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1. Itis well-known that Alan Ross Anderson and Nuel D. Belnap, Jr.,
did not only reject classical logic, but also the classical notion of
derivability. Although [1] is in a sense essentially about derivability,
very little direct attention is paid to the notion of derivability itself in
this book. All Fitch-style formulations are devised to prove theorems,
not, however, to derive conclusions from sets of premisses, and the
same obtains for most other formulations. There is one exception: [1]
contains a definition of ‘“‘a proof in E that A4, ..., A, entail(s) B”
(pp. 277-278). By A4, ..., A, eB (Y —in plain words: B is relevantly
derivable from A;, ..., A, — we shall denote the fact that there is a
proof in E that A,, ..., A, entail(s) B.

Let us briefly paraphrase Anderson and Belnap’s definition, which
is central to this paper on relevant derivability. In order for B to be
relevantly derivable from A4, ..., A,, we first of all need a proof that
guarantees classical derivability, i.e., a sequence of formulas C,, ...,
Cn(=B) in which each C; is either one of the A;, or an axiom, or
arrived at from previous members by application of one of the rules of
E, viz. &1 and — E. Moreover, the derivation of B need to be
relevant. To ensure this, Anderson and Belnap introduce the require-
ment that it be possible to prefix stars to some members of the proof
as follows: attach stars to premisses, and not to axioms that are not
premisses ; if C; is added to the proof by application of one of the rules
to C; and Cy, then C; is starred iff C; or Cy is starred, but & I may only
be applied if both C; and C, are starred (in which case C; is relevantly
derivable from A4, ..., A,) or in case both C; and Cy are unstarred (in
which case C; is a theorem); as a consequence of this procedure, B
should be starred. In the sequel of this paper, we shall treat the stars
as integral parts of the proof.

() We reserve ‘a+ A’ for classical derivability ; see section 5.
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In the present paper we (i) articulate a Fitch-style system for
relevant E-derivability, (ii) illustrate its use, (iii) generalize the result
to other relevant logics, (iv) discuss the relation, between relevant and
classical derivability, (v) discuss heuristic rules to define relevant
derivability, given an axiomatic system from which classical derivabi-
lity is defined, and (vi) discuss an alternative view on the relation
between relevant derivability and axiomatic systems for relevant
logics. We start with Fitch-style systems because there is a rather
natural way to define relevant derivability with respect to them. Such
a definition is interesting also because Fitch-style systems are highly
valuable from a pedagogical point of view and because some
fragments of relevant logics can only be characterized with respect to
such systems provided relevant derivability is defined in them; see
section 3 for an example.

2. Let F'E be the result of adding to the rules of FE (see p. 347 of [1])

the following structural rule (which we formulate somewhat expli-

citly):

Prem. As the first step or after a formula with rank 0, a step may be
introduced with rank 0 receiving the unit class {0} of numerical
subscripts.

Definition 1. o l>g ¢ A iff there is an F’ E-proof such that (i) for each
' By, introduced by the rule Prem., B €a, and (ii) A,
occurs in the proof with rank zero.

Definition 2. g A iff A occurs with the empty set of numerical
subscripts in some F' E-proof.

Theorem 1. Ay, ... A, g Biff Ay, ..., A, g B.

Proof. Transform the F’ E-proof of B from the premisses Ag, .o, Ay
according to the procedure of § 4.1 of [1]. The result is obviously a
proofthat A4, ..., A, entail(s) B (for the stars: replace A by A and Ay,
by *A). The other half of the proof is even more obvious.

Theorem 2. g A iff . A.
The proof is straightforward.
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Corollary 1. +g A iff —p A.

3. Let F'E_ , consist of Prem, Hyp, Rep, Reit,»1,—-E, Vland VE,
i.e. all rules of F'E that do not refer to & or ~. Define theoremhood
and (relevant) derivability as for F'E.

To see that F' E | , is the Fitch-style formulation of the implication-
disjunction fragment of E (as an inferential system), consider the
Hilbert-style system E_ , which consists of the following items of
pp. 339-340 of [1]: - E, Al-4, A8, A9 plus (in the absence of &I and
A10) the following rule:

V—: from A—-C and B—C to infer A VB-C.

To define abg A we have to introduce the appropriate proviso on
stars on (— E and) V —, viz. that A V B — C is (un)starred if both A - C
and B— C are (un)starred and that no proofs are permitted in which
A VB—-Cisderived by V—from A — C and B— C in case only one of
the latter two is starred. We leave it to the reader to prove that F'E_ |,
and E_ , are coextensive with respect to theoremhood and (relevant)
derivability, and also that no system in the style of FE (i.e. without the
rule Prem.) is coextensive with the former with respect to derivability.

4. Where L is a relevant logic other than E, how should we define
relevant L-derivability ? We found it somewhat astonishing that this
question is not considered in [1]. Nevertheless we think that the
answer we present here for Fitch-style systems agrees with the views
defended there.

Let FL be a Fitch-style system which characterizes the set of
theorems of L and the structural rules of which are as in [1]. (More
specifically, if r is the rank of a hypothesis, the latter receives {r} as
its set of numerical subscripts.) We now propose to proceed as
follows:

(1) Extend FL into F’ L by adding the rule Prem, and define o o A
as in definition 1.

It is quite obvious that (1) is not the only possible way to define

relevant L-derivability, and that it cannot be proven under the very

weak aforementioned conditions that (1) is the most natural way to

define relevant L-derivability.
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Nevertheless (1) is in two senses the most natural procedure for the
relevant logics that are characterized in terms of Fitch-style systems
in [1]. First, Fitch-style systems are essentially sets of (a specific form
of) rules of inference, and [1] clearly contains the view that premisses
should be treated in the same way as hypotheses and formulas derived
from hypotheses. It follows that the most natural way to define
relevant derivability consists in the generalization, whenever this
makes sense, of the rules for subproof formulas to ‘‘main proof’”
formulas. This is exactly the result we obtain by applying (1). Second,
consider the axiomatic systems presented in [1] for the logics mentio-
ned in this paragraph. We think to do justice to [1] by requiring for all
these logics that relevant derivability be defined from the axiomatic
systems in the same way as it is defined in [1] for E (i.e. “‘a proof that
A4, ..., A, entail(s) B""), except in that applications of —E in which
the minor is unstarred and the major is starred are forbidden. This
modification does not make any difference for E and weaker systems
(see section 6), but it is essential for T, because, as H»r A—> A
— B — B, the specific properties of T would be violated if we would
nevertheless derive B from the premiss A— A —B and the logical
theorem A — A. Where L is either T, E, R, EM or RM this definition
of a k> A is clearly the most natural both in general and according to
the views of [1]; consequently, the following theorem shows that (1) is
the most natural way to proceed for the corresponding Fitch-style
systems. Let o - A be defined by (1).

Theorem 3. o bop; Aiffa oy A
The proof is, for each system, wholly analogous to that of theorem

NG

5. We shall now consider the relation between relevant derivability
and classical derivability. It not only will turn out that it is harmless to
introduce classical derivability into a relevant logic, but even that
classical derivability may be defined in terms of relevant derivability

(3 IfL is not T, a supplementary step is needed in the transition from the F'L-proof
to the L-proof': if *B need to be derived from A and *A — B, insert a proof of A—>B B
from A before *B and justify *B as derived by - E from *A —» B and A —» B - B (remind
that —A—- BB if — A).
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(see theorem 7 below). To avoid any confusion we start from a
Hilbert-style formulation for some relevant logic. In this case we have
at least a calculus C in the sense of an axiomatization of a set of
*‘logical truths’’, i.e. C = <w,R>, where w is a set of formulas
(axioms) and R a set of rules, theoremhood (¢ A) being defined in the
usual way. Whether relevant derivability is defined for C (in terms of
restrictions on stars) or not, is immaterial to our present point. We
simply introduce classical derivability in the traditional way:

Definition 3. o ¢ A iff there is a list of formulas C,, ..., C, such that
A = C, and any C; is either a member of a or a member
of w or a result of the application of a member of R to
previous formulas in the list.

It follows immediately that:
Theorem 4. ¢ A iff § ¢ A
Theorem 5. ¢ A iff, for all a, a ¢ A.

Let a t»c A be defined under the restrictions of [1], viz. that all
members of R may be used to derive A from «,(?®) possibly under
certain reasonable conditions on stars (see section 6). In this case the
following two theorems are equally obvious.

Theorem 6. ¢ A iff @ >¢ A.
Theorem 7. ac AiffaUwisc A

We add some comments on theorem 7. (i) Given a Fitch-style
system which contains the rule Prem and in terms of which relevant
derivability has been defined, the latter is turned into a definition of
classical derivability if we transform Prem into Prem® by stipulating
that premisses be introduced with the empty set of numerical subs-
cripts. Notice, e.g., with respect  to F'E, that

(® This presupposes that the set of axioms is given in terms of a (finite) set of axiom
schemata.



26 D. BATENS and J.P. VAN BENDEGEM

p-p&(q—q),pthbp&(q—q) and ¥ p&(q—q). In other words,
replacing Prem by Prem® results in new items (in the proof) and not
only in a change to the sets of numerical subscripts. (ii) Even from a
relevantist point of view, the properties of classical derivability are
quite sensible: if it is presupposed that any set of premisses implicitly
contains all logical axioms or all logical theorems — and this presuppo-
sition is quite usual - then o - A and o > A are coextensive. (iii)
Classical derivability is definable in terms of relevant derivability.

As the conversé Of the last statement does not obtain in general we
face the following situation. It is well known that there are multiple
ways to extend a calculus (in the above sense) into an inferential
system defined in terms of classical derivability. Analogously, there
are multiple ways to extend the latter into an inferential system
defined in terms of relevant derivability. Arruda and da Costa’s
well-studied system P (¢f. [3]) is a relevant logic formulated in terms
of classical derivability. It is a relevant logic ; classical derivability is
defined, and hence so is relevant derivability for all sets of premisses
that contain all axioms (for all ‘‘normal theories’’, as Meyer and Dunn
call them in [1], p. 300 ff.), but relevant derivability is not defined in
general. (%) (%)

It seems worthwile to mention that the distinction between classical
derivability and relevant derivability does not coincide with Anderson
and Belnap’s distinction between ‘‘derivable on’’ and ‘‘derivable
Srom™ in [2]. (i) In this paper both notions are linked to conditional
proof (—1I); ““derivable on’” then leads immediately to irrelevance,
viz. A—. B— A. Obviously, the introduction of classical derivability
into some relevant logic does not lead to any new theorems. (ii) In [2]
‘*derivable from™’ is defined in terms of a simple use criterion. In the
presence of conjunction or disjunction, both relevant derivability and
relevant implication require other restrictions.

6. In the preceding section we mentioned (i) the underdetermination
of classical derivability by theoremhood, and (ii) the underdetermina-

(‘) Wilhelm ACKERMANN'S “‘strenge Implikation’ system (see [4] or [5]) is also
defined in terms of classical derivability, but furthermore contains all PC-inferences.

() In a separate paper we use the present results to study the system P and some
related systems in terms of Fitch-style proofs.
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tion of relevant derivability by classical derivability. However, these
two forms of underdetermination differ in degree. Underdetermina-
tion (i) is total : theorems as such tell us nothing about derivability. On
the other hand, classical derivability should reveal something about
relevant derivability. For one thing, one should, whenever possible,
define relevant derivability in such a way that theorem 7 holds and
that o and A share some variable whenever o - A. However, this
procedure is heuristically very weak. Something deeper and heuristi-
cally more useful may be said. We did so already for Fitch-style
proofs, and now shall consider axiomatic proofs. (%)

Classical derivability does enable us to distinguish between rules
which apply to theorems of logic only, and other rules. For the former
rules we obviously require that all premisses be unstarred. Suppose
now that classical derivability enables us to distinguish between
implications and extensional connectives — we disregard logics
containing other connectives. Let R be the set of rules on which we
still have to define starring conditions. The general requirement is as
follows: exclude that the conclusion be starred if all premisses are
unstarred and exclude that the conclusion be unstarred if some
premisses are starred (only theorems of logic should be unstarred).

Case 1. Members of R;CR that are of the form A /B, e.g.,
A&B/A.

These rules follow the general requirement.

Case 2. Members of R, €R — R, in which majors may be distinguis-
hed from minors, e.g., AVB, A-C, B»C/C.

Exclude applications in which (i) only some minors are starred, (ii)
only some majors are starred, or (iii) majors are starred and minors are
not. In section 4 we commented already on (iii) in connection with
— E. The same reasoning applies to other rules of R,. One should not,
e.g., derive *C from AVB, *A—-C and *B—C unless —A VB
guarantees H(A-C)& (B->C)-»C and A, B> A&B, or ‘unless
A VB guarantees A VB—-C—-Cand A>C,B-Ci>A VB-C.

Case 3. Members of R;SR - R, — R, which concern essentially

(®) We do not mean here a proof of some theorem from axioms, but a proof of some
conclusion from some set of premisses, which proceeds with the help of means
provided by an axiomatic system.
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some extensional connective, viz. its simple or ‘‘hypothetical’’ intro-
duction or elimination, e.g., A, B/ A&B and A—-C, B->C/
AVB-C.

Exclude applications in which some premisses are starred and some
are unstarred.

Case 4. Members of Ry=R—-R,—R,-R;, e.g., A->B, B-C/
A-C.

In this case (and in this case only) several policies may be sensible,
depending on the already available theorems and (primitive or deri-
ved) rules. E.g., for our example, four approaches may make sense:
(i) exclude A—-B and *B-C, (ii) exclude *A—B and B—C, (iii)
exclude both, (iv) exclude neither. In the presence of —E and
A->BrB—-C-. A-C, the approaches (i) and (iii) are not sensible:
in the presence of »E and B>Ci>A -B—. A—C, the approaches
(i) and (iii) are not sensible. Also, several approaches have sensible
interpretations. According to (i) the rule may be seen as a conditional
form of - E, and hence as conforming to the requirements in case 2.
Consider another member of Ry: A B, ~A—B / B. In the presence
of FAV~A-B—-B and A-C, B>C>A VB-C, one might re-
quire that both A—B and ~A - B be starred or that both be
unstarred. But in the presence of contraposition, transitivity and
~A—A [ A, this rule may be seen as dependent on transitivity — the
other two rules belong to R, — and hence the restrictions on stars will
go along with transitivity. In another paper we shall relate such
approaches to the heuristics of proofs.

7. In the preceding section we implicitly took up the following view
on the relation between a calculus <w,R> and at> A: a proof of A
from o may contain members of a as well as members of w as well as
applications of members of R, A should occur in the proof, and the
proof should fulfil certain starring conditions. However, an alternative
view is present in several publications; e.g., it is implicit in a
contribution to [1] by Robert K. Meyer and J. Michael Dunn - see
pp. 300-314. This view, which we shall call the Meyer-Dunn view,
presupposes, in contradistinction to our view, that some connective is
identified as an implication and some other as a conjunction. We shall
present two formulations of the Meyer-Dunn view. The first presup-
poses that all theorems of logic are given, or that they are provable in
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some independent way. The second formulation presupposes that - E
and &I are members of R.

First formulation. o A iff there is a sequence Cy, ..., C,(= A) such
that each C; is either a member of «, or is derived from two previous
members by application of &I, or is derived from some previous
member C; in view of the fact that C; - C; is a theorem. (No reference
to stars is needed.)

Second formulation. o A iff there is a sequence Cy, ..., Cy(= A)
such that each C; is either a theorem of logic or a member of « or
derived from previous members by some member of R, where the
specific conditions on stars are as follows: (i) & I may not be applied if
one premisse is starred and the other is not, (ii) —E may only be
applied if the major is unstarred, and (iii) all other rules may only be
applied if all premisses are unstarred.

According to the first formulation, a proof contains only members
of a and items relevantly derived from them. According to the second
formulation, a proof contains the same items (all starred) and moreo-
ver theorems (all unstarred), which either are axioms or are theorems
derived from axioms in the proof.

Before comparing both views, we point out that theorems which are
not of the form A — B are not directly related to relevant derivability
on either view. If, e.g., A V ~A is a theorem, this fact might be used to
derive some implicative theorem, and the latter will have direct
consequences for relevant derivability ; however, A V~A itself will
not have any direct bearing on the inference of some conclusion from
items that are not theorems of logic. Of course, if the logic is such that
(A—B)— B is a theorem whenever A is a theorem, then the inferential
procedure may be adapted in such a way that the minor of an
application of - E may be unstarred. On both views, however, the so
qualified rule has to be considered as derived.

Consider the problem of articulating an axiomatic system for some
set of expressions of the form A, ..., A, B. The result arrived at on
the Meyer-Dunn view will have the same theorems as, or more
theorems than, the result arrived at on our view (depending on the
aforementioned set), but this in itself is quite unimportant. However,
our view may be applied in general, whereas the Meyer-Dunn view
may only be applied under suitable conditions on the implication and
conjunction.
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Next, consider the problem of defining the relevant derivability
relation for some axiomatic system with respect to which only
classical derivability is defined. On the Meyer-Dunn view, one will
define A,, ..., A, B as coextensive with ~A; & ...& A,— B or, in
the absence of some suitable conjunction, as coextensive with - A, —.
A;—...—».A,—B. On our view, one will proceed as explained in
section 6. The results will not coincide, e.g., if the axiomatic system
contains some rule A,, ..., A, / B such that neither A; & ... & A,—»B
nor A;-. A, —...—». A, > B is a theorem. Moreover, the Meyer-Dunn
view will not lead to a relevant derivability relation which conforms to
theorem 7. It seems to us that, unless the results arrived at on either
view coincide, the result arrived at on our view will be more suitable
with respect to the intentions of the persons who devised the
axiomatic system and its classical derivability relation. By way of an
example, consider the semantics (and more specifically the relevant
semantic consequence relation) devised in [6] by Richard Routley and
Andréa Lopari¢ for the Arruda-da Costa system P. This semantics
reduces the system to a much weaker logic than Arruda and da Costa
intended it to be, as may be seen, e.g., from the fact that the regular
theories (viz. the theories having all logical truths as theorems) which
are studied by Arruda and da Costa are much stronger than they
should be on the Routley-Lopari¢ semantics. Arruda and da Costa
apply such rules as A— B, B—C /[ A - C to non-logical theorems, and
the semantics fails to validate such applications.

As a final remark we add that we called the alternative approach
after Meyer and Dunn, because they implicitly apply it. We do not
know, however, the extent to which Meyer and Dunn were or are
willing to defend this view as philosophically correct.
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