this procedure the *‘level ordering’* technique.

In some cases it is possible to eliminate one (or more) formula(s)
from a node. If that node is on a branch leading to the empty node,
elimination of the excess formula will reduce by one the level to which
the tree must be expanded. The simplest example of a redundant
formula on a node is one which is exactly the same as some other
formula on the node. The more general characterization is as follows:
A formula E occurring on a node is ‘‘redundant’” just in case there is a
substitution for the variables occurring in E but not occurring in any
other formula on the node, such that the resulting formula E' is
identical to some other formula on the node. The redundancy elimi-

278 C.G. MORGAN

nation technique simply eliminates any redundant formulas from each
node as it is generated.

Theoretically, a vast improvement in speed can be obtained by
judicious pruning of the tree. One of the standard tree pruning
techniques in resolution routines is some version of ‘‘subsumption”
(see [9]). The same techniques work with backward proof trees. Node
1 is said to subsume node 2 just in case there is some substitution that
can be applied to node 1 such that the resulting sequence of formulas
contains every formula in node 2. If a new node is subsumed by an old
node then it can be shown to be redundant and may be pruned from
the tree.

There are several problems with subsumption pruning. First of all,
in its most general form, subsumption pruning requires the storage of
all nodes generated, which may be quite prohibitive in terms of the
space required. Secondly, the time required to do the subsumption
check goes up with the number of nodes generated. In our experience,
the time required becomes prohibitive after only a few levels. There
are three special cases of subsumption pruning which avoid these
difficulties to varying degrees. Previous level subsumption pruning
checks each new node only against the nodes from the previous level.
Parent node subsumption pruning checks each new node against only
its parent node. Original node subsumption pruning checks each new
node against the originally proposed theorem. In our experience,
parent node and original node subsumption pruning are much more
““cost effective’” than either general or previous level subsumption
pruning.

Another pruning technique which fits easily and naturally with the
backward tree generation scheme is non-theorem pruning. Very often
an investigator knows a number of non-theorems of the system under
study. For example, we may know that p =q is not a theorem of the
logic being investigated. Or we may know that no formula of the form
X Ox is a theorem. Any node that contains a non-theorem, or a
substitution instance of a scheme of non-theorems, may be pruned
from the tree.

Completeness and correctness are easy to show for all of the
speed-up techniques discussed above. Space limitations prohibit
giving the details here.

AUTOLOGIC 279
5. Implementation

We could have represented formulas in the usual way in AUTO-
LOGIC. However, such representation does not allow for every
efficient processing, so an alternative notation was adopted. In
AUTOLOGIC, the conditional is the only sentence connective which
is intrinsically recognized. The symbol **>"" is used to represent the
conditional. The program recognizes 20 two-character sequences as
variables: ““V0”’-*V9”" and “*VA’-**VJ”’. It also recognizes 20 two-
character sequences as constants: ““K0’-*“K9" and “KA’-“KJ.
Left and right parentheses are used as object language punctuation for
ease in parsing formulas, but the formation rules for formulas are
slightly non-standard, as described below. The semicolon **;** and the
slash “*/"" are used as special delimiters for the representation of
strings of formulas and inference rules, as described below. All other
characters (and sequences of them) are available for use as sentential
connectives or as predicate and function expressions. These additio-
nal symbols will be said to be ‘‘non-special ™.

The formation rules for formulas are as follows:

F1. Any variable or constant is a formula.
F2. If E; and E, are formulas, then the following is a formula:

(E1>Ey)

F3. If cis any non-special character or sequence of non-special
characters and E4,...,E, are any formulas, then the
following is a formula:

(cE;...E))

Thus, additional sentence operators (or predicates and functions in a
first-order language) are treated as in Polish notation, with the
addition of parentheses around the entire expression. The addition of
the parentheses permits the program to correctly parse an arbitrary
string without specific information concerning the polyadicity of the
operator (or predicate or function).

Obviously there was no real need to include a *‘special’” conditional
symbol and to treat the formation of conditionals in a way different
from the formation of other compounds. Our only reason for doing so
was the fact that the original routine was specifically designed to
investigate conditional logics. Axiom chain modus ponens allows for

280 C.G. MORGAN

efficient chaining of modus ponens steps (as described above), so we
decided to incorporate this efficiency in the general routine. The use
of this intrinsic rule may be avoided by simply not using the symbol
-t

In AUTOLOGIC, nodes on the proof tree are represented as strings
of formulas. The simplest string is the empty string, whose internal
representation is just an alphanumeric string of length 0, although for
convenience, we have used ¢ to represent the empty string in this
paper. The formation rules for strings are the following:

S1. ¢ is a string.
S2. If Sis any string and E is any formula, then the following is
a string: SE;

So a string is just a sequence of formulas, each formula followed by a
semicolon.

Inference rules are represented by the notation *“C/S’", where Cis a
formula and S is a string of formulas. The string S represents the
premises of the rule, while C represents the allowed conclusion. For
example, the simplest version of the rule modus ponens could be
represented as ““VB/(VA> VB); VA",

An axiom A’ could be represented as the rule “*A/¢’’, since an
axiom is really just an inference rule requiring no premises. However,
since humans usually do not think of axioms as being special inference
rules, we decided to allow the user to specify rules and axioms in two
separate categories.

At the beginning of each run, the user is asked to input the axioms,
the inference rules, any non-theorems, and the proposed theorem for
which a proof is sought. The user is then allowed to select from among
several options for speed-up techniques, of the sort discussed above.
AUTOLOGIC then begins to generate nodes of the backward proof
tree, searching for the empty node.

AUTOLOGIC has been implemented in several versions in diffe-
rent hardware environments, including a version for the IBM PC ! Our
experience indicates that implementations on microcomputers are not

very useful unless the hardware includes devices for substantial mass
storage.

AUTOLOGIC 281

We have made a few elementary comparisons between AUTOLO-
GIC and the techniques in [7]. (We would like to thank Larry Wos and
his associates at Agonne National Laboratories for making some long
runs using their very efficient resolution based system.) On the few
sample problems we tried, AUTOLOGIC PERFORMED AS WELL
AS THE RESOLUTION SYSTEM WHICH WAS RUNNING IN A
MUCH MORE POWERFUL HARDWARE ENVIRONMENT. Ho-
wever, it must be emphasized that the test base was very small
indeed.

Just as with human investigators, the more information that is
supplied to AUTOLOGIC in the way of non-theorems, theorems, and
derived rules the more likely the routine is to find desired proofs. On
the other hand, AUTOLOGIC almost never finds *‘disproofs’”. If no
new nodes are produced at a given level, then there is no proof of the
formula on the root node. However, the resources available in most
logics are such that it is almost never the case that no new nodes are
generated. For example, with the rule modus ponens available, a new
node will always be generated from an old node, the new node
containing additional formulas of the form x > A and x, where A is the
target formula. Unless such a node is pruned by one of the speed-up
techniques, AUTOLOGIC would theoretically go on generating new
nodes forever if the empty node never turns up. However, because of
time and space restrictions, we have never been able to generate a tree
for any reasonable logic beyond about level 7 or 8 — see Table 2.

We are presently investigating the extension of these techniques to
predicate logics with general quantifiers. Even in its present formula-
tion, variables can range over predicate and function expressions.
However, the desired extension will require incorporation of a special
“‘substitution’’ function intrinsic to the routine so that quantifier rules
may be input by the user.

University of Victoria Charles G. MORGAN
Department of Philosophy

Victoria, British Columbia

Canada V8W 2Y2

282 C.G. MORGAN

REFERENCES

[1] Anderson A.R., and Belnap N.D., Jr. Entailment: The Logic of Relevance and
Necessity, Princeton University Press, Princeton (1975).

[2] Church A. Introduction to Mathematical Logic. Princeton University Press,
Princeton (1956).

[3] Fitting M.C. Intuitionistic Logic, Model Theory, and Forcing. North-Holland
Publishing Co., Amsterdam (1969).

[4] Hughes G.E., and Cresswell M.J. An Introduction to Modal Logic. Methuen and
Co., Ltd., London (1968).

[5] Mendelson E. Introduction to Mathematical Logic. D. Van Nostrand Company,
Inc., Princeton (1966).

[6] Morgan C.G. **A resolution principle for a class of many-valued logics,"” Logigue et
Analyse, no. 74-75-76 (1976), pp. 311-339.

[7] Morgan C.G. ‘“Methods for automated theorem proving in nonclassical logics,”
IEEE Transactions on Computers, vol. C-25 (1976), pp. 852-862.

[8] Rescher N. Many-Valued Logic. McGraw-Hill Book Company, New York (1969).

[9] Wos L., Ross Overbeek, Ewing Lusk, and Jim Boyle. Automated Reasoning :
Introduction and Applications. Prentice-Hall, Inc.. Englewood Cliffs (1984).

[10] Yasuhara, Ann. Recursive Function Theory & Logic. Academic Press, New York
(1971).

