RELEVANCE AND FIRST-DEGREE ENTAILMENTS

Harry DEUTSCH

§0. Introduction. A striking feature of the Ackermann-Anderson-Bel-
nap relevant logics E and R is that they do not conform to the Boolean
Order of Things — according to which nothing is more true than a
theorem of logic nor more false than the denial of a theorem of logic.
More precisely, E, R and kindred systems do not satisfy the principle
of conformity (to the Boolean Order), that if A is a theorem, then so is
~A—-A.(Y (1), for example, is a theorem of R, though (2) is not:

(1) (p—p) & (g—q)
(2) ~((p—p) & (q—q) » (p—>p) & (g—Qq).

The models for R (see [16]) provide a devilish way to give greater
credence to the antecedent of (2) (the denial of a theorem of logic) than
is given to its consequent (a theorem of logic), which makes mince-
meat of Boolean priorities.(?) (1), however, is verified at each
consistent point in the models and is therefore valid.

It is no accident that R is non-conforming. The strategy that renders
R relevant precludes conformity. For

3) A-AVB (addition)
4 A&B-B (simplification)

are of course theorem (schemata) of R; whence by De Morgan
principles and transitivity (of —), (2) entails

(5) ~(p—p)—.q9—q;

(') The notation throughout this paper is that of [6] which is essentially the same as
that of [1].

(3 Altough I have characterized conformity in terms of negation and entailment (or
implication), the non-conformist nature of E and R is ultimately due solely to the
properties of entailment and implication in these systems. The formula A —(A — A)
might be termed a characteristic non-theorem of R; and to paraphrase a remark of
Dunn’s (cf. [10]), the honest way to reject this formula is to have models in which A — A
is false and A is true. Such are the models that flout Boolean Law. Conformity and its
bearing on relevance is further discussed in [9].
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but (5), in the terminology of [1], is blatantly irrelevant. One of the
reasons for calling implication in R *‘relevant’ is that whenever A — B
is a theorem of R, A and B share at least one propositional variable (in
virtue of which it is said that there is some connection in content or
meaning between antecedent and consequent). (5) violates this varia-
ble-sharing requirement. (%)

It appears that relevance and conformity are somewhat at odds, and
in a sense that is unfortunate. Conformity makes for a certain
simplicity of structure, as is apparent in the contrast between R and its
conforming neighbor R-Mingle (RM). RM is obtained from R by
adding the axioms of the form A —(A—A). Since RM is confor-
ming, (%) (2) and hence (5) are theorems of RM. This has induced
Meyer in [1] to call RM a “‘quasi-relevant logic."" It is true that RM is
“‘paradox-free’” in the sense of Sugihara [17]. That is, there are no
formulas B and C of RM such that g, A— B and ig,, C— A, for every
formula A of RM ; but it fails the crucial variable-sharing test, thereby,
as Meyer says, “‘undermining the raison d'étre of the enterprise.”

Nevertheless, RM has a lucid Kripke-style modelling framed in
terms of a binary linear accessibility relation. In contrast, R requires
models with a ternary accessibility relation governed by various
postulates. The algebraic models of RM are simple (Sugihara) chains
with the truer points up above and the more false points down below —
Just as it should be, as it were, according to Boolean Law. In contrast,
the algebraic models of R are the more general, and hence somewhat
more mysterious, De Morgan monoids. (%) Meyer remarks in [1] that
RM is more easily visualized than R; and indeed RM is much more
well-understood than R. (%)

It would be nice to be able to reconcile relevance with the simplicity
that conformity tends to induce. In what follows I shall explore this
possibility by first (§ 1) developing the rationale — in terms of rele-

(*) (3) also of course fails to satisfy the **use-criterion’" of relevance; see [1] §3.

(") See [1] §29.3 for the relevant facts about RM.

(%) The algebraic modelling of R is due to Dunn (see [17).

() Urquhart’s recent discovery ([19] and [20]) that a large class of relevant logics,
including R and E, are undecidable at once illuminates and deepens the mystery of these
systems. Basic questions remain unanswered. For example, there is as yet no relational
semantics for RQ and EQ, the quantified extensions of R and E. (But see [15].)
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vance and conformity — for a well-behaved family of conforming
relevant logics, and then in §2 and §3 setting out some of the basic
axiomatic and semantic facts about the first-degree entailment
fragment of these systems.(”) I shall argue that the system of
first-degree entailments (entailments among truth-functions) I shall
propose is every bit as relevant in every relevant respect as the system
of “‘tautological entailments’ that forms the first-degree entailment
fragment of R and E. The conforming relevant logics are in some
respects similar to RM, but unlike RM they preserve key relevance
properties — variable-sharing for one — and they are in certain ways
more reasonable than RM. (8)

§1. Relevance and conformity. The argument given above that
conformity leads R into irrelevance turns on (3) and (4). The approach
I shall adopt here is to retain (4) and the spirit of (3) though not its
letter. Specifically, I propose to replace (3) by the principle that you
are entitled to affirm a disjunction A V B provided that you affirm one
disjunct and either affirm or deny the other; merely affirming one
disjunct while withholding judgment on the other is not sufficient:

(6) (A&B) V (~A&B) V(A& ~B) — (A VB).(9

Perhaps in the spirit of [2] one could view (6) as an explicitly correct
version of the enthymematic (3). However, I do not think that (3) is
enthymematic, or otherwise incorrect. (1°) Rather, I am proposing to
replace (3) by (principles underlying) (6) simply because the latter can

(") The full systems are studied in [6], [7], [8], and [9].

(*) See the discussion of interpolation below.

(*) 1 am not suggesting that (6) replace (3) either as an axiom or, in rule form, as a
primitive rule of inference. See below p. 7ff.

(') In [14] Parry argues that we do not in practice make use of the full liberties of (3).
He claims that when we have occasion to infer A V B from A, that is always on the basis
of some premise containing B as a sub-sentence: *‘If I wish to infer from the fact that I
am over 63, that I am over 65 or blind, it is because I know already that if [ am over 65 or
blind, I get an extra income-tax exemption.”” Even if Parry is right, however (and
perhaps he is), there are other forms of inference, frequently exploited in *‘actual™
argumentation, from which (3) can be derived. For example, from the premise that
groups that are either abelian or of order less than 60 have normal subgroups, one might
infer that abelian groups have normal subgroups. This inference has the form:
A VB—C; hence A—C. (3) follows from this by taking C to be A v B.
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be made to do the work of (3) in a way that preserves relevance.
The converse of (6), viz

(7)) AVB—.(A&B) V(A& ~B) V(~A&B),
does not hold in either R or RM. (3) and (7) yield
(8 A-B v ~B

which is an anathema to both R and RM. But having taken the sting
out of (3) as above, (7) seems a pretty good idea: You are entitled to

affirm a disjunction only if you affirm one disjunct and either affirm or
deny the other.

It is true that (7) entails
(9) AVB > BV~B,

which is likely to gall the strict relevantist who believes that (9)
commits one to (8). Yet in the absence of an equivalent of (3), (9) does
not entail (8). In other words, if what one means to do in affirming
A V B is to affirm one disjunct and either affirm or deny the other, then
(9) should be tolerable even to those with the highest standards of
relevance. Accordingly, I shall take (9) to be true without fear of
reprisal by the forces of relevance. After all, on my account it is not
the independent modal status of B vV ~B that explains the truth of (9);
it is rather that given a certain (not implausible) understanding of
A VB, namely, that given by (6) and (7) (to which one might adhere for
the sake of conformity), B V ~B really does follow from A VB. For
according to (7), A VB entails one or other of A&B, A& ~B,
~A & B; and from each of these B vV ~B follows relevantly.
Something of course has to give; in particular, contraposition.

(10) A-B—>.~B—>~A.

The point of the preceding remark that, rightly understood, A VB
does relevantly entail B V~B depends on the presence of (4) to
guarantee that each disjunct of the consequent of (7) entails B or else
entails ~B. But (10) and (4) combine to reestablish (3). Worse, (9) and
(10) (by (4) and De Morgan) give

(11) B&~B)—>A
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(which in turn also reestablishes (8)).

Now (10) corresponds to an intuitive and useful form of proof, and
accordingly it holds in E, R, RM et al. To jettison it may seem too
much to ask, and perhaps the proper conclusion is that relevance and
conformity just don’t mix. I think, however, that it is worth observing
that there is another familiar route to (11) (other than by (9) and (10))
and that is by (3) and

(12) ~A & (A VB)— B (disjunctive syllogism).

(12), too, corresponds to an intuitive and useful form of proof, (11) but
it (notoriously) does not hold in the relevant logics. (12) takes the
following weakened form in R and E

(13) ~A&(AVB)».BV(A&~A)

which according to [3] says that ordinarily B follows from ~A and
A VB. Thus, with relevance and conformity in mind, I propose the
following in place of (10):

(14) A>B—>.~B&(A V~A) > ~A V(B& ~B).

(14) seems to say that ordinarily, if B follows from A, then ~A follows
from ~B.('?)
As mentioned, (12) and (3) lead to (11). Similarly, (12) and (6) imply

(15) (A& ~A) & B-B& ~B,

which, from the viewpoint of R-style relevance, is just as bad as (11)
itself. It is true that (15), unlike (11), satisfies the variable-sharing
criterion of relevance; but variable sharing is not everything. In
addition, in the relevant logics the deductive effects of inconsistency
are minimized. Unlike standard logic or the Parry-like logics,(*?) the
relevant logics are able to distinguish between those troubled theories

(') In [4] Burgess gives some instructive examples that illustrate just how useful (12)
can be, but he does not seem to notice that the rejection of (13) in the relevant logics is
not based solely on the problematic argument of [1] §25.1. There are other considera-
tions as well. For example, there is the fact that (13) cannot be added conservatively to
R ,, the pure implicational fragment of R, which in turn is motivated by concerns
somewhat different from those Burgess attacks.

(*?) But pure contraposition can in any case be retained in rule form. See [6].
(*3) See [13]. For further references see [6].
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that are simply inconsistent (i.e., trivial) and those that are negation
inconsistent (i.e., that contain a contradiction). This is surely an
important distinction to be able to draw at the level of logic. The
concepts of simple consistency and negation consistency are clearly
different; and the principles of logic that express the extensional
equivalence of the two concepts might be viewed as simplifying
assumptions rather than as indispensable forms of inference. (Admit-
tedly, to view (12) in this way may take some practice; it helps to start
with (11) and to bear (13) in mind.)

So it seems that in order to preserve as much R-style relevance as
possible within the context of conformity, we must settle for (13) in
place of (12).

Do these maneuvers combine to yield a coherent theory of confor-
ming entailment? I shall try to show that they do — especially when
entailment is represented as a relation between propositions, rather
than as an operation capable of iteration. This is not to say that
conforming entailment cannot be coherently represented as an opera-
tion; it is represented as such in [6]. As the preceding discussion
suggests, however, the issues that arise in the attempt to reconcile
relevance and conformity have to do primarily with principles of
inference among truth functions (such as (3) and (8)), and so the
restriction to first-degree entailment (no nesting of ‘=’) is not inap-
propriate.

§2. S,.. Accordingly, the required language contains two kinds of
formulas: O-degree formulas (zdfs) and first-degree entailments
(fdes). The former are formed from propositional variables, p, q, r,
etc., the logical constants &, V, ~, and punctuation symbols, as usual.
If A and B are zdfs, then A — B is a first-degree entailment.

What is wanted is a system of axioms and rules of inference, and an
associated intuitive semantics, that reflect the rationale of § 1. The
following set of schemata and rules (which might as well be called S¢4,)
should be compared with those of Eg, given in [1]. In what follows, t,
abbreviates A V~A. The notation < in A8 indicates that both
~(A&B)->~AV~Band ~A V~B— ~(A &B) are axiom schemata,
and similarly for A9.
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Conjunction

Al A&B-B
A2 A&B-A
Rl A-B,A-C,infer A->B&C

Disjunction

A3 A&tz—>AVB
A4 B&ty,—>AVB
R2 A-C,B->C,infer AVB=C

Excluded Middle

A5 B-t,, provided every propositional variable occurring
in A occurs also in B.

Negation
A6 Aos~~A
AT ~~A-SA

A8 ~(A&B) = ~AV~B
A9 ~(AVB) = ~A&~B

Distribution

A0 A&BVC)—>(A&B) V(A&CQ)

Transitivity

R3 A-B,B-C,infer A->C

A proof in Sg. is a finite sequence of entailments (y,, ... y,) where as
usual each v; (i = 1 ... n) is either an axiom or results from prior
elements of the sequence by applications of R1, R2, or R3.

The axioms on conjunction require no comment. Those on disjunc-
tion reflect the decision to adopt (6) in place of (3). AS appears to be a
generalization of (9), but in fact the two are equivalent. With the help
of AS, (7) is easily proved.('*) A8 and A9 are symptomatic of the fact

(**) Putting (9) in place of A5 yields a more elegant axiomatization, though A5 is
somewhat easier to work with.
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that a full-fledged principle of contraposition is not available in Sge.

Notice that every propositional variable that occurs in the conse-
quent of an axiom also occurs in its antecedent, and it is clear that the
rules preserve this property. Thus every theorem of Sy, satisfies this
strong variable-sharing property. In this respect, Sg. resembles the
systems of Parry [13] and Dunn [11]. But these latter systems validate
(12) (disjunctive syllogism), and hence validate (15) which is hardly
consistent with the goal of minimizing the deductive effects of
inconsistency. (15)

For the semantics I shall invoke many values ; specifically the four
values {t}, {f}, {t,f}, and ¢ — the empty set. These are labeled,
respectively, affirmed, denied, both (affirmed and denied) and neither
(affirmed nor denied). That seems as thoroughgoing a set of semantic
values as one could desire. We have both truth value gaps and truth
value gluts; and as will become clear, the gaps and gluts are quite
different conditions. The gluts (gaps) are not, unlike the gaps and gluts
of Dunn’s three-valued semantics for RM, merely reinterpreted gaps
(gluts).(*®) Moreover, affirmation and denial exhibit the very best
Boolean behavior; and all four values combine in comely conformity
to Boolean Law.

A valuation is a mapping of zdfs into the power set of Boolean
values {t,f} that respects the following conditions.

We say that v is defined ar (a variable) p; if v(p) + ¢, and v is
defined at (a zdf) A if v is defined at each immediate proper
subformula of A. Naturally then, (i) v(A) = ¢ iff v is not defined at A.

Now assume that v is defined at A. A takes one of the forms ~B,
B&C or BVC, for zdfs B and C. Accordingly, (ii) t Ev(~B) iff
fEv(B), and fev(~B) iff tev(B); (iii) tEv(B&C) iff tEv(B) and
tev(C), and fev(B&C) iff fev(B) or fEv(C). Finally, (iv)
tev(B VC) iff tev(B) or tEv(C), and fEv(B vVC) iff fev(B) and
fev(C).

An entailment is valid (in symbols = A — B) iff for each valuation v,
t Ev(A) only if t Ev(B).

(%) **Parry-entailment’’ is virtually the same as classical or Boolean entailment. Let
X be a set of zdfs containing all tautologies. Then the closure of X under Parry-entail-
ment is the same as the closure of X under Boolean-entailment. (Cf. 7], p. 6.)

(') See [10].
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A proof of completeness is in order, but before proceeding to that
argument we ought to check that the semantics does what it should do
according to §1.

As mentioned above, the theorems of Sy, satisfy a strong variable-
sharing condition. In the semantics, if B contains a variable p not
found in A, then A — B will be falsified by the valuation that assigns
the value both to each variable other than p and is undefined at p.

It is worth emphasizing that from the viewpoint of §1 such
“‘analytic’’ variable-sharing is not an end in itself but merely a
by-product of the ‘‘explicitly truth-functional’” treatment of disjunc-
tion in Sg. (17) If we mean by A VB what any good truth-functionalist
would have us mean — namely, that at least one of A and B is true and
if only one of A and B is true, the other is false — we really ought to
abandon addition ((3)) in favor of A3 and A4, for we ought to say what
we mean. And if that is what we mean by A VB, then any good
relevantist should grant us AS, for he ought to mean what he says
(about proof from hypotheses). For if, as mentioned, A5 and (9) are

- equivalent, and if disjunction is interpreted as explicitly truth-functio-
nal, then neither (9) nor AS violates the ‘‘use-criterion’” imposed by
relevantists on the concept of proof from hypotheses. Thus relevance
qua variable-sharing is secured by what I have called an ‘‘explicitly
truth-functional’’ treatment of disjunction; and this analysis of dis-
Jjunction also guarantees that the theory of inference contained in Sg,
is compatible with the relevantist’s favored concept of proof from
hypothesis: If A entails B in S, then B really does follow from A, AS
and (9) notwithstanding.

It is easy to see that the semantics falsifies (12) (disjunctive
syllogism), and hence that, as desired, S, is *‘paraconsistent’”. Let v
be a valuation such that v(p) = {t,f} and v(q) = {f}, for variables p
and q; then v(~p&(p vV q)) = {t.f}, which falsifies ~p& (p Vq)—q.
The closest one can come in Sg. to a deductive ‘‘breakdown’” in the
presence of a contradiction is this: Let A be a conjunction of atoms
(variables or their negations) such that if a variable occurs in A then so
does its negation ; then A — B is valid if and only if B is a truth function

(*7) This view of “‘analytic’* variable-sharing is thus quite different from Parry’s in
[14].
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of the variables in A. That is, one can come no closer to such a
breakdown in Sgy. than one can come in Ege.

It is almost as easy to see that conformity is forthcoming from the
semantics. In the present context conformity means that if B is a
classical i.e., Boolean tautology, then ~B—B is valid. In fact, the
converse is true as well. So we have the following modest

Theorem (conformity). B is a Boolean tautology iff ~B — B is valid.

In this form the conformity theorem says that Sg. contains classical
propositional calculus in a certain direct way. In contrast, Eg. does
not contain classical propositional calculus in this way.(18) Eg, is
non-conforming ; for as one would expect (given the remarks at the
outset of §0),

(16) ~((pV~p) & (qV~q) = (pV~p) &(qV~q)

is not a theorem of Egq,.
As a corollary to the conformity theorem we have
Corollary. B is inconsistent iff B— ~B is valid.

Hence, the semantics is able to sort out the inconsistent and tautolo-
gous zdfs from the rest. Unlike the semantics for Eg., the semantics
for Sg. does not allow that it may be appropriate in some context
(“‘possible world™") to affirm a contradiction or deny a tautology. A
contradiction may either be ignored (¢), denied ({f}), or both affirmed
and denied ({t,f}), but never simply affirmed ({t}). According to the
corresponding semantics for E. (see [1]), however, if p is both
affirmed and denied, and q is neither affirmed nor denied, then
(p V~p) & (qV~q) is simply false.

For the proof of the conformity theorem, we define a Boolean
valuation to be a mapping of zdfs into the set {{t}, {f}} that respects
the standard Boolean matrices for &, V and ~. Oviously any Boolean
valuation is a valuation since the semantical rules are entirely Boolean

(*®) Meyer has shown, however, that E contains S4 on translation ; and [7] contains a

proof that 54 is contained in S (the many-degree extension of Sy, first studied in [6]) on
the very same translation.
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for affirmation and denial. So if B is not a tautology, v(B) = {f}, for
some valuation v; whence v affirms ~B (v(~B) = {t}), and hence
~ B— B is not valid. That proves the “‘if>’ part of the theorem.

Next, observe that if a valuation v either affirms or denies B, then
some Boolean valuation v either affirms or denies B, then some
Boolean valuation v’ affirms B or else denies B, according as v does
so. (This fact is easily proved using induction on the construction of
B. For details see [7].) It follows that if B is a tautology, no valuation
denies B, and hence ~B — B is valid, which completes the proof.

The reader may have noticed that the ‘“‘only if’ part of the
conformity theorem follows directly from the semantical validity of
AS, and that conversely, the validity of A5 is established on the basis
of the fact stated in the first sentence of the preceding paragraph.
Conformity and A5 rest on the same semantical or logical precept;
namely, that while it may be useful and interesting to allow for the
possibility of reasoning cogently even with inconsistent information,
we need not at the same time allow that there may be circumstances in
which it would be reasonable to simply affirm what logically cannot be
true, or to simply deny what logically cannot be false ; for to do so is to
unduly blur the distinction between truth and logical truth.

It is sometimes said (e.g., by Meyer in [1] and Dunn in [10]) that the
semantics of E and R incorporate inconsistent and/or incomplete
“‘set-ups’’, worlds, situations, theories, etc., whereas the semantics of
RM incorporates only inconsistent set-ups and not incomplete ones. It
might appear that in virtue of A5 (or equivalently, in virtue of
conformity) the foregoing semantics does not allow for incomplete
set-ups. But that is not true. Any valuation on which some formula is
undefined will thereby be ‘‘incomplete™. The special sort of incom-
pleteness represented by a valuation that is somewhere undefined has
a number of intuitive interpretations and applications. Most of our
theories do not purport to give us the truth about utterly everything
under the sun, but only about this or that topic or set of topics — some
topics being totally irrelevant to the import of a given theory.

A valuation that is undefined here and there can be thought of as a
semantic representation of the notion of truth-about-this-or-that-to-
pic-or-(smallish)-set-of-topics. This idea usually receives a partly
syntactic, partly semantic, analysis. If we wish to know the arithmetic
truths, for example, we look to models (particularly, the *‘standard”’
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model) of the language of arithmetic. But for certain purposes a
purely semantic sorting of topics may be preferable, e.g., if we wish to
develop a theory of models for natural language ; for the vocabulary of
a natural language encompasses a potentially limitless range of topics.

§3. Completeness. I shall be brief. Soundness is proved as usual by
establishing that every axiom of S;. is valid and that the rules
preserve validity. The proof is here omitted (for the details, see [7]).

Theorem. (soundness) If — A — B, then =A — B.

Completeness is proved by a simple ‘‘reduction to normal form®
argument. For this the following definitions are required. A coentails
B if and only if - A < B. Coentailment is an equivalence relation, but
it lacks the replacement property. (It is not a congruence relation.)
For example, although both (6) and (7) are provable in S,

~pVg s~(p&q V(p&~q V(~p&q))

is not. Nevertheless, a useful replacement theorem for Stae is availa-
ble. Let —A~B abbreviate the statement that —A <B and

~A < ~B. Equivalence in the sense of =~ does possess the replace-
ment property.

Theorem. (replacement) Let C, be a zdf of which A is a well-for-
med part, and let Cy result from C, by replacing zero or more
occurrences of A in C, by B. If A =B, then —C, =~ C.

The proof of the replacement theorem is by a standard argument,
using the fact that if ~A~B, then~A~~B, ~A&C~B&C, and
—FAVC=BVC.

Following the usage of [1], a primitive conjunction (primitive
disjunction) is a conjunction (disjunction) of atoms. A zdf is in
conjunctive normal form (cnf) if it is a conjunction each conjunct of
which is a primitive disjunction, and dually for a zdf in disjunctive
normal form (dnf). The replacement theorem guarantees that each zdf
is equivalent (in the sense of =) to one in cnf and to one in dnf. (%) If A
is a zdf, ¢ (A) is to be the zdf (p; V ~p;) & (p2 V~p,) & ... & (pn V ~py)

(*) If A is equivalent to B in dnf (cnf), then B is a dnf (cnf) of A.
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where py, ..., p, lists the variables occurring in A in alphabetical order
(and without repetitions).

Theorem (reduction). —A—B if and only if there is a dnf
A V..VA, of A, and a cnf B, &...& B, of B such that
—¢0(A)& A;—B;for eachiandj (1<i=m, 1=j=<k).

Proof. Since +—A=(A;V...VA_,) and +B=(B;&...&By),
FA->BIiff —A; V... VA, - B, & & B,. Also, —¢(A) & A;— A;, and
moreover every variable in A, V...VA, is in ¢(A)& A;; hence
HO(A) > A& A; V(A V... VA,). Thus —¢(A)& A; = A, V... VA,.
Therefore, if —A;V...VA, > B;&...&B,, then —¢(A)&A; >
Bi&...&By, and so Fo(A)& A; - B;. Conversely, suppose that
—(A)& A; — By, for every iand j. Then —¢(A)& A; > B, & ... & By,
for every i. Then —(¢(A)& Ay V... V(§(A)&A,) - B, & ... & By;
and by a principle of generalized distribution easily proved in Sy,
FO(A)& A, V... VA, > B; & ...&By. Since HA; V... VA, - ¢(A),
it follows that —A; V... VA, - B, & ... & B,.

By means of the reduction theorem the question of the provability
of an entailment is reduced to the same question for primitive
entailments, entailments having the form ¢ (A) & C— D, where C is a
primitive conjunction and D is a primitive disjunction. Completeness
is now forthcoming.

Theorem (completeness). If =A - B, then —A - B.

Proof. Suppose it is not true that - A — B. By the reduction theorem
thereisadnf A, V... VA,of A and a cnf B, & ... & By of B such that it
is not true that —¢(A)& A; > B;, for some i and j. Consequently,
either (i) some variable in B; is not in ¢ (A) & A, or (ii) A; and B; fail to
share an atom. In each case it follows that $(A) & A;—> B; is not valid.
For if (i) is true, there is a valuation that is undefined at B; and
over-defined at ¢(A) & A; (i.e. the latter receives the value both.)
Assume then that every variable in B; is in ¢(A) & A;, and that A; and
B; do not share an atom. Thus B; cannot be a tautology ; for otherwise
it would contain both p and ~p as disjuncts, for some variable p, and
in that event AS implies that - ¢(A) & A;— B;, contrary to hypothesis.
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Hence, there is a valuation v such that v(B;) = {f}. It is now easy to
construct a valuation v’ such that t Ev' (¢ (A) & A} and t & v’ (By). For
any variable p, if p is in B;, then v'(p) = v(p); otherwise, (1) if both p
and ~p occur as conjuncts of A;, then v'(p) = {t,f}. (2) If p (but not
~p) occurs as a conjunct of A;, then v'(p) = {t}. (3) If ~p (but not p)
occurs as a conjunct of A;, then v'(p) = {f}. And finally, (4) if neither
p nor ~p occurs as a conjunct of A;, then v'(p) = {t,f}. Thus v'(B;) =
v(B;) = {f}; and since v'(q) +¢, tEv'(q V ~q) for each variable q,
and so t €v'(¢p(A)). Since A; = o, & ... & a,, for atoms o, it remains
to prove that tEv' (), 1 <i=<r. There are two cases to consider.
First, suppose that a; is a variable occurring in B;. Then ~a; but not oy
(no sharing) occurs as a disjunct of B;. Hence v'(~a;) = {f} and
v'(oy) = {t}. Similarly, if (2) or (3) applies, tEv'(qa;) as desired.
Secondly, suppose that a; = ~p for some variable p. If p occurs in B;
it occurs as a disjunct since ~p does not. Whence v'(p) = {f} and
v'(04) = {t}. Similarly, if (2) or (4) applies, t €v’(q;), as desired. Thus
as predicted, ¢(A) & A; — B is not valid. It follows (using the fact Sg,,
is sound — together with previously noted equivalences) that A - B
isn’t valid either, which completes the proof.

I claimed above that Sg. is more reasonable than RM. It is time to
make good on that claim. As Meyer has observed, RM is ‘‘unreasona-
ble in the sence of Craig’’ since the interpolation theorem fails for RM.
In the spirit of [1] §15.2, I shall show that a near ‘‘perfect”
interpolation theorem holds for Sg.. The theorem is of the Lyndon
variety rather than the Craig variety since the latter holds trivially for
Stge- (2%

A variable p occurs positively (negatively) in B if some occurrence
of p in B lies within the scope of an even (odd) number of negation
signs. B is said to be negation-reduced if it is constructed from atoms
by means of & and V. Every zdf is equivalent (in the sense of =) to
one that is negation-reduced. If A is negation-reduced, then p is
positive (negative) in A if not all positive (negative) occurrences of p in
A have the form (p V ~p). Lastly, C is an interpolant of an entailment
A— Bif ~A—C and —~C— B, and every positive (negative) variable
in C occurs positively (negatively) in both A and B.

(2% See [5] for a proof of Lyndon’s theorem.
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Theorem (interpolation). An entailment is provable in S if and
only if it has an interpolant.

Proof. The **if”* part follows directly from the rule R2. For the rest,
assume that — A — B, and put A — B into normal form:

Ar = A1 Vi VAm—)Bl&...&Bk= B’.

For each i=m, let A% be the least conjunction of which ¢(B) is a
subconjunction and which, additionally, contains as conjuncts any
atoms that A; shares with any B, for j=k. Note that A% is always a
non-null subconjunction of (¢(A) & A;). Let C be A% V... VAX. As-
sume that p is positive in C. Then p is positive in some A%. The latter,
therefore, has the form ¢(B) & A}, where A} is a subconjunction of
A; and p is an atom of Aj. Thus p is also an atom of some B;. But any
positive atom of A’ (B') must occur positively in A (B); hence p
occurs positively in both. The proof is similar in case p is negative in
C.

Note that —¢(B)& A; - A, for every i. Therefore, —(¢(B) &
A V... V(¢(B) & A,) - C, and hence —A— C. Finally, by the
reduction theorem, —¢(A)& A;— B;; whence by completeness,
F=¢(A) & A;— B;. Thus, either B is a tautology or A; and B, share an
atom — for otherwise it is possible to construct an invalidating
valuation for ¢(A)& A;— By (as in the proof of the completeness
theorem). If B; is a tautology =A% — B;, and so —A{—B;. And if A;
and B share an atom, then again - A% — B;. Thus, - A% - B;, for each i
and j, and hence —C— B.

Despite this difference in degree of reasonableness, Siy. and RM are
closely related. The first-degree entailment fragment of RM is cha-
racterized by the three element Sugihara chain RM3 (see [12]). Our
semantics for S, contains a copy of this chain, and there is the
following simple correspondence between the two systems: A—B is
valid iff (i) each variable in B is in A, and (i) A & tz— B is valid in
RM3. Equivalently, A— B is valid iff (i) holds and (i)’ A Fem B- (See
[7] for proof of these facts.) Thus entailment in Sg. corresponds to
‘“‘analytic”’ logical consequence in RM (as applied to 0-degree formu-
las only).

A final fact. S is a Hilbert style formalism. But the proof of the
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interpolation theorem suggests another sort of syntactic representa-
tion of the class of valid entailments.

Let us say that an entailment is relevantly analytic if and only if it
satisfies the following two conditions: (i) every variable in B is in A,
and (ii) A—B has a normal form A, V... VA, - B, & ... & B, such
that for each pair of formulas A; and By, either B; contains p and ~p,
for some variable p, or else A; and B; share an atom. Using the
reduction theorem it is easy to show that an entailment is relevantly
analytic if and only if it is provable in Sg..

§4. Summary. 1 have argued that Sg. provides a simple theory of
relevant entailment between truth functions that rivals that of E¢.. By
rendering disjunction explicitly truth functional while at the same time
liberating negation in a way common to the relevant logics, one
obtains a form of first-degree entailment that might satisfy the whims
of relevantist (for relevance) and classicist (for conformity) alike. It is
at least instructive to see how far one can go in avoiding the
‘‘paradoxes’’ of implication and entailment without doing utter vio-
lence to Boolean Law.

Of course Egq, is only a fragment of a system founded on certain key
intuitions regarding conditional proof or proof from hypotheses. It is
perhaps best to regard Eg,. as a result of conservatively extending the
insights concerning conditional proof represented in R — the pure
implicational fragment of R — to inference among truth functions. (2})
From this viewpoint some of the apparent ‘‘excesses’’ of E. gain in
plausibility. In response to the clamor (e.g., in [4]) over the rejection
of the disjunctive syllogism (DS) in Eg., for example, the relevantist
can point out that DS is simply incompatible with the (otherwise ?)
reasonable and intuitive concept of conditional proof contained in R _;
for DS cannot be added conservatively to R .

There is little reason to suppose, however, that the theory of truth
functional inference contained in R(??) is the only viable theory that
preserves the pure implicational insights of R ; nor is there good
reason to believe that R | is the only viable realization of a relevant

(?) See [1] §3 for an account of R_, and [18] for an associated general theory of
implication.
(*?) I am referring here to the first-degree formulas provable in R. See [1] § 19.
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concept of conditional proof. Since Sy, is not internally incompatible
with the “‘use-criterion’’ of relevance that motivates R_, it is possible
that S, could be combined with an R_-like theory of conditional
proof to yield entirely credible theories of entailment and relevant
implication. (*%)
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