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Introduction

A BCK logic is an implicational logic based on modus ponens and
the following axiom schemes:

Axiom B A DB .o.(€ o) 2(€2>%)
Axiom C oA (B DE).o. % o(d oF)
Axiom K o (B o).

In this paper, as a corollary of a theorem on combinators, we prove
the following, perhaps surprising result:

Theorem 2 If o > % and % are theorems of BCK logic, then there is
a substitution instance .o/, > #, of & > % and once ¢, of €, such that
oy = €. %, is therefore a theorem of BCK logic.

In other words substitution instances of any pair of theorems of
BCK logic can be used as minor and major premises in the rule modus
ponens.

Theorem 2 of course does not hold in classical or intuitionistic
implicational logics. For example we cannot use instances of the
following as minor and major premises for modus ponens:

o Df
A oA >B).o.A DR

Combinators and Functional Characters
The Axioms B, C and K are named after the combinators B, C and

K because they are directly related to the ‘‘principal functional
characters’’ of these combinators.
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The combinators B, C and K are operators with the following basic
properties:

BXYZ = X(YZ) (1)
CXYZ = XZY -2)
KXY =X -3)

Other BCK-combinators (') are given by :
If X and Y are BCK-combinators so is (XY).
Each combinator has associated classes called functional charac-
- ters (fcs); the most general of these is called the principal functional
character.

Functional characters are built up from certain basic ones and the
rule:

If a and P are fcs so is Faf.

The term F has the following rule:

Rule F FofX , aY B (XY)

aY can be interpreted as **Y has (or is an element of) fc or type a”".
Fap is then interpreted as the fc, type (or class), of all functions from
a into B.

The rule then says: If X has fc Faf and Y has fc a then XY has fc .

The principal functional characters (pfcs) of B, C and K are given
by:

=F(Fap) (F(Fyo) (FyB)B

=F(Fa(Fpy) FB(Fay))C
—Fa(FPo)K.

Note that these are the most general possible under (1), (2), (3) and
Rule F. The one for K, together with Rule F, for example, gives:

aX, BY (K XY)

() Standard combinators also include S with the property
SXYZ = XZ(YZ)

B and C can be defined in terms of K and §.
Standard combinators can represent repetitions of terms, BCK-combinators do not.
i.e., No term, made up only of the variables X,, X,....,X, and brackets, in which at least

one X; occurs more than once, can be represented by AX, X3 ... X,, where A is a BCK
combinator.
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which is what might be expected for arbitrary fcs a and B by (3).

The pfcs for B, C and K translate directly into Axioms B, C and K
for BCK logic if each Faf is replaced by a o . Also an application of
Rule F has the same effect on the fcs as an application of modus
ponens has in BCK logic. (For details on fcs see [2].)

Thus for example to find the pfc of CK, we take the fc
F(Fo(Fpa)) (FR(Faa)) of C which is the most general one that will fit
with the pfc Fa(FBa) of K.

Thus by Rule F —FB(Faa) (CK).

This corresponds to the application of modus ponens to the major
premise

ol (B o). B (A o),
an instance of Axiom C, and Axiom K as minor premise, resulting in
=% oo Do)

The correspondence between the pfcs of combinators and the
theorems of intuitionistic implicational logic was first noticed by
Curry (see §9E of [2].) Further work on this was done, amongst
others, by Howard [4].

The stratification theorem of [2] gives sufficient conditions for
(standard) combinators to have a functional character. There are
standard combinators that have no fc and there are others, including
some BCK combinators, that have a fc but that do not satisfy the
conditions of the theorem.

The Four Results In this paper we show the following:

Theorem 1  All BCK-combinators have a pfc.

This, in view of the fact that the B, C and K combinators do not give
rise to duplications, is not all that surprising, but Theorem 2, the
corresponding result in BCK logic, that follows directly from it, is
more so.

A BCK algebra is one based on a set T and an operator *. The set T
has at least one element 0. Axioms can be written as:

((b*c) * (a*c)) * (b*a) = 0
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((c*a)*b) * ((c*b)*a) = 0
(a*b)*a = 0
a*0) = a

Substitution of equality is allowed and a * b = 0 is usually written as
a<b.

There is an equivalence between a BCK logic and a BCK algebra
(outlined in [1]) which gives, by Theorem 2:

Theorem 3 1f in a BCK algebra a<b and ¢ =0 are theorems, then
there is a substitution instance a, of a, a corresponding one b, of b and
once ¢, of ¢ such that b, =c,;. Thus a; =0.

A fourth version of this theorem involves the ‘‘Fool’s Model’’ of
combinatory logic of [5]. This can be described briefly as follows:

Let S be an arbitrary nonempty set and consider the algebra <S, -,
V>, where V is the closure of S under the binary operation —.

On 2V now define the operation o by:

aof = {C|(3B)(3D)BEpADEaACEaAD = (B-C)}

We can then ‘‘define’’ combinators as elements of V.

K = {A-.B-A|A,BEV}
B = {(A-B)->.(C-»A)-(C-»B)|A,B,CeV}
C = {A-(B->C).-.B5(A-C)|A,B,CeV}

W= {A>(A->B).-.A>B|A,BEV}

etc. (Note that these sets correspond to the axiom schemes and to the
fcs.)

The operation o behaves like composition ; for example

CokK {B>(A->A)|A,BEV}
and (CcK)oK {A->A|AEV]

Il

The latter we call 1.
K however works in a slightly restricted sense.

Koa {B—)A]AEQ /\BEB}
(Koa)oP {A|A€a A B}
S0 (Koa)of = aif p +0.

Il
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In the presence of W an “‘empty combinator” can be defined by
Wol.

SO (KoK) o (Wol) = § rather than K.

If however we consider the subalgebra of the algebra <2V, o>
based only on B, C and K, Theorem 1 gives us:

Theorem 4 In the algebra <{K,B,C},0,L> where L is the closure
of {K,B,C} under o, § L.

In this algebra, as it contains no @, K now has its expected property

Kca)op = a.

The Proof of Theorem 1

Before we prove Theorem 1 we need two lemmas and the definition
of a BCK-term.

B,C,K and the variables X;,X,, ... ,X,, .. are BCK-terms.

If X and Y are BCK terms so is (XY).

The first lemma is a BCK version of the Subject Reduction/Expan-
sion Theorem of [2] (§ 9C2-4) and [3] (§ 14B). The proof of the lemma
for BCK terms is similar to that of this theorem.

Lemma I If Xand Y are BCK terms and X = Y can be proved by (1),
(2) and (3) then X and Y have the same pfc.

Note that in obtaining the pfc of a term with variables the fcs for the
variables are chosen so as to make the fc of the term as general as
possible.

Our second lemma requires the notion of the level of a term.

A term equal (by (1), (2) and (3)) to one containing no combinators
has level 0.

If there is a natural number n such that

YXil Xi2 "Xin = Xl Yl Yz . Yk,

where Y is a term, X| 1+ Xi, -+ X are variables notin Y, X; is a variable
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and Y;, Y, ..., Yy are terms of levels =m, at least one of which has
level m, then Y has level m + 1.

For example, B,BX,,KX; and CX, X, are of level 1, BX,B and
CBB are of level 2 and BX, (CBB) is of level 3.

Lemma 2 IfY is a term containing no variable more than once, there
is a natural number n such that for any f, given an appropriate
assignment of fcs to the variables in YX;, .- X, (Xiys-.-, X, are varia-
bles not in Y), YX;, ...X; has fc p.

Proof We first prove the lemma for a term Y without combinators
(n=0 will do in this case). We prove this by induction on m the
number of variables in Y.

m =1 Y is a single variable and so can be assigned the fc .
Assume the result for m <p.

m =p Inthiscase Y = Y, Y,, where Y, and Y, each contain fewer

variables than Y (no variable occurs twice). Thus Y, and Y, can be

assigned arbitrary fcs, so we assign Y; Fof and Y, . Y then has fc B.
Now we prove the lemma by induction on k the level of Y.

k =0 By Lemma 1, Y has the same pfc as a term Z without
combinators, so by above this is 3.
Assume that result for k <gq

k = q Now there is a natural number n such that
Yxil ...Xin s X]Y] sea Yk

where each Y, has level < q.

Thus for each Y, there is a natural number r such that Y, X
has an arbitrary fc f;.

If the fcs of X, ..., Xs, needed to achieve this are Oty 5eees Oy, Y has
fc oy = Fgou, ...atht(z).

Note that as no variable appears twice in YXi, ... X, none will
appear twice in X;Y,... Yy, so the fcs for the variables in each
Y Xs, ... X, and for X; can be chosen without fear of conflict.

X,

S

(2) Fi=F

Fnt19102... Omez = Frn0y ... O F(Oms1 Qmys)-
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Now if Fyy;...yip is chosen as a fc for X;, X;Yy...Y, has fc B.
Thus the pfc of YX;, ... X;_is also f by Lemma 1.

Now a combinator Y is obviously a term of finite level (the level will
certainly be less than or equal to the number of Bs, Cs and Ks in the
combinator), so by Lemma 2, YX;...X, has a pfc B given that
X1,...,X, are assigned appropriate fcs ay,...,0,.

Thus Y has fc F,a,...0,p.

We have therefore proved Theorem [ and hence Theorems 2, 3 and
4.We could note finally that the results of this paper apply to all
weaker sets of combinators, weaker logics, weaker algebras and
weaker models.

For example BCI-combinators have the combinator / with the

property,
IX=X
instead of K. (I can be defined as CKK using BCK combinators.)
BClI logic replaces Axiom K with
Axiom [ o o,
and BCT algebra replaces the third axiom by:

a*a=0
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