MECHANICAL REASONING IN FUZZY LOGICS
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1. Introduction

The basic motivation for dealing with the concept of fuzziness
comes out from the observation that in real-life situations we use
words, statements or instructions which have imprecise meaning.
This type of impreciseness involves adjectives like *‘tall’’, “‘fast’’;
statements like ‘‘country X shows strong inflatinary trends’’, etc.

The core of the fuzzy set theory is Zadeh’s principle of incompati-
bility (Zadeh, 1973). Roughly speaking the essence of this principle is
that as the complexity and human content of a system increases,
observer’s ability to make precise and yet significant statements about
its behaviour decreases ; after reaching a certain threshold, precision
and relevancy of our descriptions become incompatible attributes.
Thus, the objective of the fuzzy set theory is to give a formal
machinery to deal with such situations.

Developing this machinery one should be able to distinguish fuzzi-
ness from other types of uncertainty. At first fuzzy description is
applicable to the situations when the events in question do not recur
as well as there is a lack of reliable a priori probabilities. This shows
that fuzzy approach is clearly distinguished from probabilistic approa-
ches. However there are other kinds of inexactness different from
fuzziness. For example in the case of medical diagnosis we are faced
with at least two sources of ignorance : the vagueness of the definition
of the diagnostic groups and the limitation of the information that a
physician has at his disposal. The first type of ignorance is just the
fuzziness while the second rather not (Smets, 1981).

Due to Zadeh, fuzziness is strongly related to the properties of a
natural language as well as to human’s ability of describing different
concepts.

To be more concrete, suppose FOR is a set of formulas of a
language and U is a universal set of objects to be described (universe
of discourse). The meaning of a formula A €FOR is a subset S(A)
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embedded in U, in which any element u €S(A) admits the description
compatible with the formula A. The subset S(A) can be characterized
by a function:

hS(A) 5 U—)V

determining the grade of membership of any element u €U to S(A).
The set V is referred to as the truth set and its structure depends on
different applications. In artificial languages (e.g. computer language)
the meaning of all formulas is well-defined and it suffices to take V =
{0,1}, i.e., any member u<U belongs or does not to a set S(A).
However in natural languages we should take as V a partially ordered
set instead of {0, 1}. In this way we get the commonly used definition
of so-called membership function of a fuzzy set (i.e., a set without
sharp boundaries) that is a generalization of the characteristic function
of a crisp (non-fuzzy) set. More precisely, the following axiom has
been established. (Negoita and Ralescu, 1975).

Axiom. The family FUZ(U) of all fuzzy subsets of a universe U is
isomorphic to the class MEM(U) of all membership functions over U.

This axiom gave a great impulse for developing a mathematical
tools for fuzzy sets theory, and the most convincing argument for
dealing with it was Goguen'’s representation theorem which says that
any system satisfying certain axioms is equivalent to the system of
fuzzy sets (Goguen, 1974).

However, the definition of a fuzzy set (introduced above) seems to
be inadequate. Due to Nahmias, (1979) to say that a fuzzy set A is
characterized by a membership function is similar to saying that ‘“‘a
bicycle is characterized by two wheels, handlebars, a chain, etc.
which never tells you what a bicycle is”’. In fact many researches
develop a theory of membership functions and not the theory of fuzzy
sets. (For stronger criticism of such an approach, see (Zeleny, 1980)).

To be more illustrative consider the following example. Let FOR be
again a set of formulas and U be a universe of discourse. Suppose that
each formula A EFOR is semantically well defined, i.e., it suffices to
take as the truth set the set {0, 1}. Note that in this case the meaning S
is a multi-valued mapping from T onto U. It was observed by Pawlak
(1982) that even in this case it is not possible to describe any subset X
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of U. The only thing we can do, is to give so-called upper X" and lower
X. description of the set X, i.e.,

X' = {A=FOR: S(A)N X =@},
X. = {A=FOR: S(A)c A, S(A)+0}.

Of course it is possible to introduce a generalized description d(X) of
the set X defined by means of a membership function fyxy:
FOR - [0, 1] such that:

X' = {A €FORfyx (A)> 0},
X. = {A €FORfyx(A) = 1}.

However the properties of fyx) are rather different from the
properties of the “‘classical’” membership function.

This example illustrates a simple fact that not every function f:
U—[0, 1] may be treated as a membership function of a fuzzy set.
Another such example is the notion of the generalized set introduced
by Aumann and Shepley (1974).

The above remarks lead us to the conclusion that there is no one
and unique theory of fuzzy sets. We can rather talk about a collection
of methods and attempts at dealing with inexactness. All of them take
as the point of departure functions

h: U-V

where, as previously U is a universe of discourse and V is at least
a partially ordered set. The structure of this set hardly depends on
context in which our “‘fuzzy’’ set works and on the particular kind of
uncertainty we currently deal with.

In this connection various logics have been introduced in which
elements of set V play a role of truth values and propositional
operations admitted in the languages of these logics correspond to
functions from the universe of discourse into set V. In section 2 we
describe two of these logics and we present mechanical proof proce-
dures for them. In section 3 we give a brief presentation of some of the
possible generalizations of fuzzy propositional operations. Several
different generalizations have been recently considered in the current
literature, e.g. Yager (1980), Dombi (1982), Weber (1983).
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2. Deduction methods in fuzzy logics

We consider the propositional language whose formulas are built up
from the following symbols: propositional language whose formulas
are built up from the following symbols: propositional variables taken
from an infinite, denumerable set VAR; propositional constant 0
interpreted as a false proposition; propositional operations of nega-
tion ('), disjunction ( V), conjunction ( A) and implication (). Let FOR
be the set of all the formulas of the language. Semantics of the
language is defined by means of notions of model and value of the
formulas in a model. By a model we mean system M = ([0, 1],v)
consisting of the closed real interval [0, 1] treated as the set of truth
values and a valuation function v: VAR - [0, 1] assigning truth values
to propositional variables. Given a model M, we define the value of a
formula A in model M (valyA) as follows:

valyp = v(p) for pEVAR

valy0 = 0

valyA VB = max(valyA, valyB)

valyA A B = min(valyA, valyB)

valyA—B = sup  {z: min(valyA, z) < valyB}
z<[0,1]

valy 1A = valy(A—-0)

It follows from the above definitions that

' _ | 1if valyA < ValyB
Veht—> B = {valMB otherwise
1if valyA = 0
i Tk = M
Yol 148 { 0 otherwise

A formula A is true in a model M iff valyA = 1. A formula is a
tautology if it is true in every model. A set of formulas is true in a
model M whenever every formula in this set is true in M.

We introduce a deduction system for the logic consisting of a set of
decomposition rules. The rules enable us to associate with every
formula a finite tree in which sequences of subformulas of the formula
in question are assigned to every node. The leaves of the tree have
associated with them sequences of what is called indecomposable
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formulas. For these sequences validity can be recognized syntacti-
cally and, moreover, there is a natural correspondence between
validity of a formula and validity of these sequences of formulas. The
system is inspired on the one hand by the Rasiowa-Sikorski system for
the classical logic (Rasiowa and Sikorski, 1963) and on the other hand
by the normal form theorem established in Nakamura (1963) for the
fuzzy logic.

By an indecomposable formula we mean any formula of the form
p—q or (p—q)—q, where p, q are propositional variables. In what
follows we will use the abbreviation A =B = (A— B)— B. It can be
easily seen that in any model M we have:

1if Va]MA > ValMB

IyA =B = :
Valu valyB otherwise

Hence for any model M formulas A— B and A =B satisfy the
following condition:

valy(A—-B V A =B) = 1

We define the decomposition rules which enable us to decompose
each formula into a family of sequences of indecomposable formulas.
Rules denoted by [ ()] and [(c)—], wherec = V, A, >, = provide a
decomposition of formulas of the form A—(B,;0B,) and (B;0B,)
— A, respectively, and in the resulting formulas B, o B, does not occur
as a subformula. Let S,S,,...,S,, n=1, denote finite sequences of

formulas. We admit the rules of the form T_S_? where formulas
1s+++s%n

in sequences S; consist of subformulas of formulas in S.

S, A= (B->0),S,

EN s aScBSCs,

Sls A_)(B :>C)a SZ

&) 5 Aa5cBscs,

S, (A-B)-»C,S;
S1,B-=C,S,;:S,;C,A=B,S,

[(>)-]
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S1, (A :>B)—) C, 52

[(=)-] :
S;,B->C,S,;5,,.C,A->B,S,

SI,A:>(B—> C), Sz

5&) s E5cascs,

S:.(A>B)=C, S,
S..A>B,B=C,S,

(=) =]

Sl! A f"(B ﬁC), Sz

=) s Scascs,

S, (A=B)=C,S,

=
(=) =] S;,A=B,B=C,S,

Sls A_)(B VC)& S2
Si;A-B,A-C,S,

=]

S;, A= (B AC),S,
SI,A—)B,SZ;S1, A—)C,Sz

[= (M)

S,,(AVB)>C,S,

V
[(V)=] $,,A->C,S,:8,B>C,S,

SI,A /\B—)C,Sz
S;,A-C,B->C,S,;

[(A)-]

S-l,A ﬁ(B VC)9SZ
SlsA:>B9 Ca Sz;S1,A:>C,B,S2

[=(V)]

[=(A)] Si,A=(BAC(C),S,

Sl,A-_—>B,Aﬁc,Sl',S],A:}'B,C—)B,Sz;sl,A:)C,B—)C,82

Si,(AVB)=C,S,

V -
(M=l s ScBoCs,




MECHANICAL REASONING IN FUZZY LOGIC 199

S1,.(AAB)=C,S,

A)=
[( ) ] Sl,Aﬁc,Sz;Sl,B;ﬁc,Sz

S;,AVB,S

[V] 1 2

SlyAsBsS2
SI’AAB182

(Al :
S],A,SZ,S],B;SZ

S],A_>—|B!SZ

(1
=] Si,A-»0,B->0,S,

1
(o] S:, lA-=B, S,
S1,A=0,B.S,

S1,A ﬁ—lB,SZ

.
5O s =0B50.5,

Sla_‘AﬁBvS2
S1,A—=0,0=B,S;

(D =]

S1, 1A, S;

[_I] Sl, A—) 0, 82

The given rules are sound inference rules, namely the following
semantic condition holds. Let VS be the disjunction of all the
formulas of sequence S.

Lemma 2.1

For every rule of the form LS ,n=1,2,3, and for any model M

15++-39n
valM VS = Valm(( VS]) N s /\(VS,,))
By a cyclic sequence we mean a sequence of the form:

AjcA,, .., Ap10A,, AnoA,, where AjoA; denotes A;— A; or
A;=rA; and at least one of the formulas in the sequence is A;— A,;.
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Lemma 2.2

The disjunction of all the formulas of a cyclic sequence is a tautology.
A decomposition tree of a formula is obtained by successive appli-
cations of the given rules. To each node of the tree a sequence of for-
mulas is assigned: the formula in question corresponds to the root; if
a sequence S corresponds to a node s and if a rule of the form

ST S can be applied to S, then sequences S,, ..., S, correspond
135+++39p
to the immediate successors s,, ..., s, of s, respectively. The highest
order of branching in the tree may be 3, it is obtained by application of
rule [=(A)]. We stop the proccess of decomposition in a node if the
sequence assigned to it contains a cyclic subsequence or if all the
formulas in the sequence are indecomposable. Such sequences are
referred to as end sequences.

The following is a kind of completeness theorem for the given
system of rules.

Theorem 2.3
The following conditions are equivalent:

(a) Formula A is a tautology
(b) All the end sequences in a decomposition tree of A contain a
cyclic subsequence.

The proof of these theorem can be easily obtained by using lemma
2.1and lemma 2.2. Below are some simple examples of decomposition
trees.

oA Vp)
L

pAp | -0
(V-]

p—0, p-0
L) -]
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Sequence p—0,p =0 is a cyclic sequence, so the given formula is a
tautology.

p—((p=q) A (q=p))

/ \[—) (MN]

p—(p=q) p—(q=p)
|

|
(=) |
' |

P=>q,P=q pP—p.q=p

The end sequences of the tree contain cyclic subsequences p—gq,
p=q, and p— p, respectively.

The resolution-style proof system for the first order fuzzy logic with
classical quantifiers, the classical negation such that valy 1A = 1 —
valyA and the classical implication A-B = 1A VB is given in Lee
(1972). In this logic a formula is considered to be true (false) in a model
M whenever valyA = 0,5 (valyA <0,5). As in the classical logic the
resolution rule enables us to eliminate an inconsistent pair A, 1A for
atomic A, from a pair of clauses and the factoring rule eliminates
redundant disjuncts from a clause. Let for a set C of clauses RES(C)
denote the set of clauses including C and closed with respect to the

rules of resolution and factoring. The following theorems are proved
by Lee.

Theorem 2.4

Let C= {A,,...,A,} be a set of clauses such that
valy(A; V... VA) = b and valy(A; A... AAy) = a. Then for any
clause B ERES(C) we have a<valyB=<b.
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Theorem 2.5
The following conditions are equivalent:

(a) Set C of clauses is not true in any model
(b) Set Cis not true in any model with the two-valued universe {0, 1}.

It follows that all the results concerning the resolution system for
the classical two-valued logic (Robinson, 1965) can be extended to the
fuzzy logic in question.

3. Extensions of fuzzy logic

The very broad definition of a fuzzy set does not give us any hints
towards defining operations on fuzzy sets. The only indication may be
that if the power set P(U) of a universe U is included in the class
FUZ(U) of all fuzzy subsets of U then the operations on membership
functions should reduce to the usual operations on characteristic
functions for V = {0, 1}. For an axiomatic approach to this problem
see (Bellman and Giertz, 1973). The broad class of such operations is
provided by what is called triangular norms and triangular conorms
introduced in Schweitzer and Sklar (1983).

A function1:[0, 1] - [0, 1] is said to be a triangular norm (t-norm)
if it satisfies the following conditions :

IHhoro=0,all1=a

(12) a<a’ and b<b’ imply al Tb<a’'l b’
(13) M is commutative

(14) T is associative.

The less t-norm [, is the function defined as follows:

aifb=1
alb ={bifa=1
0 otherwise

The greatest t-norm is the minimum operation.
A function LIJ:[0,1]*>[0,1] is said to be a triangular conorm
(t-conorm) if it satisfies the conditions of monotonicity, commutati-
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vity and associativity and moreover
U 11 =1, alldo = a.

The less t-conorm is maximum operation, and the greatest t-norm is
defined as follows:

aifb=10
allgb ={bifa=10
I otherwise

In general the laws of distributivity, absorbtion and idempotency do
not hold for t-norms and t-conorms. The following theorem is given in
(Weber, 1983).

Lemma 3.1
For any t-norm and t-conorm the following conditions hold:

(a) Distributivity laws imply absorbtion laws

(b) Absorption laws imply idempotence laws

(c) Idempotence laws imply t-norm equals minimum operation and
t-conorm equals maximum operation.

This result tells us that it is impossible to fulfill the mentioned laws
except for the ordinary fuzzy operations. t-norm and t-conorm are
related according to the following laws.

Lemma 3.2

(@ aldb=1-(1-a)l1(-b)
byallb=1-1—-a)lU(1-b)

Several kinds of implication operators have been considered in the
current literature. The following operation is a natural counterpart of
the relative pseudo-complement in pseudo-Boolean algebras (Rasiowa
and Sikorski, 1963).

amb=sup {z:allz<b}
z<(0,1]



204 E. ORLOWSKA and S. WIERZCHON

The greatest implication of this type is the operation:

lifa<l1

a=>b= .
g b otherwise
The less implication is:

lifa<b
b otherwise

aTb=

We can introduce counterparts of the other operations considered
in the theory of lattices (Epstein and Horn, 1974).

aeb=inf {z:aldz=b}

z€0,1]

a%b=sup {z:allz<b for Z<[0, 1]
zEZ

a4 b = inf {z: allz=b}
ZEZL

Complement operations can be obtained in different ways. First,

any function ¢: [0, 1] — [0, 1] can be considered to be a complement if
it satisfies the conditions:

ch)c)=1,¢c(l)=0
(c2) a= b implies c(b) <c(a).

Second, complement operations can be defined by means of implica-
tions in a similar way to that developed in the lattice theory.

Ja =a—0 [1-complement
Ja =a«1 LUl-complement

It follows that these operations satisfy the following conditions:

TJa=sup {z:allz=0}= I(; :?Z:OO
2€[0, 1]

Jda=inf {z:allz=1}= Offa=l
lifa<l1
z<[0,1]

The new operations provide semantical counterparts of propositio-
nal operations in languages of many-valued logics, being generaliza-
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tions of fuzzy logic. The important feature of these new logics is that
they are non-distributive and non-complemented structures. It can be
proved (Dubois and Prade, 1983 and 1980b) that if the excluded middle
allc(a) = 1 and non-contradiction law al l¢(a) = 0 hold for a
complement ¢, then L) and Il cannot be mutually distributive.
However it is possible that none of these two properties holds e.g. for
al Tb = a-b, and alJb = a+b—a-b. For a deeper rationale for
studying such non-distributive and non-complemented structures see
(De Luca and Termini, 1972a, 1972b). To take the full advantage of
these classes of logics investigations are necessary which can throw
more light on a structure of the respective algebras. Selecting the
adequate logics and designing proof methods for them seems to be an
interesting subject for the further research.

4. Applications

Fuzzy logic has been developed to cope with ill-defined problems,
especially to deal with so-called approximate reasoning (Zadeh, 1979).

As vague problems may differ in their nature one cannot look for a
unique theory that allows to solve all such problems. This explains
variety of approaches to what is termed ‘“‘fuzzy logic™.

However this logic can be successfully applied in different fields of
artificial intelligence. For overview of such applications we refer the
reader to (Dubois and Prade, 1980a). Let us mention some of them.
Zadeh (1977) proposed PRUF — a meaning representation language for
natural languages. FRIL (Balwin and Zhou, 1982) presents another
application of fuzzy logic. It is a high level language for designing
automatic inferential knowledge base systems. CARDIAG-2 (Adlas-
sing and Kolarz, 1982) is an expert system providing medical diagno-
sis. References to another applications can be found in (Dubois and
Prade, 1984).
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