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Abstract

In this paper we discuss some of the history of and motivations for
non-classical theorem-proving, concentrating on the uses within logic
and Al of automated theorem-proving (ATP) systems based on
relevant logic. We discuss various techniques which have been
incorporated in the program KRIPKE of [37] and [18] for deciding
theoremhood in a range of relevant logics.

1. Logic and Relevance

Morgan in [25] notes the importance for artificial intelligence which
is claimed for nonclassical logics by various authors, and goes on to
cite a considerable amount of literature to justify this claim. One of the
central uses of modal logic has been to explicate the semantics of
programming languages. Other non-classical logics, including ‘fuzzy’,
temporal and relevant logics, have had their proponents, with the
particular application varying with the logic in question. Regarding
relevant logics, [2] has suggested their use in question-answer sys-
tems, and [36] has discussed their use in deductive database systems.

Despite the apparent and growing interest in non-classical logic, not
every researcher into methods of automated theorem-proving (ATP)
has been sympathetic to the use or development of non-classical ATP
systems based explicitly on non-classical proof procedures. This
resistance to non-classical ATP would seem to have two strands to it:
some (e.g. [6]) intimate a rejection of non-classical logic itself, and
others (e.g. [40] [41]) who seem to see the interest or importance of
non-classical notions, nonetheless believe that non-classical ATP
does not require the use of specialized non-classical proof procedures.
We disagree with each of these views, especially in the case of
relevant logic.
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Relevant logic challenges the classical account of what counts as a
deduction, valid inference, or proof, and thus the matter is of central
importance, for proving is the very object of the exercise. The claim is
that classical logic gets the notion of implication wrong, and the
corresponding ramification for classically-baded ATP is that its
methods may be faulty and unreliable. Indeed, modal, intuitionistic
and relevant logics have all at one time or another been motivated as
presenting accounts of implication superior to the account given by
classical logic. For example, the strict implication of the modal
systems of [15] were motivated by Lewis as presenting a better
account of implication, in that strict implication avoided several of the
paradoxical properties of the classical, material implication since the
following theorems of classical logic are not theorems of these
systems where implication is cashed out as strict implication (or for
that matter, of relevant logics)

(i) p—=(@-=p
(i) ~p—>(p—>q)
(iii) (p—q) V(g—p)

[t was pointed out that the following paradoxes of material implication
(amongst others) remained theorems of the Lewis systems when
cashed out in terms of strict implication

(iv)i (p&~p —gq
(v) p—>(qV~q)

(It should also be noted that (i), (ii) and (iv) are theorems of
intuitionistic logic as well.) Partly because of these paradoxes of strict
implication, few of the logicians who were interested in investigating
modal logics motivated this interest in terms of avoiding paradox, and
indeed, Lewis himself abandoned this motivation too. Age has a way
of betraying one’s weaknesses, however, and so it is not surprising
that the paradoxical theses, (i)-(v), concerning implication eventually
came under renewed attack. This attack occurred in the 50’s with the
advent of the relevant family of logics. Relevant (or relevance) logics
endeavour to confront the issues of implication including the para-
doxes of both material and strict implication head on, and indeed none
of (i)-(v) are theorems of any of the central relevant logics.

Broadly speaking, relevant logic regards a vertebrate theory of
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implication or valid reasoning as the cornerstone of a general theory
of logic. This view has wide support within the logical community.
For example, Quine claimed that

“The chief importance of logic lies in implication...”” [33] (p.xvi)

Quine, of course, believes that implication is properly understood
solely in terms of truth-functional relations. Preservation of truth may
be one aspect of good inferences, but having a diet consisting solely of
truth-preservation makes for a poor theory of implication, as the
paradoxes amply show. Relevant logics insist that the premisses of a
valid implication be somehow relevant to what is implied. [1] and [35]
present formal criteria for ‘relevance’, and we direct the reader to
these texts for details of the relevant account of implication, and other
philosophical and logical motivations for investigating relevant logics.
Of course, logicians of the classical persuasion have tried to defend
classical logic in the face of these criticisms by the proponents of
relevant logic. [35] contains a good though perhaps partisan account
of these defences. (%)

One of the central observations of relevant logic is that while the
deductive process cannot be held responsible for misreported facts, it
would be disconcerting if the presence of inconsistency were to

(" It should be noted that relevant logics need not be seen as antagonistic to classical
perspectives, despite the fact that some of the preferred motivations for them are
openly so. Classical logic, which following [1] we call TV, and the principal relevant
logic R can each be formulated with the same set of primitive connectives — for
negation, conjunction, disjunction and implication — and a Hilbert-style axiomatization
given such that the axioms and rules for R are a proper subset of those given for TV (see
the next section for details). Taking TV and R to be thus talking about implication
univocally, we see that the theorems of R are a proper subset of the theorems of TV,
and so R rejects some classical theorems (like the paradoxes of implication). Alternati-
vely, as Meyer in [20] argues, classical logic can be seen as being contained in R, and R
can be viewed as an extension of classical logic. As is well-known, TV) can be
axiomatized simply by taking connectives for negation, and conjunction andfor
disjunction, as primitive (it is this that permits conjunctive normal forms and other
clausal equivalences of classical logic that in turn permit resolution techniques).
Formulated this way, TV is either seen as foregoing implicational formulas, or
alternatively as defining an additional, material implication in the familiar way using
negation and disjunction.
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disable the deductive process itself. This does not happen in relevant
logics. On the other hand, even if a classical ATP system resists
explicit appeals to the paradoxes of material implication in order to
prove some theorem, the paradoxes are nonetheless theorems of
classical logic, and may reside in the classical deductive closure of a
set of sentences under classical modus ponens. It was essentially
considerations like these that encouraged Belnap in [2] and [3] to
propose the use of relevant logics in deductive database systems and
question-answer systems. Deductions over database information can
in general be quite unlike classical deductions. For example, one of
the defences of the classical account of good argumentation is that a
sound argument is valid material implication plus the truth of premis-
ses’, but as Belnap rightly remarks especially of machine reasoning,
we are often compelled by circumstance to reason with collected
information that we’'ve been fold is true but which, whether we are
aware of it or not, taken together is in fact inconsistent.

Handling inconsistent complex databases is just one of the areas in
deductive database theory where employing relevant logics might
help. Another problem concerning database management is, as Plais-
ted in [30] notes

**To solve problems in the presence of large knowledge bases, it
is important to be able to decide which knowledge is relevant to
the problem at hand.”’ (p. 79)

Indeed, Plaisted proposes several criteria for determining when pieces
of information are relevant to the (possible) derivation of some
conclusion, the main one being in terms of whether the literals (or
propositional variables and constants) featuring in the information are
fully matched (see p. 79). This ‘literal matching’ criterion of Plaisted’s
is directly related to the variable sharing criterion that Anderson and
Belnap in [1] propose for relevantly valid deductions. Given these
close connections, and the fact that [1] contains a wealth of formal and
philosophical ideas regarding relevance, especially the relevance of
premisses to conclusions, the utility of using them to partition large
databases into (deductively) relevant parts is strongly indicated.
Granting then that relevant logics are important, and of interest to
Al, it is disconcerting that little research has been conducted into
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developing efficient proof procedures for them. Part of the reason for
this is that as Morgan rightly notes, many if not all non-classical
(propositional) logics can be treated as higher-order (first-order)
theories within classical logic. Indeed, some of the early research into
non-classical ATP, such as that of [13], employed exactly this
approach. However Morgan (p. 852) conjectured that, *‘If automated
theorem proving is to be developed as a practical tool either for the
logician in the area of non-classical logics or for the Al researcher
wishing to use non-classical logics, it seems that avoidance of higher
order techniques is desirable.”” Weyhrauch in [40] and Bibel in [6]
explicitly or implicitly disagree. Yet it is never contested that second-
order ATP, for example, is considerably more difficult than first-order
ATP, and conversely that specialized systems incorporating a great
deal of local knowledge about the problem domain will often perform
considerably better on problems in that domain than a general purpose
problem solver. So if the logic of a given situation suggests or
demands that, say, modal notions feature centrally in some analysis of
that situation, then it would seem foolish not to have and to use the
most suitable tool for providing that analysis. To suggest otherwise
would be akin to recommending a four-wheel drive vehicle to a
competitor in the Grand Prix on the grounds that a Jeep can take you
anywhere that a Formula One can.

In response to the general-purpose versus special-purpose line of
criticism by Wos in [41], the matter is clearly an empirical one and will
often be decided one way or the other depending on how general or
special the problem to be solved is. Our contribution to this debate
will be to present several problems from logic that can be solved using
KRIPKE. We argue that these problems will be extremely difficult for
extant general purpose systems to solve.

2. Basic ATP Techniques for Relevant Logics

Morgan in [25] outlines ATP methods for a range of non-classical
logics including modal, many-valued, relevant and intuitionistic lo-
gics, but admits that these methods are not particularly suited to
non-classical logics of the relevant or intuitionistic persuasion which,
unlike modal logic, adopt non-classical notions of deduction. It is also
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important to note that the difficulties involved at various levels of the
classical ATP program set in sooner relevantly ; for example, Urqu-
hart in [38] has recently proved that the principal relevant propositio-
nal logic, R, is undecidable, whereas undecidability does not arise
classically until the first-order level. Inasmuch as first-order ideas are
extensions of propositional ideas, a relevant ATP program requires a
much more thorough understanding of relevant propositional ATP
before embarking on ATP for higher-order relevant logics.

To this end, we will investigate the relevant logic LR.(*) Our
propositional variables will be {p,q,r,p;,...}. We will use ~ for
negation, and the following binary connectives, given in order of
decreasing binding strength: & (extensional conjunction), o (fusion, or
intensional conjunction), V (extensional disjunction), + (fission, or
intensional disjunction), and — (implication). We will use
A,B,C,D,E,A,,... as schematic variables ranging over formulas.
Our bracketing conventions are those of [10] augmented where
necessary by those of [1], and we will occasionally suppress brackets
where the precedence of connectives makes the meaning clear.
Formulas which are either propositional variables or single negations
of them will be called literals. We also define a connective for logical
equivalence: A <B =4 (A - B) & (B— A). We now provide a Hilbert-
style axiomatization of LR:

A>A A9. (A+B) =(~A->B)
A-B->.C5A-.C>B A10. A&B-A

A-B—-.B-C-» . A->C All. A&B-B
(A->.A->B)-».A-B Al2. (A-B)&(A-(0)». A-B&C
(A-.B-(0C—-.B>.A>C Al3. A->AVB

~~A-A Al4, B—-AVB

As~As~A AlS. (A-QO)&(B-C)».AVB-=C
A-~B-> . Bs~A Al6, A-.B>.AcB

Al7. (A-B->C)—».(AoB)>C

If —A and - A— B then —B R2. If —A and B then —A&B

{*) For those familiar with relevant logics, the only thing new about LR is the name.
It is perhaps most familiar as R-dist, and is just the principal relevant logic R minus the
distribution axiom. The name is a contraction of the term *‘lattice-relevance”’.
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Note that some of these axioms are redundant. From this axiomati-
zation of LR we obtain the principal relevant logic R by simply adding
the following axiom:

AlS. A&BVC)—» (A&B)V(A&C) Distribution

From this axiomatization of R we can obtain the classical propositio-
nal logic TV by adding the (paradoxical) implicational axiom

Al9. A-.B-A

Finally, we note without proof that the following are all theorems of
LR

Tl. ~(AVB) &(~A&~B) T4. ~(AocB) ©(~A+~B)
T2. ~(A&B) ®(~AV~B) T5. ~(A+B) &(~Ao~B)
T3. (A—=B) &(~A+B) T6. ~(A—-B) (Ao~ B)

and that the connectives &, V, o and + are each provably associative
and commutative in LR. The connectives & and V differ from their
intensional counterparts o and + respectively in that whereas & and Vv
are idempotent in LR, o and + are not. These facts may be extracted
from [1] (p. 396).

Despite some of the logical oddities of LR, we believe that the fact
that LR and R differ only over the so-called extensional axioms and so
share all the relevant insights, and the fact that LR is the largest
natural fragment of R known to be decidable, makes it a good starting
place for any investigation of the possibilities for relevant ATP.
KRIPKE, apart from being an automated theorem-prover for LR and
its proper subsystems and fragments, has also been adapted to handle
other logics including the implication/negation fragment of the logic E
described in [1], and the modalized relevant logic NR; described in
[19]. Most of what we have to say about ATP for LR applies to these
other logics, and LR is the most intricate of the range of logics that
KRIPKE can deal with. For these reasons we will confine our
attention in what follows to ATP for LR.

Classical ATP is often based on proof methods which depend on
employing clausal forms, such as Horn clause format, with the
admissibility of these normal-forms relying in turn on the provability
within the logic of certain equivalences. As [21] (p. 278) notes, some
of the equivalences that permit appropriate normal-forms in classical
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logic are not relevantly valid ; for example, relevant implication fails
to distribute over disjunction and so

p—qVr &(p—>q) V(p->r)

is not a theorem of relevant logic. Hence KRIPKE cannot proceed on
the basis of these standard clausal forms. However, inspection of
T1-T6 and A6 suggests that we can achieve negation-normal-form on
LR formulas, eliminating — in favour of o and +, and restricting ~ to
propositional variables ; this is indeed the case. For ease of presenta-
tion, we will assume in what is to follow that all LR formulas are in
negation-normal-form.

Negation-normal-form will not help us with our problems in using
clausal-based techniques. Non-clausal techniques and approaches to
ATP for classical logics, or fragments thereof, are not unknown
however, and in some circles these techniques are preferred. There
has been some research into ATP using Beth-Smullyan analytic
methods, for which see [24] and [31], and quite a comprehensive
survey of other, mostly earlier, non-resolution theorem proving given
by Bledsoe in [9]. Bledsoe expressed a preference for ‘‘natural’” or
*‘goal-directed’’ techniques, attributable to Gentzen, and predicted
that these techniques would grow in popularity. This prediction would
seem, in the light of [26], [7], [5] and [6], to be fairly accurate.
Gentzen-style proof-theoretic systems have been, as it happens, very
important in the development of relevant logics since the late 1950,s
and our development herein of ATP methods for LR will be based on
Gentzen-style consecution formulations of the logic. Qur preferred
terminology for detailing this proof-theoretical treatment of LR will be
the production system terminology of [27].

Our initial proot-theory for LR, which we call L1, is due to [14], [4]
and [19]. Our global database will be a multiset of formulas (i.e.
sequences that permit free permutation of members ; alternatively, as
sets that allow repetitions — see [22] for a discussion). Given some
arbitrary (finite) collection of formulas we shall formally represent the
multiset containing them by enclosing them in double square brackets.
Thus [A, A, A,B,C,C] is a multiset containing three occurrences of
A, one of B and two of C. We will let

a’B7Y16’81C’(1""
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be variables ranging over multisets. Our axioms or goals will be
multisets of the form [A,~ A], which in light of the deduction
theorem presented in [1], can be interpreted as formulas of the form
(A +~ A). For ease of presentation, we will drop the multiset braces
[and], where context makes the meaning clear.

Before detailing the production rules that define L1, we introduce
some terminology for dealing with multisets. We let ¢ be a function
over multisets such that ¢ (A;a) gives the count of the number of
times the formula A occurs in multiset «; thus,
¢(B;[A,B,C,B,D])=2. Every multiset is associated in a natural
way with a certain set — namely the set containing just the members of
the multiset. We shall call the members of this set the generators of
the multiset, and the multiset consisting just of the generators of o the
base-multiset of a. We will say that a multiset « is a sub-multiset of p
iff for every formula A in 8, 0=<c (A;a)<c(A;p). Moreover, if a is a
sub-multiset of B, and the base-multisets of a and p are identical, then

ve say that B subsumes o.

We now provide the production rules that define L1;

Pl.  [A&B,a] > [A,a]; [B,a]

P2. [A+B,a] + [A,B,a]

P3. [AVB,a] - [A.a]

P4. [AVB,a] +— [B,a]

Ps. [AoB.a] + [A,pl; [B.y] where for all C in «,
c(Cia) =
c(C;P)+c(Csy)

P6. [A,a] = [A, A, a]

Each rule is to be interpreted as saying that the left-side multiset is
provable if the right-side multiset(s) is (are both) provable, and so
P1-P6 provide a way of decomposing an initial multiset into subgoals.
By applying all possible rules to an initial multiset, and then in turn to
the subgoals so generated, one generates an AND/OR tree of multisets
in the manner of [27]. One may then search this tree to see if it
contains a solution tree or proof for the initial multiset: i.e. a tree of
complete connectors, the tips of which are axioms or goal nodes of the
form [A, ~ A]. The following illustrates a segment of the search tree
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for the formula
Aoc(Ac~B)+.~A+B

which is the negation-normal-form of axiom A4. AND-nodes have
their connectors arced, connectors are annotated with the production
rule that produced them, and the solution tree has its connectors

bolded.
Ao(Ao~B)+.~A+B
P2 P6
Ac(Aco~B),~A+B Ao(Ao~B)+.~A+B, Ac(Ac~B)+.~A+B
P5 3
P2 P6

A,~A+B Ac~B Ac(Ao~B),~A,B Ac(Ao~B),~A+B,~A+B

PS Ps o —

A, ~A Ao~B, B A,B Ao~B,~A Ao(Ac~B), ~A, ~A,B

P5
A, ~A Ao~B,~A,B

PS, s
A\
A, ~A B, ~B

Initial Segment of an AND|OR Search Tree

P1-P6 are all classically sound rules. Rule P6 permits free duplica-
tion of any member of a multiset into a subgoal, and corresponds to
the contraction principle, A4. Note especially that relevant logics do
not admit the following rule

P7. [A,a] - [a]
which corresponds to the weakening principle of [12]. P7 is however
classically sound, and would typically be used to reduce a multiset of
the form [A, ~A, o] to a goal multiset of the form [A, ~ Al,
eliminating what is essentially irrelevant information in o which could
not otherwise be used by the other rules to effect a proof of the initial
multiset. (%)

(®) The admissibility of P7 in classical logic is part of the reason that classical logic is
monotonic. If ais a previously provable initial multiset, then adding more formulas to o
will still result in a provable multiset because P7 can be used to ignore these additions.
LR, and R for that matter, are non-monotonic logics. See [37] for details.
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On the other hand, the following rule which is a restricted version of
P7

P8. [a,A,A,B,~B] - [a,A,B,~B]
is admissible in L1, on the basis of an observation by Meyer that
(C».A-.B-»B)=.C».A-.A>.B>B

is a theorem of LR. P8 licences the simplification of multisets that
contain a goal multiset as a sub-multiset. Repeated applications of P8
reduce a multiset of the form [a,B,~B] to one of the form
[B.B,~ B], where f is the base-multiset of o.. Where « itself contains
a goal multiset as a sub-multiset, further reductions may also be
possible; e.g., [A,A,~A,B,B,~B] first reduces to
[A,~ A,B,B,~ B], and then to [A,~A,B,~B]. If a multiset o is
reduced to 3, the copies of the generators of o that have been deleted
in the move to f can be subsequently replaced, if so desired, by using
the P6 rule.
Note that the rule

P9.  [a,B] - [a,A]; [B, ~A]

is also admissible in L1. P9 is a variant of Gentzen’s Haupsatz, and
the proof that P9 is admissible in L1 is the basis of the proof by [14],
(4] and [19] that L1 is sound and complete w.r.t. LR ; i.¢., formula A is
a theorem of LR iff there is an L1 solution tree for [A]. The problem
with L1 is that in the presence of the rule P6, the search tree for any
tformula will be infinite. Thus, any algorithm that searches this tree for
a solution tree may not terminate. We can however, following Kripke
in [14] and Meyer in [19], modify the rules of L1 and impose
conditions on search trees so that all search trees will be finite, and
termination thus guaranteed. We shall call this modified system L2.

L2 eliminates P6 by building its effect into the other five rules. L2 is
formulated with P1-P4, and adds the following rules:

PI'’. [A&B,a] - [A,A&B,o]; [B,A&B,a]
P2. [A+B,a] ~ [A,B,A+B,a]

P3'. [AVB,a] > [A,AVB,a]

P4'. [AVB,a] - [B,AVB,a]
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P5'. [AoB,a]l ~ [A,B]; [B,y] where (i) p and v are
both sub-multi-
sets of [Ao B, a]
(ii) for all C in a.,
c(Cra) <
e (C; B+ (Cy)

P5 is clearly a special case of P5'. But P5’ includes the extra
possibilities of taking a copy of the decomposed formula (A ¢ B) into
the first subgoal, the second subgoal, or both, and the possibility of
placing each member of a not merely into one subgoal or the other,
but possibly both. Note that P8 is still admissible in L2.

Kripke and Meyer showed that L2 was sound and complete w.r.t.
LR, and moreover, that by imposing the following condition on L2
search trees (due essentially to [11]), all L2 search trees are provably
finite. The condition is a variant of the acyclicity constraint that
Nilsson places on AND/OR search trees, wherein identical databases
are not permitted on the same branch of any tree. The constraint on
L2 search trees, which we call the Curry condition, is that for all
multisets o in a search tree, no multiset B in the upward path from o
should be subsumed by a. (%)

The finitude of L2 search trees and the fact that L2 is sound and
complete w.r.t. LR entails that LR is decidable. But only just! Kripke,
in a private communication to McRobbie, conjectures that his deci-
sion procedure is not a primitive recursive function. Although there is
an upper bound on the number of immediate subgoals to any given
(finite) multiset o, namely

(4 -3 + 4l + 2m

where 1 is the number of formulas in o, & the number of fusion
formulas, ! the number of disjunctive formulas, and m the
number of conjunctive and fission formulas in a,(*)

there would seem to be no nice way of predicting when a given

(*) This constraint can not be placed on L1 search trees; to do so would prevent any
application of the P6 rule to a multiset a, as the subgoal produced by applying P6 to a
always subsumes a.

(%) Note that this is a rough upper bound, and that if duplicate subgoals are collapsed,
the number of distinct immediate subgoals will often be somewhat smaller.



ADVANCED THEOREM PROVING TECHNIQUES 245

rule-application will generate a subgoal that subsumes a multiset in its
upward path. Moreover, consider the multiset [A o B,a]. One of its
possible pairs of subgoals is [A,AcB,a] and [B,AcB,a]. In this
case the subgoals are, in a sense, more complex than the initial
multiset. And in general, the size and complexity of multisets in a
branch of the search tree may grow horrendously until the require-
ments of the Curry condition eventually terminate the growth of the
branch. It takes little imagination to see that, even with quite simple a.,
the number of multisets in the L2 search tree for o can be staggeringly
high.

3. Efficient ATP Techniques for LR

The version of KRIPKE that we discuss in [16] used the L2 rules,
and it included various demons (which at the time we called filters)
which checked multisets as they were introduced into a search tree to
ensure that they meet certain necessary (though not sufficient)
conditions for provability. A multiset that did not meet these condi-
tions could not be part of a solution tree for the initial multiset, and so
was not expanded.(®) We shall describe these demons later on.
Suffice to say that this version of KRIPKE, while being far from
impotent, proved incapable of solving some of the more difficult
problems that concerned us and which we discuss in Section 4. In true
dialetic fashion, the output from this version of KRIPKE suggested
that LR could be captured by a more efficient set of rules, which
prompted Thistlewaite in [37] to propose the following set of rules.

Let L3 be the set of rules including P1-P4, and

P3”. [AVB,a] — [A,A VB,a] where A v B does not oc-
cur in «.

P4". [AVB,a] — [B,A vB,a] where A VB does not oc-
cur in a.

() This is somewhat historically inaccurate, in that some of these conditions were
only discovered in the work of [37], and so were only included in versions of KRIPKE
based on this work.
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P5". [AoB,a] +— [A,B]; [B,y] where

(i) if Ao B not in a, then it may occur in B, y or both

(ii) forall Cina, ifc (C;a> 1 thenc(C;a) = ¢ (C;B)+ ¢ (C;y)

else C must occur in 3, y or both.

Note that P1’' and P2’ have been eliminated, and P3"-P5" result from
placing severe restrictions on P3'-P5’. Whereas P3’-P5’ built the full
effect of P6 into these rules, allowing free copying of a decomposed
compound formula into a subgoal, P3"-P5" only allow this where the
subgoal would not otherwise have any copy of the decomposed
formula. Unlike P5’, P5” closely resembles PS itself: one must at least
partition o into § and vy, but optionally can take one copy of a
generator of a into § or y provide that generator does not already
occur there. The motto is that a single copy of any generator is
(logically) sufficient in a multiset.

Thistlewaite in [37] proved that L3 is indeed sound and complete
w.r.t. LR, and that if the Curry condition is imposed on L3 search
trees, then these trees will be finite. Soundness follows simply from
the obseration that, as the L3 rules are sub-cases of the L2 rules every
L3 solution tree will be an L2 solution tree, and L2 is sound w.r.t. LR.
The proof of completeness depends on certain structural facts about
search trees constructed by the L.3 rules, but as the Curry condition is
itself a structural property of search trees, the proofs of completeness
and decidability interact in complex ways. These proofs can be found
in [37].

Two of these structural facts are of independent computational
interest: if a multiset o of the form [A & B, 3] has an L3 solution tree
then there is a solution tree for o in which the immediate subgoals for
a are generated by an application of P1; and if o is of the form
[A + B, ] and is soluble, then there is a solution tree for a in which
the immediate subgoal for o in this tree comes via P2. In the logical
parlance of [12], P1 and P2 would be said to be invertible rules; in the
computational parlance of [27], they would be said to be irrevocable
rules. In [37], it is shown that these facts can be built into the L3 rules
by adding the following condition to each of P3, P4, P3”, P4” and P5":
a must not contain either a conjunction or a fission formula as an
explicit member.

To illustrate the computational superiority of the L3 rules over the
L2 rules, we note that many multisets under the L3 rules will have
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only one or two immediate subgoals, because of the invertability of P1
and P2. Multisets of the form [AoB,a] will typically generate the
greatest number of possible immediate subgoals, but even here, the
differences between L3 and L2 are dramatic. For example, [poq, ~p,
~p, ~q] has 72 distinct subgoals in L2, but only half as many in L3.
As the number of repetitions of generators in a multiset increases, the
relative savings increase spectacularly ; for  example,
q,~ q,~ q] has 800 distinct subgoals in L2 but only 48 in L3. Even so,
the branching factor of the L3 rules is high enough for an unconstrai-
ned application of them to often cause trouble. Quite often, too, a
multiset in a search tree will have only one solution path, and so it is
imperative that specialized knowledge about relevantly provable
multisets be used to avoid expanding insoluble multisets.

We mentioned at the start of this section that there are various
necessary conditions that any multiset must meet if it is to be
provable. The first of these conditions is known in the logical
literature either as the ‘positive-negative parts property’ or the
‘antecedent-consequent parts property’ (see [1]), and it amounts to a
relevant analogue of the Davis-Putnam pure literal rule. The positive
parts of a multiset are just the unnegated propositional variables that
occur as part of any formula in the multiset, and the negative parts are
just the propositional variables that occur negated, where all members
of the multiset are understood as being in negation-normal-form.
Thus, the set of positive parts of [A&(~BoC),~B,C+~A] is
{A,C} and the set of negative parts is {A, B}. A multiset « is said to
have the strong positive-negative parts property iff the set of positive
parts of a is identical with the set of negative parts of a. A multiset o is
said to have the weak positive-negative parts property iff at least one
propositional variable occurs as both a positive and negative part of a.
We now have the following condition due essentially to Maksimova,
Anderson and Belnap:

Parts Condition: If a multiset o contains no disjunction as a
part of any formula in a, then a has a solution (i.e. is provable)
only if a has the strong positive-negative parts property.
Otherwise, a has a solution only if a has the weak positive-ne-
gative parts property. The proof can be extracted from [1]
(pp. 253-254).
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Unlike the pure literal rule of Davis and Putnam, a multiset’s failing
the parts condition does not license the reduction of the multiset. We
are not permitted to delete multiset members that have no matching
positive or negative part (as with the pure literal rule), for this involves
tacit use of the generalized weakening principle, P7. While on the
subject of the Davis-Putnam rules for classical ATP, we note that all
are inadmissible strategies within relevant ATP, as they all involve
tacit use of P6. The pure literal rule does have an analogue — the parts
condition — but the others appear to have no relevant analogues.

We have noted that the effect of P6, in the absence of P7, makes for
many combinatorial problems in applying the P5” rule, and we have
just noted that the absence of P7 rules out the Davis-Putnam deletion
strategies within relevant ATP. We now note, though, a property of
relevantly provable multisets related to the parts condition, which
demonstrates a computational advantage due to the absence of P7.
The advantage of not having P7 centers on the sensitive goal-direc-
tedness that one would expect from relevance requirements such as
variable-sharing.

Strict Parts Condition: A multiset o has a solution only if the
set of positive (negative) parts of the compound formulas of a
contains the set of negated (unnegated) propositional variables
which are explicit members of a, or « is an axiom. Again, see
[37] for a proof of this claim.

For example, the multiset a = [po~q,ré&s,,q,~r] meets the
strict parts condition, whereas f = [po~q,r&s,~r,~q] does not
meet the condition, because the explicit negated variable, ~ q, has no
unnegated mate, q, as a positive part of some compound formula in 8.
In the context of constructing search trees, the goal-directing nature
of the strict parts condition on multisets becomes clear. Once a literal
becomes an explicit member of some multiset « in some branch of the
search tree due, say, to the decomposition of some compound formula
into simpler parts, then because P7 is inadmissible, the literal can not
be ignored — if « is to have a solution, the literal will eventually have
to end up in some goal multiset consisting of it together with its
complementary literal. But all of the rules of L3 decompose com-
pound formulas, and so any multiset § in the subtree on a will have a
part of some compound member of « in . Note that a multiset may
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meet the strong or weak positive-negative parts conditions, and yet
fail to meet the strict parts condition; e.g., [po~p,q,~ q]. Looking
at the rules of L3, it is interesting to observe that the only way a part of
some formula in an initial multiset can ‘disappear’ part way down the
branch of some search tree is for it to be a disjunct, the parent
disjunction of which was decomposed using P3 or P4 (indeed, this is
the reason for the split between the strong and weak positive-negative
parts conditions). Prohibiting the expansion of multisets that fail to
satisfy the strict parts condition has proven to be an extremely
effective node-pruning device in KRIPKE.

On certain multisets — namely, those that contain no fusion formula
as any part of any member of the multiset - we can impose the
following condition for them to be eligible for expansion:

Rule-of-2 Condition : A fusion-free multiset o is provable only
if o has no more than 2 explicit members. A proof of this can be
found in [37].

Another condition relies on a semantical interpretation of multisets
within algebraic structures that model LR. We assume the reader has
some knowledge of algebraic structures for propositional logics,
otherwise known as logical matrices or n-valued truth-tables. A
matrix for LR is a structure of the form M =</, €@, %>, where ./ is
some set of elements, & some subset of ./ consisting of the so-called
designated elements of /[, and @ some set of n-ary operations on ./,
with the operations of @ corresponding I-1 to the connectives in the
propositional language underlying LR. A model, m, of some formula
A in some matrix M is just a mapping from the propositional variables
in A to members of ./, extended to a homomorphism into M by
interpreting the connectives in A via the corresponding operations in
@. Formula A holds in m iff m (A) €%, and is valid in M iff it holds in
all models (i.e., under all assignments of members of .# to the
variables in A). An LR-matrix satisfies LR, in the sense that all LR
axioms A1-A17 are valid in the matrix and & is closed under the rules
RI and R2.(%)

(7) Unlike TV, LR has no finite characteristic matrix - i.c.. a finite matrix which
validates all and only the theorems of the logic.
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We can now state the condition:

Matrix Condition: Let ¥ = {M,,...,M,} be some set of logical
matrices satisfying LR, a be any multiset, and o* be the
formula given by compounding the members of o using the
fission connective, +. Then a has a solution only if a* is valid
in all members of . Further details can be found in [37].

While testing multisets for the parts conditions and the rule-of-2
condition is a computationally fast procedure, testing for the matrix
condition is an exponential problem. It is well-known that where a
matrix M has k elements in 4, and a* has n distinct propositional
variables, that there are k" models of a* in M. However, within any
set .# of matrices there will often be a large number of redundant
models of an n-variable formula, because of various homomorphisms
between and within matrices in & and because of the peculiar
properties of the n-ary function spaces of these matrices. This
informal notion of a redundant model is thoroughly discussed in [37];
suffice to say that within the class of LR-matrices having 10 or fewer
elements, only 5% of the total number of 1-variable models are
non-redundant, and only 40% of 5-variable models are non-redun-
dant. Similar savings occur across the board. As a consequence, .%°
can in practice contain a sizeable number of relatively large matrices
while being computationally manageable. [37] also discusses other
techniques that are employed for reducing the overheads of checking
for the matrix condition, including various criteria for selecting the
membership of ., ways of normalizing a™* relative to.# and o and the
location of a within the search tree, and a few tricks at the operational
level for testing formulas for validity in a matrix.

In the process of creating and searching a search tree for some
initial multiset a, we will of course discover that certain of the
subgoals in the tree have solution trees, and that other subgoals do
not, and we can keep respective lists of such multisets. We can use
this information dynamically, and as a multiset is expanded we can
check the multisets introduced into the search tree to see if their
provability or unprovability is already known. We also know that if a
multiset a is provable, then so too is every multiset that is subsumed
by o; indeed, this is the logical support for imposing the Curry
condition. Conversely, if & is unprovable, then so too is every multiset
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that subsumes . As a consequence, our list of known-provable
multisets need only contain multisets which are maximal on a set of
generators, where a multiset is so maximal iff no other multiset in the
list subsumes it; and conversely, our list of known-unprovable
multisets need only contain multisets which are minimal (in the
obvious sense) on a set of generators.

4. Problems and Proofs

KRIPKE'’s worth lies not simply in its breaking ground, nor does it
lie simply in being a handy desk-top logicians’ helper (although neither
are unimportant uses, as [41] rightly notes). But to the point, we
mention briefly two particular problems — one from within ATP, and
the other from within logic — that KRIPKE has been brought to bear
fruitfully upon.

In [28], Ohlback and Wrightson provide a solution to what is termed
‘‘Belnap’s Problem’’, concerning the provability of the following
formula in R. Further details of the problem are given in [29].

WF A->(B->B))—» (A-(A—>(B->B))

Note that WF is also a theorem of LR. The problem is somewhat
misrepresented in that the provability of WF is of no special interest in
relevant logic, nor is it difficult (even for a human) to prove. Its real
interest lies, we believe, in the fact that it gives a way of comparing
relevant ATP based on proof techniques not specialized to relevant
logics, with ATP using the specialized proof procedures of
KRIPKE.[28] proved WF using (a modified version of) the Markgraf
Karl Refutation Procedure ; for details of which, see [8]. The Markgraf
Karl Refutation Procedure is a first-order classical ATP system, and
the proof that WF was R-provable was effected by treating the
propositional relevant logic R as a first-order theory, using the
Meyer-Routley semantics given in [34] for R to define the theory.
Given our earlier discussion of higher-order classical approaches to
non-classical theorem proving, it was not surprising that the approach
of [28] presented a proof of WF in around 10 minutes of CPU time,
while KRIPKE can prove WF in about 1/10th of a second. KRIPKE
does not access any of its special global knowledge, such as that
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detailed in the previous section about relevant provability, to effect
this proof of WF; it follows fairly immediately on an unconstrained
application of the appropriate rules. Wrightson also informs us that, to
date, the proof in [28] that WF is a theorem of LR and R has not been
matched by any other classical ATP system. This result clearly
supports our claim that relevant ATP systems employing relevant
proof procedures will perform more efficiently than generalized
systems. We describe now a problem which was of considerable
logical interest to which KRIPKE was applied.

KRIPKE was the cornerstone of an attack on the decision problem
for R, details of which can be found in [17]. This work was interrupted
by Urquhart’s brilliant proof in [38] that R was in fact undecida-
ble.[39] discusses some of the ramifications of this result, including
several unforeseen connections between relevant implication and
projective geometry, and notes that R is perhaps the first independen-
tly motivated, undecidable propositional logic. The question as to
whether R was decidable or not had been an open problem in logic for
25 years, and was of enormous logical difficulty. While Urquhart’s
proof utilized innovative associations of ideas, far beyond the
conception of [17], the two approaches shared the basic premiss that
R was undecidable and that this undecidability could be related to the
definability of an appropriately free associative connective within R to
act like the desired semigroup operation in the manner of [32].

Our version of this approach was to generate candidate definitions
for such a connective, and prune the list of these candidates by
showing that certain of them were not appropriately free — in particu-
lar, if a candidate definition defined a connective which was provably
associative in LR, then the fact that LR is decidable would mean that
the condidate definition could not be sufficiently free in R. The second
stage of our approach involved examining the remaining candidates (if
any) to see if one of them in fact defined an appropriately free
associative connective in R, using the techniques of [23]. Some of the
more plausible candidate definitions are listed below. KRIPKE featu-
red in the first stage of our attack on the decision problem for R ; that
is, KRIPKE assisted in establishing that each of our best candidate
definitions, C1-C16, does in fact define an associative connective in
LR.
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Let the binary connectives @;, 1=i<16, be defined by the
corresponding 16 formulas:

Cl. Ao(A+ A)o (BV~B) C9. Ac(A+(~ Ao (B V~B))
C2. Ac(BV~BV(~Ac~A) Cl0. Ac(AV(~Ac(Bv~B))
C3. A+ (Ao~Ao(BV~B)) Cl11. AV(Ac(~B V(~ Ao B))
C4. AV(Ao~Aoc(BV~B)) Cl2. Ac(~BV(A+(~AcB))
Cs. Aoc(AV~A)o (BV~B) Cl13. Ao(~BV(Bo(AV~A))
Cé6. Aoc(AV~BV(~AcB)) Cl4. Ao(~BV(B+(~ Ao B))
C7. AcBV~BV(~ AcB)) Cl1s. Ao(~BV(Bc(~ A VB))
C8. (A+A)o (~BV(AoB)) Cl6. (AV(Ao~A)) o (BV~B)

The question of whether these define associative connectives in R
or LR then amounts to whether each of (C®;(D®;E)) &
((C®; D)@; E) is provable in R or LR. For example, in the case of i =
16, this amounts to whether the following formula is provable:

(UC VACo~CN e (DV~D) V(UCV(Co~CHe (DV~D)) o~ ((CVICo~C o (DV~DN) - (EV~E)
= (CV(Cc~CPo (((DV(Da~DY S (EV~E) V((DV(c~DNc (EV~ENMN&
WCVICo~CN o (D V(Du~D) o (EV~E) V(D V(D:~D) o (EV~E))-»
(UCVIC~CN o (DV~D) VUCVICo~CN e (DV~D) 5~ ((CV(Co~C) o (Dv~DN = (E v~ ENN

Although the question of the decidability of R has been solved, and
our attack on it has thus since lapsed, we note that KRIPKE can now
prove at least one direction of associativity for the connectives
defined by most of the C1-C16, and has complete proofs of associati-
vity for some of them. The runtimes vary, and range up to about
20 minutes CPU time. The best time is for the complete proof of the
associativity of the connective defined by C16, which KRIPKE
provides in about 90 seconds. The proofs are, as the reader would
expect, quite long. We commend C1-C16 and the task of proving them
associative in R or LR, to the ATP community as a means of
measuring the problem-solving strength of various ATP systems. On
the basis of the respective performances of KRIPKE and the system
of [28] at proving WF, we conjecture that extent general purpose
first-order ATP systems will have considerable difficulty in proving
the associativity of any of the connectives defined by C1-C16.
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