FILLING A GAP IN PROFESSOR VON KUTSCHERA'S DECISION PROCEDURE FOR DEONTIC LOGIC*

Jules Speller

The decision procedure proposed by Professor von Kutschera in his introduction to deontic logic(1) might be described as follows:

Let S be a deontic formula and S' the same formula where the occurrences of the deontic operators P and F have been replaced by their equivalents in terms of the O-operator.

Then:

S' and therefore its equivalent S are deontologically true (D-true) if, and only if, the disjunctive normal form of $\neg S'$, $\Phi(\neg S')$, is deontically unsatisfiable (d-unsatisfiable) or else: if, and only if, each member M of the disjunction $\Phi(\neg S')$ is d-unsatisfiable.

Now:

For every M, where $O(B_1)$, $O(B_2)$, ..., $O(B_n)$ are the formulas of the form O(A) that are conjuncts of M, and $\neg O(C_1)$, $\neg O(C_2)$, ..., $\neg O(C_m)$ the formulas of the form $\neg O(A)$ that are conjuncts of M, M is d-unsatisfiable if at least one of the following conditions is fulfilled:

- C₁: M is closed, i.e. M contains a formula (deontic or not) and its denial.
- C₂: Some $\Psi_i(M)$ of the form $(B_1 \wedge B_2 \wedge ... \wedge B_n) \supset C_i$ is a two-valued logical truth.

This procedure runs, however, into difficulty with formulas such as:

$$S_1 = ((O(p) \supset O(q)) \land O(\neg q)) \supset \neg O(p)$$

and
$$S_2 = ((\neg O(p) \land \neg q) \land (O(rv \neg r) \supset q)) \supset O(s).$$

The reason why seems clear. The corresponding normal forms

^(*) I wish to thank my colleagues Dr. Ginette Kremer-West, Professor Louis Vax and Professor Jean-Paul Harpes for much helpful criticism.

⁽¹⁾ See: Franz von Kutschera, Einführung in die Logik der Normen, Werte und

$$\begin{array}{ll} \Phi\left(\neg S_{1}{'}\right) = \left(\neg O(p) \land O(\neg q) \land O(p)\right) \ v \ (O(q) \land O\left(\neg q\right) \land O(p)) \ \ and \\ \Phi\left(\neg S_{2}{'}\right) = \left(\neg O(p) \land \neg q \land \neg O(rv \neg r) \land \neg O(s)\right) \ v \\ \left(\neg O(p) \land \neg q \land q \land \neg O(s)\right) \end{array}$$

contain each at least one unclosed M lacking either conjuncts of the form O(A) or conjuncts of the form -O(A). This means that for lack of either antecedent or consequent no $\Psi_i(M)$ (corresponding to those M) is construable.

As our examples show, the ranges of the two indices n and m have to be represented by $n \ge 0$ and $m \ge 0$, and, therefore, are larger than those apparently supposed by Professor von Kutschera.

One simple way to restore the applicability of the procedure would consist in replacing criterion C_2 by:

 C_2' : Some $X_i(M)$ of the form $B_1 \wedge B_2 \wedge ... \wedge B_n \wedge \neg C_i$ is a two-valued logical falsehood.

The correctness of criterion C_2 ' already results from the correctness of the original procedure (as proven by Professor von Kutschera(²)) together with the equivalence of $V(p\supset q)=1$ and $V(p\wedge \neg q)=0$.

But it also can be shown independently by deriving

(1) If some $X_i(M)$ is a two-valued logical falsehood, then M is d-unsatisfiable,

from a fundamental principle of deontic logic which D. Føllesdal and R. Hilpinen state as follows (3):

(E1) If a set of sentences A is consistent and $\{Of_1, Of_2, ..., Of_n, Pg\}\subseteq A$, then $\{f_1, f_2, ..., f_n, g\}$ is consistent,

together with some quite obvious truths.

Entscheidungen, Freiburg/München, 1973, pp. 61-66.

- (2) See op. cit. pp. 64-65.
- (3) See: Dagfinn Føllesdal and Risto Hilpinen, Deontic Logic, An Introduction, in: Risto Hilpinen (ed.), Deontic Logic, Introductory and Systematic Readings, Dordrecht, 1971, pp. 1-35 (p. 16).

This can easily be done in the following way:

Let M be $(O(B_1) \wedge O(B_2) \wedge ... \wedge O(B_n) \wedge \neg O(C_1) \wedge \neg O(C_2) \wedge ... \wedge \neg O(C_m) \wedge D_1 \wedge D_2 \wedge ... \wedge D_1)$ with $n \ge 0$, $m \ge 0$ and $l \ge 0$, where D_1 , D_2 , ..., D_l are the non-deontic conjuncts of M.

Let A be the set $\{O(B_1), O(B_2), ..., O(B_n), \neg O(C_1), \neg O(C_2), ..., \neg O(C_m), D_1, D_2, ..., D_l\}.$

Let the conjunctions of the form $B_1 \wedge B_2 \wedge ... \wedge B_n \wedge \neg C_i$ be the different $X_i(M)$ (i = 0, 1, 2, ..., m). It will be granted at once that:

(2) If some $X_i(M)$ is a two-valued logical falsehood, then $\{B_1, B_2, ..., B_n, \neg C_i\}$ is inconsistent,

and that:

- (3) If A is inconsistent, then M is d-unsatisfiable.
- From (E1) we get (by substituting f_1/B_1 , f_2/B_2 , ..., f_n/B_n , $g/\neg C_i$, then by replacing $P(\neg C_i)$ by $\neg O(C_i)$, according to the definition $P(A) := \neg O(\neg A)$ and Double Negation, and finally by Commutation, Exportation and Transposition):
- (4) If $\{O(B_1), O(B_2), ..., O(B_n), \neg O(C_i)\}\subseteq A$, then if $\{B_1, B_2, ..., B_n, \neg C_i\}$ is inconsistent, then A is inconsistent.

Now (by simple inspection):

(5) $\{O(B_1), O(B_2), ..., O(B_n), \neg O(C_i)\}\subseteq A$

Therefore (from (4) and (5) by detachment):

- (6) If $\{B_1, B_2, ..., B_n, \neg C_i\}$ is inconsistent, then A is inconsistent, and from (2), (6), and (3) (by repeated use of Hypothetical Syllogism):
- (1) If some $X_i(M)$ is a two-valued logical falsehood, then M is d-unsatisfiable. (Q E D)

As will by now be obvious, the applicability of the procedure is restored by criterion C_2 , for the latter works even where C_2 fails, namely in those cases where n = 0 or m = 0 (though with n = 0 the $m \times M$) will all be single-membered).

We may conclude by noting that for some M, such as the second M of $\Phi(\neg S_1')$, one can reach the decision without actually constructing and testing any $X_i(M)$. In fact, as soon as M is of the form ... $\wedge O(A) \wedge ... \wedge O(\neg A) \wedge ...$, i.e. contains what might be called an "open" deontic contradiction, one can at once be sure that it is d-unsatisfiable, for the corresponding $X_i(M)$ would all contain as conjuncts both A and $\neg A$, i.e. they would all be two-valued logical falsehoods.

Centre Universitaire de Luxembourg 162A, avenue de la Faïencerie L-1511 Luxembourg

Jules Speller