RESOLUTION MODAL LOGIC

Luis FARINAS-del-CERRO

Abstract

In this paper we describe a general way to define a resolution method
in the framework of non classical logic.

1. Introduction

What does resolution mean in the case of Modal Logic? This
question looks natural if we consider the fruitfulness of the resolution
principle from both the theoretical and the practical point of view.
This paper is aimed at supplying some answers to this question.

We bear in mind the following resolution principle: for any two
clauses C, and C,, if there is a literal L, in C, that is complementary to
a literal L, in C,, then delete L, and L, from C, and C, respectively,
and construct the disjunction of the remaining clauses.

We now consider literals governed by the modal operators []
(necessary) or <> (possible), that are related by: [|A = 44~ <>
~ A, (by A we note a formula). Consider the two clauses[ ] p VC; and
<>~pVC, (where p is a propositional variable); we have that
<>~p is equivalent to ~[]p. This suggests the following modal
resolution rule:

[lpvVG <> ~pVG
CIVCZ

The upper formulas of the rule will be called premises. In the same
way we consider the clauses [|p V C; and [|(~p V q) V C, and the
axiom [](A V B) - <> A V[] B we can state a resolution rule such
as:

[IpVC [l(~pVqg VG
[la V(G VG
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However if we consider the system with axioms [J(A V B) » <>
A V[]Band[] A— <> A, and the clauses<>p VC,and <> ~p V
C,. We can’t have the rule:

<>pV(C <>~pVC(
C vG

As the relationship between <> p and [ | p in this system is given by
[]p— <> p and not the converse, the rule is not justified.

Everything suggests that the definition of resolution modal rules is
linked to the relationship between the modal operators. We find the
same idea in methods like the ones developed by Carnap [CR] and
Lemmon [LE] and in the truth-table methods of Anderson [AR] and
Bayart [BA]. However it appears only explicitly as a basis to define
resolution methods in Shimura [SM], Orlowska [OE] and Farinas
[FC1].

This kind of decision method may be called syntactical, since
semantics is not explicitly mentioned.

A first step for defining resolution decision methods is to define the
notion of a normal form. It is necessary because the elements of the
normal form are a set of expressions that is closed under resolution
rules. In other words, if we consider a conjunctive normal form

m

(F= . C;, where each C; is a clause) and R as a rule with n argu-
s
ments, then:

R(C,,...,C) =C

if R is defined for C,, . . ., C,, and we note that C must be a clause. The
formulation of R, as seen above, is subordinate to the characterization
of elementary inconsistency i.e. inconsistencies between disjuncts of
the clauses.

In what follows we will see precisely what this means. To this end
we consider a particular modal system, the system Q, from which
examples will be taken.

The paper will be organised as follows: in section 2, we describe the
system Q (syntax and semantics), in section 3, we define a particular
normal form for Q, which is the same for every normal modal logic
with only monadic modal operators. In section 4, we deal with the
problem of modal resolution; we will define what resolvent clause
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means in modal logic and then the resolution rule will be defined as in
classical logic. The completeness theorem will be presented in sec-
tion 5. In section 6, a refinement of the resolution rule will be given as
well as the completeness theorem. Finally, in section 7 some applica-
tions of modal resolution will be sketched.

2. The system Q

The modal formulas of the system Q are expressions of the form
(A& B), (AVB), (A-B), ~A, []A, or <> A where A and B are
modal formulas. We introduce the constant symbol | to be read ‘‘the
false’’. The system Q is a set of formulas obtained from the axiom
schemas:

1. A->(B-A)
3. (A-D-1-> A
4. [1(A>B)> (]A=[]B)
5. [JA»<>A
and rules:
R1. Modus ponens & ':}_’ B

R2. Necessitation i
(1A

We define the notions of proof and theorem in the usual way. A
proof of a formula A from a set S of formulas is a finite sequence of
formulas each of which is either an axiom or an element of set S or a
formula obtainable from earlier formulas by a rule of inference. A
formula A is derivable from a set S(S — A) iff it has a proof from set S.
A formula A is a theorem of Q(+ A) iff it is only derivable from the
axioms. A set S of formulas is consistent if no formula of the form
A & ~ A is derivable from S.

The meaning of formulas is defined using the notion of a model. For
us a model is a triple:

M= <G,R, m>
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where G is a non-empty set of states. R is a binary relation on G such
that VK €G, JK' €G, (K,K') €R, and m is a meaning function that
assigns to each propositional variable p a subset m(p) of G.

Given a model M we say that a formula A is satisfied by a state K in
model M(M, K sat A) iff the following conditions are satisfied:

M, K sat p iff K m(p) where p is a propositional variable

M, K sat ~A iff not M, K sat A

M, K sat AVB iff M, K sat A or M, K sat B

M, K sat A& B iff M, K sat A and M, K sat B

M, K sat A— B iff M, K sat (~ A VB)

M, K sat A B iff M, K sat (A-B) & (B— A)

M, K sat [] A iff all K' €G if (K,K') €R then M, K’ sat A

M, K sat <> A iff there is a K’ €G and such (K, K’) €R and
M, K’ sat A.

Given a model M, to each formula A of the language we assign a set
of states called the extension of A in model M (exty A):

exty A= {KEG: M, K sat A}

We admit the usual notions of truth and validity of formulas. A
formula A is true in a model M (y; A) iff exty A = G. A formula A is
valid in T(=A) iff A is true in every model for T. A formula A is a
semantic consequence of a set S of formulas (S = A) iff for any model
M the formula A is true in M whenever all formulas in S are true in M.
A formula A is satisfiable iff M, K sat A for some model M and state
K. A set S of formulas is satisfied in a model M by a state K (M, K sat
S) iff M, K sat A for all AE€S. A set S is satisfiable iff M, K sat S for
some model M and state K.

3. Conjunctive Normal Form (C.N.F.)

Let F be a formula, we shall say that F is in C.N.F. if it is of the
form:
F=C &...&C,

where m= 1 and each C; (clause) is a disjunction (perhaps with only
one disjunct) of the general form:
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G=LvVv...VL, V[]D V... V[]D,, V
<> Ay Vi VA,

where each L is a literal ; each D, is a disjunction that possesses the
general form of the clauses, and each A, is a conjunction, where each
conjunct possesses the general form of the clauses. Each disjunct in C;
will be called element.

We note by E(E’) that E’ is a subformula of E.

Examples:
The following formulas are in conjunctive normal forms:

[J(pVqV<>(r&t)

<>({(pvqQ &t) & ~p

~pVpV[](rVs) V<>(pV[]r) &e)
~pVI[I(lpV(<>@& [N V<>(](<>(]qV
<>t &) V[t &p)

The degree d(A) of a formula A is defined in the following way:

if Ais a literal, d(A) =0

if d(A) = n and d(B) = m, d(A AB) = max(m,n) provided
that Ais & or V.

ifd(A)=n,d(~A)=n

if d(A) = n, d(AA) = n+1 where A =[] or <>.

3.1. There is an effective procedure for constructing, for any given
formula F in Q, an equivalent formula F’ in conjunctive normal form.

The proof is obtained by induction on the degree of the formula F.

The following example is given to illustrate this effective procedure.
Take F as the formula[ | (p& <> (g V[](r&t)) & (p—[](q& <> 1))).
We obtain the conjunctive normal form by the following transforma-
tions:

Lp&[1<>@V (Ir& [11) & (p—[](@&<>1) using
the fact that [|(A&B) —~[]A &[] B

2. [lp& [I<>((qV[]InN & (@V[]) & (p>((](q&<>1))
using propositional methods
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3llp& [1<>(@V[IN & @V[I1) & (~pV[](q&<>1))
using propositional methods

4 [Mp&[I<>@V[IN &@V[]) & (~pV(]q&[]<>1)
using the fact that [|(A&B) «~[]A &[] B

In the same way we have:

5(lp&  []<=>(@V[In& (@V[Ih& (~pV[]lg &
(~pV[l<>1)

4. Modal Resolution

The aim of classical resolution is to delete two inconsistent literals
from two given clauses, i.e. consider the clauses p VC, and ~ p Vv C,.
Then:

pvC, ~pVG
Q}\/Cl vGC,

where @ denotes the empty symbol. The intuitive justification of this
rule is that the set {p, ~ p} is inconsistent and no proper subset of it is
inconsistent.

By analogy the aim of modal resolution will be to delete two (or
more) elements at each step of a resolution proof [OE][FC1][SM].

Therefore from a family of sets INC of elements (disjunct of
clauses) such that each set of the family is inconsistent and no proper
subset of it is inconsistent. Then a set of resolution rules (one for each
set of the family) is defined.

For example consider the three clauses:

[1tpVa VC,
<>~pVvGC,
[1~qVG

Then the rule:

[J(pVg) VC, <>~pV(C, []~qVGC
G, VG VG

)

is a resolution rule for the system Q, because the set {[](p Vq),
<>~p,[]~q} is inconsistent in Q.
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Since [](AVB) + []AV[]B in Q, it is easy to see that for each
formula of the form [](A VB V...) we must define a new family of
sets in INC. This leads us to stress the following two problems.

1° The caracterization of the set INC can be as complex as a decision
method for the system Q
2 The number of premises in the resolution rules is variable.

Therefore this kind of method will be interesting only for a subset of
formulas [OE] [FC1] [FC2] [ FC3] [FC8] or for the systems where INC
is simple [OE] [SM].

In order to solve these problems we will consider a new method
which we think is closer to the idea of the classical resolution principle
[R]]. Since the set INC will be reduced to the classical one (INC =
{~ p, p}): we will obtain from this a set of operations, whose purpose
is to find this classical inconsistency.

Before going on we return to an example. Consider again the set of
clauses:

[1(pVa)
<>~p
[1~aq
The set of these three clauses is inconsistent. Now we consider the
two clauses [](p Vq) and <>~ p. Since []A& <> B - <> (A &B),
it is possible to deduce in an informal way that the set {[](p Vq),
<> ~ p} is satisfiable, because there is a state, where the set {p Vq,
~ p} is satisfiable. Then from [](p Vq) and <> ~ p we can obtain
<> q and the two clauses <> q and [ ] ~ q are inconsistent. From this
we can deduce that the set INC can be simplified by breaking down
the rule ¢ ) into two new rules. To explain this more precisely, we
define a set of operations and properties.
Let C, and C, be two clauses. We define the operations: X (C,, C,)
andI" (C,), and the properties: (C,, C,) is resolvable (i.e. C, and C, are
resolvable) and (C,) is resolvable, recursively as follows:

Classical operations

a)Z(p,~p =290
and (p, ~ p) is resolvable. p will be called a resolved literal.
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b) Z(D; VD,),F) =2 (D,,F) vD,
and if (Dy, F) is resolvable, then ((D, V D,), F) is resolvable.
¢) (D, &F, &D,&F,) = 3 (D,,D,) & F, & F,
and if (D,, D) is resolvable, then (D, & F, & D, & F,) is resolvable.

Modal operations

a) S(|E, [|F) = []2(E,F)
And if (E, F) is resolvable, then ([ | E,[] F) is resolvable.
b) Z(]E,<>F) = <>E(E, )& F)
And if (E, F) is resolvable, then ([] E, <> F) is resolvable.
¢) Z(]E. F) =3 (E, F)
And if (E, F) is resolvable, then ([ | E, F) is resolvable.
d) T(E(CD&D &F)=E(<>E((D,D)&F&D& D))
And if (D, D) is resolvable, then (E(<>(D&D')& F)) is
resolvable.

4.1. If C; and C, are unit clauses (clauses with only one disjunct) and
C, and G, are resolvable (or C, is resolvable), then a clause is called
resolvent of C; and C, (C,) if it is the result of substituting:

¢ for every occurrence of (0 & E)

E for every occurrence of (§ VE)

@ for every occurrence of A @, where A is []. or <> in
2 (G, G (Cy)), as many times as necessary.

We note by R(C,, C,) (or R(C,)) a resolvent of C, and G, (C,)).

4.2. Let C; vC and C, VC' be two clauses. The resolution rules:

cCvCe GV

1
'RC,cyveve

is applied if C; and C, are resolvable.
And the rule:

C, vC

o T i
) R(Cy v C

is applied if C; is resolvable.
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4.3. Let E(DVD VF) be a clause. The following rule will then be
applied

E(DVDVF)

3 E(DVF)

4.4, Let S be a set of clauses. A deduction of C from S is a finite
sequence C,,...,C, such that:

C,is C, and
G (l=si=sn)is:

a clause of S, or

a clause obtained from C;, j<i using the inference rules 2) or 3)
or a clause obtained from C; and C,, j, k< i, using the inference
rule 1).

4.5. A deduction of the empty clause is called a refutation.

We give an elementary example to illustrate the method. Given the
two unit clauses []p and <> (~pVq), a set of operations and
properties corresponding to this set will be:

DZ(]p,<>(Vq)=<>Z(p,~pVQq).
And if (p,~ p Vq) is resolvable, then ([] p, <> (~p Vq)) is
resolvable.
2)Z(p.~pVa =Z(p,~p) VQq
And if (p,~ p) is resolvable then (p,~ p V q) is resolvable.
3 Z(p,~p) =9
And (p,~ p) is resolvable. Therefore (p,~ p Vq) and ([ ] p,
<> (~ p Vq) are resolvable and the inference rule 1) can be
applied as follows:

[Ilp <>(~pVaqg
<>q

because <> q is the result of substituting q for (§ vV q) in
<> Vvq).

In classical logic only one operation, X (p, ~ p), is required to apply
the resolution rule, while in modal logic more than one operation may
be needed to do it.
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Intuitively we say that if a set of clauses is inconsistent, then there
is a state which is classically inconsistent. And the aim of the
operations is to find such a state.

We return again to the example. Given the three clauses [] (p V q),
<>~ p and [ ] ~ q we obtain the following refutation:

[J(pVqg <>~p using that:

Z(JpVvVg,<>p)=<>(pVq,~p)
AndZ(pVg,~p)=0Vq

<>q []~q using that:

0 Z(<>q,[]~q9=<>Z(q,~q)
AndZ(q,~q) =9

5. Completeness

5.1. A set of clauses S is unsatisfiable iff S is refutable.
To prove this theorem the following two lemmas are necessary.

5.2. ThesetS= {Ly,...,L,,[]1A,...,[] Apy, <>Pyy .00 <>P}
of unit clauses is unsatisfiable iff either the set {Lys..os Ly} is
unsatisfiable or 3P, 1<i<n; for which S, = {A,..., A, B} is
unsatisfiable.

Proof.

a) suppose that {L,,...,L, } and §; = {A,,.. ., A, , P} 1<i<n, are
satisfiable. Then we can construct a model M satisfying S, from
models M; of §; and a maximal consistent extension O of {L,, . .., Ly}
that is different from the states of M;. M is obtained by union of the M,
and O where the accessibility relation has been extended by a set of
pairs (O,0;) where O; is a state in M; such that: M;,O; sat S,.
Therefore it is easy to see that S is satisfiable in M.

b) The converse statement is obtained using the fact that

[](A— B)—> ([]A - [] B), the necessitation rule and propositional
reasoning.

Suppose {A;,...,A,,, P;} is unsatisfiable. Then the following
formulas are theorems:
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I -~A V...V ~A, V~P

2. F[1(A &... & Ay, > ~B)

3. [1(A &... & A) - [1~P;

4. —~[]A, V...V ~[]A,, V~<>P,

Hence [JA; & ... &[] A,, & <> P, is unsatisfiable.

The proof for the other case is trivial.

On the light of this lemma the modal operations in the resolution can
be interpreted as a tool which prevents us from using formulas
belonging to the sets S;, S;, if i+j i,j=0,...,n; to obtain inconsis-
tency for set S.

For example for any formula <> P, I<n<n; in S we obtain a set
Si = {A1,...,A,,, Pi} ; from the modal operations point of view, this
means that we can’t define a rule as 2 (<> P;, <> P;). And since the
Aj, j= 1,...,n, appears in S;, the rule X ([] A;, <>P,) must be
defined.

5.3. Given the two sets of unit clauses S= {L,,.. «s Lags
(1AL .. L[] A, <>(G &...&G,),...., <>P,} and S' =
{5y voowp By C » .+Cy,}. If R is a refutation of S’ then R can be
transformed into a refutation of S.

Remark : to transform a refutation of S’ into a refutation of S, it is
sometimes necessary to modify the order in the application of rules in
the refutation of S. We give the following two examples:

Example 1. Consider the set of clauses S = {[](p V q). [](~p V q),
<>~q}. And 8'={p Vq,~p V q, ~q}. The refutation of S":
pPVa ~gq ~pVgq ~gq
p ~Pp
0

must be reorganized to

pVgq ~pVg
a @ ~a
0
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Because it is only in this way that we can obtain directly a refutation
of S:

[Itp Vg [l(~pVaq
[lq <>~q
]

Example 2. Consider the set of clauses S = {[](p V q),[](~p V1),
<>(~q&~t)}.And S’ = {p V q,~p V t,~q, ~t}. The refutation
of S§':

pPVg ~gq ~pVt  ~t
P ~Pp

must be reorganized to

~pVt ~t
pPVq ~p
q ~q
¢

Because it is only in this way that we can obtain directly a refutation
of S:

[[(~p VYD) <> (~q&~1)
[I(p Va) <> g R~p)
<>(q & ~q)
0

Consequently the proof of this lemma must proceed by induction on
the number of inferences which use two formulas that belong to a
conjunct governed by a<<>.

Then an inference in a refutation R of S’ with two premises D and
D’ is called critical iff some C; (in the element <> (C, & ... & C,,) of
S) are used to derive D and D’'.

The proof of the lemma is obtained by induction on the number c(R)
of critical inferences in R.
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Proof of theorem 5.1.

The proof of the theorem 5.1. is obtained by induction on the degree
of S.

If d(S) = 0 then the theorem is proved by propositional methods
[CHL]J.

Assume that the theorem holds when 0< d(S)=< n. To complete the
induction we consider d(S) = n+ 1. The proof is obtained by induction
on the number of V governing the disjuncts of the clauses in S (noted
by v(S)).

If v(S) = 0, then using lemma 5.2., the induction hypothesis and
lemma 5.3. the result will be established. The induction step is proved
as usual [CHL]. Let C= E, VC, be a clause in S. Construct
separately refutations R, from (S-{C})UE,) and R, from (S-
{C}) UC, respectively.

E, C, VE,
R, : :
empt.y clause C,
R,

empty clause

and put R, on the top of R, after adding C, to all clauses in R, (figure
2).

This kind of method can be extended easily to other modal logics.
In this way a completeness theorem has been obtained for the
propositional calculus K[FC4], S4[FC6], S5[FC5], for linear tempo-
ral logic of programs [CF2] and for a mutual belief logic [FS]. M.
Cialdea [CM1] obtained the same result for a modal translation of the
propositional intuitionistic calculus.

It is easy to see that for the set of prenex formulas of the first order
modal calculus the method can be extended [FCI1], [FC6]|, [FCT7]|,
[CF1]; on the contrary when we consider the complete first order
calculus some new problems arise, since permutation of quantifiers
and modal operators don’t hold, forexample: 3x [ ] p(x) «+[] Ixp(x).
To solve this kind of problems it is necessary to distinguish the skolem
constant introduced by 3x in 3x [] p(x) from the one, introduced by
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ix in [] 3x p(x) which can be different in each state [CM2].
Comprehensive work on this subject has been presented by K.
Konolige [KK] who obtains a Herbrand theorem and a refutation
procedure in the lemma 5.2. style for belief logic.

6. Deduction in normal form

By analogy with classical logic we can easily define a refinement of
modal resolution i.e. normal form of deduction. We will present an
extension of linear resolution to the modal operators. The definitions
are essentially the same as for classical resolution. But each time a
subformula of the modal formula is resolved, a resolved expression
[CHL] is generated.

In what follows we suppose that clauses are ordered ; in other words
the logical operators & and V are treated as non-commutative. We
also have a mechanism for recording the information about resolved
clauses. In this way the expression in a clause can be enclosed in [ ] .
means that the expression E has been resolved.

We call a sequence an ordered clause with possible resolved
expressions.

6.1. First formula of a sequence

Let S be a sequence. We call a first formula of S the subformula of §
defined recursively as follows:

- S is a first formula

- If F is a first subformula of S, and F is of the form
F, VF, V... VF,, then F, is a first subformula

If F is a first subformula of S and F is the form
F, & F, &...& F,, then each F, is a first subformula

If F is a first subformula of S and F is of the forms [] F, or
<> F,, then F, is a first subformula.

6.2. Linear operations

Let C, and C, be two sequences. We define the operations

L J 2 (CI,CZ)
e ['(C))
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And the properties

e (C,,C,) is resolvable
e (C)) is resolvable

recursively as follows:
— classical operations

Since the disjuncted clauses can possess the disjunction and
conjunction symbols, it is necessary to introduce operations to
manipulate these symbols by opposition to classical linear resolution
where rules for the Vv-operator only are necessary.

e S (A &...& A A) =3 (ALA) & A &...& A,
And if (A;, A) is resolvable, then (A; &...& A,, A) is resolvable.
e Z(AA &...&EA)=ZAA)&A &...&A,
And if (A, A;) is resolvable, then (A, A; &...& A,) is resolvable
e Z(A, V...VA,LA) =3 (A,A) VA, V...V A,
And if (A;, A) is resolvable then (A, V...V A,) is resolvable
e S(AA V...VA)=A, V...VA_; VE(A,A) V
A V...VA, VA

And if (A, A;) is resolvable then (A, A, V...V A,) is resolvable.

In this operation we express the fact that the expression A has been
resolved, if (A, A;) is resolvable.

eX(p,~p =29

And (p, ~ p) is resolvable in p.

— Reduction operations

e T'(E([Al v A)) = E(A))
e T(E(A, V...Vl V...VA)) = EE(A,A) V
A, v...vIB V...V A

And if (A;, A;) is resolvable then E(A; V...V A,) is resolvable.
e '(E(A, VA, VA VA))=E(A, VA VA
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- Modal operations
e Z([]E, AF) = =(E,F) provided that A is[], or <>.
And if (E,F) is resolvable, then ([] E, AF) is resolvable

It must be noted that the symmetrical operations = (A F, [ | E), when A is
[] or <>, and £ (F, [] E) must be considered.

e [(E(<>(A; &...& A)) = E(<>(Z (A, A& A &...& A

And if (A;, A)) is resolvable, then (E(<> (A, &...& A,)) is resolva-
ble.

Simplifications
M(E(A; & 0 & A) =T (E(9))

o T(E(A, VO VA)= E(A, VA)
['(E 4(0) =T (E() where &4 =[] or <>.

6.3. Let C; and C, be two sequences and p a first literal of C,. If
(Cy, Gy)(Cy) is resolvable in p, then a remaining sequence obtained
from X (C,, C,)TI (C))) after simplification and reduction will be called
a resolvent.

6.4. Let S be a set of ordered clauses. A linear deduction from S of
C,. with a top ordered sequence C in S is a sequence C,, ..., C, such
that each C; (1 <i<n) is either a resolvent of C;_,, or a resolvent of
C;_, against an ordered clause of S.

We give a modal version of a usual example for propositional
calculus. Let us give the inconsistent set of clauses;

[1(p Vq)
[[(~p VQq)
[1(p V~q)
<>(~pV~q
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Its refutation will be:

(lp vay  [(~pVva

@ vp[vae v]ie Ve

e ve vOe Ve

(la V{[lpVva] [lpV~a@

He Ve vile valvlw] <>@pv~q

<>(~q V]g]Vph V[T v ] v[la] Ve Va)

<>Jp| v vl v]ia v[1e va)
0

where we have considered only the main steps in the proof.

6.5. Completeness

Let S be a set of ground sequences, and C a sequence in S. If S is
unsatisfiable and S — {C} is satisfiable, then there is a linear refutation
from S with top sequence C.

Proof. The proof proceeds by induction on the degree of S, using a
reasoning similar to the one used in the case of modal resolution given
in 5.

7. Applications and Implementations

Several implementations of this method have been done. For
propositional S5, O. Galion [GO] has implemented a linear refinement
in Pascal on a APPLE II. Rychlik [RP] and Kochut [KR] made a
program which is a linear refinement, for a prenex subset of formulas
of quantificational S5. It has been applied in an expert system in
medecine. In [LE] and [FL] an implementation of linear refinement
for the prenex formulas of linear temporal logic of programs has been
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realized in Prolog on DEC LSI-11-23 and on DPS8. These programs
have been used to prove properties of programs [CF2]. In the same
way P. Combe and V. Leford [CL] devised a program for a subset of
linear temporal formulas and used it for proving properties of network
protocols.

One of the most impertant problems of these realisations is the
difficulty in manipulating realistic sets of data. To solve this problem
J. Henry [HJ] has implemented the modal resolution on a subset of
prenex temporal formulas, that we will call Horn modal clauses,
clauses with at most one of its propositional variables which is not
negated. The programs have been realized in Prolog on a DPS8, and
control facilities of Prolog can be used.
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