MECHANICAL PROOF METHODS FOR POST LOGICS

Ewa ORELOWSKA

1. Introduction

The development of multiple-valued logic in its modern form began
with the work of Post (1921) and Lukasiewicz (1920). The first algebra
corresponding to the work of Post was formulated in Rosenbloom
(1942). The theory of Post algebras and their various generalizations
was extensively developed in a number of papers, for example
Epstein (1960), Traczyk (1963, 1964, 1967), Dwinger (1968, 1975),
Rasiowa (1969, 1973¢), Rousseau (1970a), Sawicka (1971), Cat-Ho
(1972), Epstein and Horn (1974a, 1974b), Maksimowa and Vakarelov
(1974a), Malcew (1976), Muzio (1978), Perrine (1978), Romov (1978),
Mirchewa and Vakarelov (1980), Pigozzi (1980). Post algebras play a
role of semantical structures for a class of many-valued logics.
Investigations on these logical calculi can be found in Rousseau (1967,
1969, 1970b), Rasiowa (1969, 1972), Perkowska (1971), Cat-Ho (1972),
Saloni (1972), Epstein and Horn (1974¢), Maksimowa and Vakarelov
(1974b). Also in Rosser and Turquette (1952) the logic is introduced in
which propositional operations can be expressed in terms of opera-
tions in a Post algebra.

Advances in multiple-valued logic have been inspired in large part
by advances in computer technology and computer science. Among
the various applications of these logics are: multiple-valued arithme-
tics and its applications to digital signal processing, logic design of
multiple-valued switching circuits, design of microprogrammed pro-
cessors and multiple-valued memory elements, parallel processing,
natural language computer applications, representation of uncertain
and incomplete knowledge. Detailed bibliography on these subjects
can be found in Epstein et al. (1974), Wolf (1975), Rine (1977), Butler
et al. (1979), Smith (1981).

In the present paper we describe theorem proving systems for the
predicate calculus of the m-valued Post logic for an arbitrary finite
m = 2. First, we present a Gentzen-style system consisting of rules of
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decomposition of formulas. The system is defined on the basis of the
system for the classical predicate logic given in Rasiowa and Sikorski
(1970). The rules enable us to assign to every formula a set of
sequences of some simple formulas, whose validity can be recognized
syntactically. Formalizations of this kind were also developed in
Rousseau (1967, 1970) and Saloni (1972). For the logic of Rosser and
Turquette the Gentzen-style axiomatization was provided by Kiryn
(1966). Second, we describe a resolution-style system which is based
on the system introduced in Robinson (1965) for the classical predi-
cate logic. Roughly speaking, the resolution system provides a test for
formulas in order to find out if they are contradictory. The similar
system for the logic of Rosser and Turquette is given in Morgan
(1974).

2. Post algebra of order m

A Post algebra of order m=2 is an abstract algebra
(Pa_! Dla L -9Dm—11 U1 I’]-- ﬁ, el)- .. -uem—l)

where P is a nonempty set; eq, . . ., e,_1 are distinguished elements of
P treated as zero-argument operations; —, Dy,...,Dy,_; are unary
operations; U, N, =, are binary operations and moreover the follo-
wing conditions are satisfied:

(PI) (P, U, N)is a distributive lattice;

(P2) ey is the zero element and egy_; is the unit element of the
lattice ;

(P3) (P, €y, em-1, U, N, —, -) is a pseudo-Boolean (Heyting)
algebra;

(P4) DyaUb) = DjaUDb;

(P5) Dj(anb) = DjaND;b;

(P6) Dija=b) = (Da=D;b)N...N(Dja=Db);

(P7)  Di(-a) = -Dsa;

(P8) D;Dja = Dja;

(P9) Diej = en—y if i<) and Dje; = ¢, if i>];

(P10) a= (DjaNey) U...U(Dp_qaNen_q);

(P11) DyjaU-Dya = eq—;.
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Let us observe that the class of all Post algebras of order m=2 is
equationally definable. The respective equations are: (P4), ..., (P11);
the lattice axioms of commutativity and associativity for operations U,
N, and the abserption laws; distributivity laws for U and N: and
moreover the following axioms of pseudo-Boolean algebra:

aN(a=b)=anb
(a=b)Nb=>b

(a=b) N(a=c)=a =(bNc)
(a=a)Nb=0>b
—(a=a)Ub=>b
a=(—(a=a)) = —a.

Let < be the order in the lattice P. The following conditions hold in
any Post algebra of order m.

(pl2) epse;=...<e€p-1;

(P13) Dja<Dja if j<i;

(P14) If a<b then Dia<Db;

(P15) The set Bp of elements of the form Dja is closed with respect to
operations —, U, N, =, and the algebra (Bp, —, U, N, =) is a
Boolean algebra.

In semantics of many-valued logic the m-element Post algebra P,
plays a special role. Algebra P, is a Post algebra of order m in which
set P of elements equals {ey, ..., e,_,} and the operations are defined
as follows:

e Uej = emax, )

€ (1€; = €ming, j)

€€ = €n-1 If iIS] e;=2¢5=¢ if i>]
—¢; = ¢;=¢g

Diej = €m—1 if ISj Diej =€ if |>_]

The Boolean algebra corresponding to algebra P, is the two-element
Boolean algebra.

In the semantics of the m-valued Post logic we admit m truth values
being elements of the algebra P,,. Propositional operations in the logic
correspond to the algebraic operations in P,,. To provide semantics
for first order language we consider generalized Post algebras with
infinite operations of meet (P)N and join (P) U. These operations
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satisfy the following conditions (Epstein (1960)) for every elements a,
a;, t =T, in algebra P:

(P16) a= (P) &Jat iff Dia = (Bp) EJDiat;
(P17) a=(P) I;] a, iff D;a = (Bp) f] D;a,.

3. The language of Post logic

The language of Post logic is a first order language with classical
operations of negation ("), disjunction (V), conjunction (A), and
implication (—), with quantifiers ¥ and 3, and with the special unary
operations corresponding to the algebraic operations D;. The formulas
of the language are constructed from symbols taken from the follo-
wing at least denumerable and pairwise disjoint sets:

VAR set of individual variables

{ 1. Dy,...,Dpu_y} unary propositional operations

{V. A, -} binary propositional operations

{¥, 3} quantifiers

FUN, n = 0,1,... set of n-argument function symbols
REL, n = 1,2,... set of n-argument relation symbols

Elements of set FUN, play the role of individual constants. The set T
of terms is the least set defined as follows:

VARCT
fEFUN,, t1,...,t €T imply fit,,...,t,)T.

The set FOR of formulas of the language is the least set satisfying the
following conditions:

R=REL,, t4,...,t, €T imply R(t,,...,t,) €EFOR

A €FOR implies 1A, D, AEFOR forall i=1,...,m—1
A,B=FOR implies AVB, A AB, A-B<=FOR

A €FOR implies Vxa, 3xa €FOR.

As usually we assume that formulas do not contain redundant or
overlapping quantifiers and we admit the standard definition of free
and bound variable. A formula is said to be open if it does not contain
quantifiers. A formula is closed if it does not contain free variables.
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Formulas of the form R(t,,...,t,) are called atomic formulas.

The formulas of the m-valued Post logic take truth values from the
set {eg,...,en—1} Of elements of the m-element Post algebra P,,.
Propositional operations correspond to the respective algebraic ope-
rations and quantifiers to infinite operations in P,. Intuitively, a
formula D;A says that the value of expression A is not less than e;.

4. Semantics of the language

By a model we mean system M = (U,m), where U is a nonempty set
and m is a meaning function such that

m(f) EUY" for fEFUN,
m(R) €{eq,....em_1}V" for REREL,.

Thus meaning function assigns functions from the Cartesian product
U"into U to n-argument function symbols and functions from U™ into
{€0,....,€m_1} to n-argument relations. Given a model M, by a
valuation we mean a function v: VAR - U assigning elements of the
universe of the model to individual variables. Let VAL(M) be the set
of all the valuations corresponding to model M. Given a model M and
a valuation v € VAL(M) we define function valy,, assigning elements
of set U to terms and elements of algebra P,, to formulas:

valy +(x) = v(x) for xEVAR

valy,y f(ty, . .., tn) = m(D)(valyty, . . ., valyt,)
for fEFUN,, t;,...,t, €T
valy R(ty, .. ., t;) = m(R)(valyyty, . . ., valyty)
for REREL,, ty,...,t, €T
val v 1A = —valy A

valy,y A VB = valy,A Uvaly B
valyy A AB = valy A Nvaly ,B
valy,y A— B = valy A = valy B
valyyDiA = Dyvaly A

valy,, YXA = (Py) /) valy,, A
valyy 3xa = (Py) 55 valy,y, A

where v, EVAL(M) is the valuation such that v(x) = u and v (z) =
v(z) for z +x.
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A formula A is true in a model M if for any valuation v EVAL(M)
we have valy A = ep-. A set of formulas is true in a model M if all
the formulas from this set are true in M. A formula A is e,-valid if for
every model M and for every valuation vEVAL(M) we have
valy,vA = €. A formula is a tautology if it is e,,—q-valid. The following
is an easy consequence of the above definitions.

Lemma 4.1

The following conditions are equivalent:
(a) Formula A is e, -valid
(b) Formula DA is a tautology.

5. The Gentzen system for the Post logic

The system presented in this section is a slight modification of the
system given in Saloni (1972). A formula is said to be indecomposable
if it is of one of the following forms: D;R(ty,...,t,), 1D;R(ty,...,t,)
fori€{l,...,m—1}. A sequence of formulas is indecomposable if it
consists of indecomposable formulas. A sequence of formulas is
fundamental if it contains a pair of formulas D;A and "1D;A for i<
and for an atomic formula A. After Saloni we admit the following
decomposition rules:

T:,Di(AVB), T, T,, IDi(A VB), T,

v v
™ T, D;A,D;B, T, ( ) Ty, 1D;A, T,; Ty, 1D;B, T,
) T, DiA AB), T, A T,,Di(A AB), T,
T]g DiA, TZ;TI,DiB,Tz Tl,—lDiA,jDiB, Tz
T,.Di{(A->B), T,
(=)

Tla _|D1A, DIB,TZ;. winly Tl, —lDiA‘ DiB, Tz

Ty, 1D(A—-B), T,

-
(=) Ty, D1A, T,; Ty, D,A, 1D;B, T5;...; T1, DiA, 1D,4B, T,:T,, 1D;B. T,
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("‘D Tl’Di(—IA)vTZ (—-]-—D Tty_]Di(_lA),Tz
&, DA, T, T,,D,A, T,
T,,D;D;A, T, T,, 1IDD;A, T,

I it e ts D, j

B DA, OB = =pa.T,

(V) Tl,DiVKA(X).Tz
Tl, DiA(Z). T2

(j V) Tlg —lD‘ VXA(X), T2

T], —IDIA(t). Tz. —]Dl VXA(X)

Ty, D; 3xXA(x), T,

3
) Ty, DiA(t), Ty, Dy 3XA(x)

Tl! —lDl HXA(X). Tz

3
{ 1B Ty, 1D;A(2), T,

where z is a free individual variable which does not occur in any
formula above the line, and t is an arbitrary term. In the given rules T,
denotes an indecomposable or empty sequence of formulas and T, is
an arbitrary or empty sequence. The following lemma provides
soundness of the given system of rules. Let disT be the disjunction of
all the formulas from sequence T.

Lemma 5.1

For any rule of the formL n=1
i LT |

valy, disT = valy(disT; A... AdisT,)

A decomposition tree of a formula is obtained by successive applica-
tions of the rules. The highest order of branching in the tree may be m.
it is obtained by the application of (" 1-) rule. To each node of the tree
a sequence of formulas is assigned. We stop the process of decompo-
sition in a node if the sequence assigned to this node is fundamental or
indecomposable. Such sequences are called end sequences.
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If Tis an end sequence in a decomposition tree then disT is a tautol-
ogy iff sequence T is fundamental. If T is not an end sequence then it
can be decomposed by exactly one of the given rules. If a rule of the

form % was applied then disT is a tautology iff disT; is a tau-
122+ 4

tology for all j = 1,...,n. We conclude that the following lemma

holds.

Lemma 5.2

If a decomposition tree of a formula D, A is finite then the following
conditions are equivalent:

(a) Formula A is e, -valid
(b) All the end sequences in the decomposition tree of formula DA
are fundamental.

Now, we consider a case of infinite decomposition tree.

Lemma 5.3

If a decomposition tree of a formula DA is infinite then A is not
e,-valid.

Proof: 1f the decomposition tree of formula A is infinite then there
exists an infinite branch. Let F be the set of all the indecomposable
formulas occuring in the sequences of formulas assigned to the nodes
of this branch. Since the branch is infinite, none of these sequences is
fundamental. We define the model

My = (U, my)
where Uy =T

my(D(ty, .. ., ty) = flty, ..., 1)
my(R)(ty, .. ., t;) = ej—1 if DiR(ty,...,t,) EF
my(R)(t;, ..., t,) = en—q if for all i DiR(ty,...,t,) &F.

Let v, be the identity valuation. We will show that valy, v, DA = eo.
Suppose that valy,,v,DkA = en_y and let G be the set of all the
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formulas B appearing in sequences of the infinite branch satisfying
valy, vy B = en-1. To each formula B we assign a number ordB as
follows :

ordR(t;,...,t,) =1
Ord(BloBz) = max(ordBl, Ol‘de)-I- 1 fOI‘ 0= Vs A, —
ord#* B=ordB+1 for® = "1,D;, ¥, 3.

Hence function ord reflects complexity of a formula expressed in
terms of a number of successive propositional operations influencing
each other. Let B, be the formula such that ordB, < ordB for all
B €G. It is easy to see that B, is an indecomposable formula, and
hence By €F. If B, = D, A, for some atomic formula A, then by the
definition of model M, we have valy, v, Bo = €. Now, let By =
“1DjA,. If for all j DAy £F then val v, B, = €. If D;A; €F for
some j then j must be greater than i, for otherwise a fundamental
sequence would appear on the infinite branch. Hence in any case
valy, v, Bo = € what is in conflict with the fact that B, €G.
By lemma 5.2 and lemma 5.3 we obtain the following theorem.

Theorem 5.4
The following conditions are equivalent:

(a) Formula A is e,-valid

(b) All the end sequences in the decomposition tree of formula DA
are fundamental.

As a corollary we obtain a kind of completeness theorem for the
given proof system.

Theorem 5.5
The following conditions are equivalent:

(a) Formula A is a tautology

(b) All the end sequences in the decomposition tree of formula D,,_; A
are fundamental.
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6. The Herbrand theorem

A formula is said to be in prenex form if it consists of a sequence
(possibly empty) of quantifiers whose scope is an open formula. For
any formula A of the m-valued Post logic there exists a formula in
prenex form equivalent to A. The prenex form of a formula can be
obtained due to the following tautologies. Operation — of equivalence
is defined as usually: A—B = (A= B) A (B— A).

D; VXA(X) « VxD;A(x)

D; 3xA(Xx) < IxDA(x)
TTVYXA(X) < Ix TTDA(X)
T1IXA(X) « VX T 1A(X)

B V IxA(x) « 3x(B V A(x))
B A VXA(X) < VX(B A A(X))
B A IxA(x) < 3x(B A A(X))
B V VXA(x) < V(B V A(X))
IXA(X)= B < x(A(x)— B)
VxA(x)— B <+ IX(A(x)— B)
B— 3xA(x) <> I3x(B— A(x))
B— ¥xA(x) «» Yx(B— A(x)).

Given a formula A in prenex form, by applying the Skolem method
of elimination of quantifiers to all the formulas DA for i=
1,...,m—1, we obtain the set S(A) of formulas for which the following
theorem holds.

Lemma 6.1

(a) Ifaformula A is true in a model M = (U,m) then set S(A) is true in
amodel M’ = (U,m’) such that m and m' coincide on the function
and relation symbols occuring in A.

(b) If set S(A) is true in a model M then A is true in M.

Let us observe that the following formulas are tautologies :

D.(A vV B) = DIA VDIB
D,(A A B) 2 D,A /\DlB
Dl(A-—’ B) “r (D1A v D]B) Al /\(DlA VD.B)
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Di( 1A) « 1D,A

Hence we have the following normal form theorem.

Lemma 6.2

Every open formula of the form D;A can be expressed as a conjunc-
tion of disjunctions of indecomposable formulas.

The usual version of the Herbrand theorem for Post logic was

proved in Perkowska (1971). In this paper we present the resolution-
style Herbrand theorem. A formula is called D-clause provided that it
is a disjunction of indecomposable formulas. Given a set C of
D-clauses, the Herbrand universe HU(C) of set C is the set of all terms
built up from the function symbols appearing in formulas of C,
augmented by a single constant symbol if there is no constant symbol
in these formulas. The Herbrand base HB(C) of set C is the set of all
the substitution instances over HU(C) of all indecomposable formulas
which are sub-formulas of formulas from C. Let HB(C) be the set of
all the formulas 1A for A =HB(C), and let H(C) = HB(C) UHB(C).
Let us observe that all the formulas in set H(C) are closed and hence
their values in models do not depend on valuations. A set X ©H(C) is
said to be C-inconsistent if "1D;A €X and D;A €X for i <j; otherwise
X is C-consistent.
A set XS M(C) is said to be C-complete if for any A €H(C) we have
A& X implies X U{A} is C-inconsistent. Each C-consistent and
C-complete subset X of set H(C) determines the Herbrand model
HMy for set C:

HMyx = (HU(C), my)

Where mx(f)(tls LA tn) = f(tls by tn)
mx(R)(tl, ey k) B2 € if DiR(tl, SR tn) eX
Mx(R)(ty, ..., ta) < e if T IDR(ty, ..., t) €X

A formula A<H(C) is said to be inessential for a set X< H(C)
whenever the following conditions hold:

D;A is inessential for X if D;A €X for a certain j> i

“1D;A is inessential for X if “1D;A €X for a certain j<i.
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Lemmua 6.3

(a) If A=X<H(C) then A is true in HMy
(b) If A=H(C) is true in HMy for a certain XS H(C) then A €X or
there is a formula B €X and that A is inessential for set {B}.

Lemma 6.4

If a set C of D-clauses is true in a certain model then there exists a
Herbrand model HMy for a certain X ©H(C) such that C is true in
HMy.

In the classical predicate logic the notion of semantic tree plays an
important role in the proof of the Herbrand theorem. We define a
semantic tree for a set C of D-clauses in a similar way. A semantic tree
is a binary tree in which formulas from set H(C) are assigned to the
nodes, with exception of the root, to which we assign the empty set.
Given a node s, formulas D;A and "1D;A are assigned to the
immediate successors of s whenever it can be done without causing
inconsistency, that is the set of formulas corresponding to all the
predecessors of s augmented by D;A remains C-consistent, and also it
remains C-consistent when augmented by ~1D;A. We repeat this
construction for all the formulas from the Herbrand base HB(C). It
follows from the construction that in any semantic tree of a set C sets
of formulas corresponding to its branches are C-consistent and
C-complete.

We say that sets X, Y S H(C) are D-equivalent whenever they are
equal up to inessential elements, that is set X without formulas
inessential for X equals set Y without formulas inessential for Y.

Lemma 6.5

(a) For any semantic tree sets of formulas corresponding to different
branches of the tree are not D-equivalent

(b) For any C-consistent and C-complete set X< H(C) and for any
semantic tree of C there is a branch such that set of formulas
corresponding to this branch and set X are D-equivalent.
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We conclude that sets of formulas corresponding to the branches of
a semantic tree for a set C provide a representation of all the Herbrand
models for C.

Given a set C of D-clauses, let [C] be the set of all the closed
formulas obtained from formulas from C by substituting terms from
the Herbrand universe HU(C) for individual variables. By a failure
point of a branch in a semantic tree of set C we mean an earliest node s
on this branch such that set X of formulas corresponding to all the
predecessors of s has the property: there exists a formula A €[C] such
that A is not true in model HMy.

Lemma 6.6

If for any model M a set C of D-clauses is not true in M then every
branch in any semantic tree of C contains a failure point.

Proof: Let HMy be a Herbrand model determined by a set X of
formulas corresponding to a certain branch of a semantic tree for C.
By the assumption set C is not true in model HMy. Hence there is a
formula A&€C and a valuation v such that valyy, A #en—q. This
valuation acts as a substitution of terms from the Herbrand universe
for individual variables. Hence the formula A’ obtained from A by this
substitution is an element of set [C]. Formula A’ is a disjunction of a
finite number of indecomposable formulas, hence the branch in
question contains the least initial segment such that the finite set Y of
formulas corresponding to this segment is {A'} - complete, {A} -
consistent and valyy, A’ # €,—y. Clearly the last node of this initial
segment is a failure point.

The following is the resolution-style Herbrand theorem for the Post
logic.

Lemma 6.7
The following conditions are equivalent:

(a) A set C of D-clauses is not true in any model
(b) There exists a finite subset of set [C] which is not true in any
model.
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Proof: Let C be a set which is not true in any model and let us
consider a semantic tree for C. By lemma 6.6 every branch of this tree
contains a failure point. Let us consider a tree obtained from the
semantic tree in question by rejecting all the nodes which are
successors of the failure points. The resulting tree is finite, for
otherwise by Konig’s lemma there would exist a branch having no
failure point. Each branch b of this tree is related to a certain F-clause
from set C, namely to the formula A, which is not true in the Herbrand
model HMy, determined by set X of formulas corresponding to
branch b. Moreover, each Herbrand model HMy, determines the
substitution v;, of terms from the Herbrand universe for individual
variables responsible for falsification of formula A,. We define C' to
be the set of D-clauses obtained from all the formulas A, by applying
substitution v, respectively. Clearly C' is a finite subset of set [C],
and for each branch b set C' is not true in model HMy, . By lemma 6.4
set C’ is not true in any model. Now, let us assume that we are given
set C' ©[C] which is not true in any model. Every formula A’ from set
C’ is a substitution instance over HU(C) of a certain formula A from
set C. Hence if A is true in a model M then so is A’. We conclude that
if Cis true in M then C’ is true in M, what completes the proof.

The Herbrand theorem provides a basis for a resolution theorem
proving system for the Post logic.

7. Resolution system

The resolution system for the Post logic consists of two inference
rules: resolution rule which, roughly speaking, enables us to eliminate
an inconsistent pair of indecomposable formulas from a pair of
D-clauses, and factoring rule which enables us to eliminate redundant
disjuncts from a D-clause.

In what follows by a substitution we mean a function which assigns
terms to individual variables. Any substitution can be extended in a
natural way on the set of all terms and formulas.

V D; A\ .
(r) A1 VDiBy, A, v DB, for i =j resolution rule
u(A; Vp(Ay)

In this rule A, and A, are D-clauses ; B, and B, are atomic formulas: u
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is a least (with respect to composition of functions) substitution which
unifies B; and p(B,), that makes them equal; p is a permutation of
variables such that A; vV D;B, and p(A, V "1D;B,) have no variables in
common,.

)

AVB; VB, ;

———— = factoring rule

u(A Vp(B,))

In this rule A is a D-clause ; B; and B, are indecomposable formulas ; u

is the least substitution which unifies B, and p(B,); p is a permutation

of variables such that B, and p(B,) have no variables in common.
Clearly the given rules preserve validity ; given a set C of D-clauses,

let RES(C) be the set of clauses including C and closed with respect to

the rules (r) and (f).

By 0O we denote the empty D-clause containing no disjuncts. The

empty clause represents falshood that is for any model M and for any

valuation v we have valy [0 = e,.

Lemma 7.1

For any D-clauses A,B which have no variables in common
[RES({A,B}H)] = RES([A] U[B]).

The following lemma is an analogue of the Skolem-Lowenheim
theorem.

Lemma 7.2

For any nonempty set C of D-clauses if RES(C)S C and O «C then
there exists a model M such that C is true in M.

Proof: Let us suppose that for any model M set C is not true in M.
Hence 0 =C or by lemma 6.6 every branch in any semantic tree for C
contains a failure point. The first condition contradicts the assump-
tion. Let us consider the tree obtained from the semantic tree by
dropping all the nodes which are successors of failure points. We will
show that this tree consists of only one node. Suppose that the
number of nodes is greater than 1, and assume that there is a branch b
with n= 2 nodes. By the definition of semantic tree the (n— 1)th node
has two immediate successors with formulas of the form D;A and
“1D;A assigned to them, respectively. Both of them are failure points.
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Let X,, be the set of formulas corresponding to the first n— 1 nodes of
branch b and let X; = X, U{D;A} and X, = X, U{T1D;A}. By the
definition of failure point there exist formulas B,, B, €[C] which are
not true in Herbrand models HMy, and HMy, respectively. It follows
that " 1D;A occurs in clause By as a disjunct and D;A occurs in B,. Let
B be the formula obtained from B; and B, by applying the resolution
rule and eliminating an inconsistent pair D;A, “1D;A. By lemma 7.1
we have B €[C]. Moreover, B is not true in the Herbrand model
HMy,. Thus the (n—1)th node of branch b is a failure point, a
contradiction. Hence the semantic tree in question consists of one
node only (the root). But the only clause which is not true in the
Herbrand model determined by the empty set of formulas is the empty
clause. Hence O €C, which contradicts the assumption.

The following theorem provides a kind of completeness of the given
system.

Theorem 7.3
The following conditions are equivalent:

(a) For any model M set C of D-clauses is not true in M.
(b) There is a derivation of the empty clause [J from set C.

Proof: Assume condition (a). By lemma 7.2 either (i) O=C or (ii)
RES(C) is not included in C. Clearly (i) implies (b). In case (ii) we
construct a sequence of sets of D-clauses:

Co = C,
C1 = RES(CU) UC(;,

For j= 1 if C; is defined then:
— If condition (¢) 0 & C;_y and OEC; or Cj—; = Cj is satisfied then
Cj+1 is not defined,
— If condition (c) is not satisfied then C;,; = RES(C)) ugG;,
— If C; is not defined then for every k> j Cy is not defined.
It is easy to see that for each j= 0 the inclusion C;< Cj, holds. If
for every natural j set C; is defined then we consider the union U C;.

]
We have RES(U C) < U Cjand O & U C;. By lemma 7.2 set U C; is not
J ] J ]

true in any model and hence C is not true in any model, a contradic-
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tion. If for a certain j we have C; = Cj_; then ] #Cj-p and C;_; =
RES(Cj_) UC;_; and by lemma 7.2 set C;_; is not true in any model, a
contradiction. If J€C; for a certain j then condition (b) holds. Hence
(a) implies (b). Clearly, we also have (b) implies (a).

8. w™-valued Post logic

A natural generalization of the m-valued Post logic is the o *-valued
Post logic, whose formulas may assume values from a linearly order-
ed set of type @*. A semantic basis for the logic is provided by gener-
alized Post algebras of order w*. These algebras are linearly ordered
Heyting algebras (Horn (1969)) with a chain {e;},-,., of type o* of
constants and with one-argument operations D; for 1<i< w which
have properties similar to those of the operations Dy, ..., D,,_; in Post
algebras of any finite order m > 2. The elements D;a are all the com-
plemented elements in these lattices. Every element a is uniquely rep-

presented as an infinite join a = C/l D;aNe;. The generalized Post
=

algebras of order ™ and the w *-valued predicate logic were investi-
gated by many authors, for example Sawicka (1971), Rasiowa (1973¢).
Maksimowa and Vakarelov (1974). The Hilbert style axiomatization
of the logic contains, among others the w-rule with infinitely many
premises:
DA forevery 1=i<w
A

The mechanical proof methods for the logic are given in Ortowska
(1976, 1978). The applications of the logic are related to theory of
programs, see for example. Rasiowa (1973a, 1973b, 1974). Survey
papers on multiple-valued logics in which their applications in com-
puter science are stressed are Epstein et al. (1974), Wolf (1975). Butler
et al. (1979), Smith (1981).

Ewa ORLOWSKA
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