ON THREE-VALUED MOISIL ALGEBRAS

Manuel ABAD and Luiz MONTEIRO

In this paper we investigate the properties of the family I(A) of all intervals of the form $[x, \sim x]$ with $x \leq \sim x$, in a De Morgan algebra A, and we obtain a necessary and sufficient condition for a complete De Morgan algebra to be a Kleene algebra in terms of I(A) (Lemma 11). We prove that I(A) is a complete Boolean algebra if A is a complete Moisil algebra (Lemma 12).

Let A be a distributive lattice which is bounded, that is, has a largest element 1 and a smallest element 0. We use $x \vee y$ for the join, and $x \wedge y$ for the meet of two elements x, y in A. If \sim is a unary operation defined on A satisfying $\sim \sim x = x$ and $\sim (x \vee y) = \sim x \wedge \sim y$, A is called a *De Morgan algebra*. The set of all complemented elements of A is noted by B(A). A *Kleene algebra* is a De Morgan algebra satisfying: $x \wedge \sim x \leq y \vee \sim y$ [5]. A three-valued Lukasiewicz algebra is a system (L, 1, \sim , \wedge , \vee , \vee) such that (L, 1, \sim , \wedge , \vee) is a De Morgan algebra and \vee is a unary operation (called possibility operation) defined on A with the properties: $\sim x \vee \vee x = 1$, $x \wedge \sim x = x \wedge \vee x$ and $\vee (x \wedge y) = \vee x \wedge \vee y$, [6], [7], [8], [10], [11], [14].

The necessity operation \triangle is defined by $\triangle x = \neg \nabla \neg x$. L is called a centered three-valued Lukasiewicz algebra, or a three-valued Post algebra, if it has a center, that is, an element c of L such that $\neg c = c$. The center of L (if it exists) is unique [6], [7], [8], [12], [15].

An axis of a three-valued Lukasiewicz algebra L is an element e of L with the properties: $\Delta e = 0$ and $\nabla x \leq \Delta x \vee \nabla e$ for all x of L. Again, if the axis of L exists, it is unique. Following A. Monteiro, L is called a three-valued Moisil algebra if it has an axis. For the basic properties of three valued Moisil algebras we refer to [12], [13], [15].

Let E be a three-valued Moisil algebra, and $e \in E$ the axis of E. In [12] L. Monteiro proved that:

- (1) $x = (\Delta x \lor e) \land \nabla x$, for all $x \in E$, and
- (2) $\mathbf{x} = (\Delta \mathbf{x} \vee \sim \mathbf{e}) \wedge \nabla \mathbf{x}$, for all $\mathbf{x} \in \mathbf{E}$.

Let us introduce the following set:

$$S = \{t \in E : x = (\Delta x \lor t) \land \nabla x, \text{ for all } x \in E\}.$$

From (1) and (2) it is clear that e and \sim e belong to S. On the other hand, we know that $\Delta e = 0$ and this is equivalent to say that $e \leq \sim e$, thus the interval $[e, \sim e] = \{y \in E : e \leq y \leq \sim e\}$ can be considered.

LEMMA 1. $S = [e, \sim e]$.

Proof. If $y \in [e, \sim e]$, $e \le y \le \sim e$, then we have $x = (\triangle x \lor e) \land \nabla e \le (\triangle x \lor y) \land \nabla x \le (\triangle x \lor \sim e) \land \nabla x = x$ for all $x \in E$. Therefore $x = (\triangle x \lor y) \land \nabla x$ for all $x \in E$, whence $y \in S$.

If $s \in S$, then $x = (\Delta x \lor s) \land \nabla x$ for all $x \in E$. Then $e \le s$, for $e = (\Delta e \lor s) \land \nabla e = (0 \lor s) \land \nabla e = s \land \nabla e \le s$, and $s \le \sim e$, for $\sim e = (\Delta \sim e \lor s) \land \nabla \sim e = (\Delta \sim e \lor s) \land 1 = \Delta \sim e \lor s \ge s$.

It is well known that $S = [e, \sim e]$ is a distributive lattice, the elements e and $\sim e$ being the least and greastest elements of S respectively [4]. It is not difficult to see that $(S, \sim e, \sim, \wedge, \vee)$ is a Kleene algebra. Furthemore, S is a Boolean algebra. For, if $s \in S$, then $\sim e \in S$ and $t = s \wedge \sim s \in S$, then (i) $x = (\Delta x \vee (s \wedge \sim s)) \wedge \nabla x$ for all $x \in E$. Since (ii) $\Delta t = \Delta (s \wedge \sim s) = \Delta s \wedge \Delta \sim s = 0$, from (i) and (ii) from definition and uniqueness of the axis, we have (iii) $s \wedge \sim s = e$, whence (iv) $s \vee \sim s = \sim e$. So S is a Boolean algebra.

Now we define the following mapping $f: E \rightarrow [e, \sim e]$,

$$f(x) = (\sim e \land x) \lor e$$
, for each $x \in E$.

LEMMA 2. The mapping f has the following properties.

F1)
$$f(1) = \sim e$$
; F2) $f(0) = e$; F3) $f(x \wedge y) = f(x) \wedge f(y)$; F4) $f(\sim x) = \sim f(x)$; F5) $f(x \vee y) = f(x) \vee f(y)$; F6) $f(s) = s$ if and only if $s \in [e, \sim e]$.

From F1 to F4, it follows that f is an M-homomorphism (homomorphism between Morgan algebras). From F6, it follows that f is an M-epimorphism. L. Monteiro [12] proved that if E is an algebra with axis e, then E is isomorphic to the direct product of a Boolean algebra B and a centered three-valued Lukasiewicz algebra C. More precisely, B is the principal ideal generated by $\sim \nabla e$, $I(\sim \nabla e) = \{x \in E: x \leq \sim \nabla e\}$, and C is $I(\nabla e) = \{x \in E: x \leq \nabla e\}$.

LEMMA 3. $I(\sim \nabla e)$ and S are isomorphic Boolean algebras.

Proof. The correspondence $h(x) = x \land \neg \forall e$ sets up an M-epimorphism from E onto $I(\neg \forall e)$. It is an easy verification that Ker f = Ker h, which completes the proof.

LEMMA 4. A three-valued Lukasiewicz algebra L is a Moisil algebra if $S = \{s \in L : x = (\Delta x \lor s) \land \nabla x, \text{ for all } x \in L\}$, is a nonvoid set.

Proof. It is clear that S is closed under \wedge and \vee . If $s \in S$, then $\sim x = (\triangle \sim x \vee s) \wedge \nabla \sim x$, for all $x \in L$, hence $x = (\nabla x \wedge \sim s) \vee \triangle x$ for all $x \in L$ and then $\sim s \in S$. From this, $s \wedge \sim s \in S$ for $s \in S$. But $\triangle(s \wedge \sim s) = 0$ and $x = (\triangle x \vee (s \wedge \sim s)) \wedge \nabla x$ for all $x \in L$, therefore $e = s \wedge \sim s$ is the axis of algebra L. From lemma 1, $S = [e, \sim e]$.

We remark that L has a center c if and only if $S = \{c\}$. For if L has a center c, we know that c is also an axis [12] and then $S = [c, \sim c] = [c, c] = \{c\}$. Conversely, if S has only one element c, by lemma 4, c is an axis of L and moreover $\sim c \in S = \{c\}$, thus $\sim c = c$ and so c is the center of L.

We now deal with the dual concept of ideal. Recall that a filter is a nonvoid subset F of a lattice L with the properties: $a \in F$, $x \in L$, $a \le x$ imply $x \in F$, and $a \in F$, $b \in F$ imply $a \land b \in F$. Given an element a in any lattice L, the set $F(a) = \{x \in L : a \le x\}$ is evidently a filter; it is called a principal filter of L.

LEMMA 5. Let E be a three-valued Moisil algebra, e its axis. Then the ordered sets F(e), $I(\sim e)$ and B(E) are isomorphic.

Proof. Define H: $F(e) \rightarrow B(E)$ by $H(x) = \Delta x$, and G: $F(e) \rightarrow I(\sim e)$ by $G(x) = \sim x$.

DEFINITION 6. Let $(A, 1, \sim, \wedge, \vee)$ be any De Morgan algebra, x_0 , y_0 elements of A such that $x_0 \leq y_0$. The interval $S = [x_0, y_0]$ is said to be Boolean if the system $(A, y_0, \sim, \wedge, \vee)$ is a Boolean algebra.

EXAMPLES.

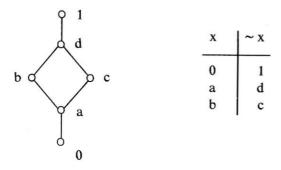
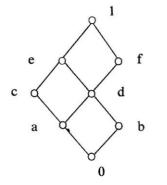


Fig. 1



X	~ x
0	1
a	e
b	f
c d	c
d	d

Fig. 2

In the algebra of fig. 1, [a, d] is Boolean, and [0, 1] is not Boolean. In the algebra of fig. 2, [a, e] with its natural ordering is a Boolean algebra, but it is not a Boolean interval because $\sim c = c \neq d$. The only Boolean intervals are [c, c] and [d, d].

REMARK. If $S = [x_0, y_0]$ is a Boolean interval, then $1) \sim x_0 = y_0$; 2) $x \wedge \sim x = x_0$ for all $x \in S$. Furthemore, the condition 1 implies 3) $\sim S \subseteq S$, and conversely, if $\sim [x_0, y_0] \subseteq [x_0, y_0]$, then $\sim x_0$ and $\sim y_0$

belong to $[x_0, y_0]$, so $x_0 \le \sim y_0$ and $\sim x_0 \le y_0$, whence $x_0 = \sim y_0$. Thus, every Boolean interval can be written as $[x_0, \sim x_0]$ with $x_0 \le \sim x_0$. However, an interval of this kind need not be Boolean as we can see for [0, 1] of the examples above.

It should pointed out that a De Morgan algebra need not have Boolean intervals, as the following example shows.

EXAMPLE. Let $T = \{0, c, 1\}$, with 0 < c < 1, and $\sim 0 = 1$, $\sim c = c$, $\sim 1 = 0$. T is a Kleene algebra, and if N is the set of all positive integers, it is readily verified that $A = T^N$ is a Kleene algebra with pointwise operations.

Let K_1 be the set of all $f \in T^N$ such that $f(x) \in \{0,1\}$ for all $x \in N$, and K_2 the set of all $f \in T^N$ such that there exists a nonvoid finite subset F of N with f(x) = c for all $x \in F$, and $f(x) \in \{0,1\}$ if $x \notin F$. Clearly $K_1 \cap K_2 = \emptyset$. Consider $K = K_1 \cup K_2$. It is easy to see that K is a proper Kleene subalgebra of A. Suppose $[f, \sim f]$ is a Boolean interval of K. Since $f \le \sim f$, then $f(x) \in \{0,c\}$ for all $x \in N$, so there exists a finite subset F of N such that f(x) = c for all $x \in F$ and f(y) = 0 if $y \notin F$. Let i_0 be a positive integer such that $i_0 \notin F$, and define $b \in K$: b(x) = c, if $x \in F \cup \{i_0\}$, b(x) = 0, otherwise. Then $b \in [f, \sim f]$, and $b \le \sim b$, so $b \land \sim b = b \ne f$, which contradicts that $[f, \sim f]$ is Boolean.

LEMMA 7. If A is a Kleene algebra and there exists a Boolean interval in A, it is unique.

Proof. Let $S_1 = [e, \sim e]$ and $S_2 = [f, \sim f]$ Boolean intervals. Since A is a Kleene algebra: (1) $e = e \land \sim e \le f \lor \sim f = \sim f$. Then $e \lor f \le \sim f \lor f = \sim f$, hence $f \le e \lor f \le \sim f$, so $e \lor f \in S_2$, then (2) $(e \lor f) \land \sim (e \lor f) = f$. By (1), $f \le \sim e$ then $e \le f \lor e \le \sim e \lor e = \sim e$, hence $e \lor f \in S_1$, then (3) $(e \lor f) \land \sim (e \lor f) = e$. From (2) and (3) e = f and $\sim e = \sim f$. Then $S_1 = S_2$.

Denote the set of intervals of a De Morgan algebra A of the form $[x, \sim x]$ with $x \leq \sim x$ by I(A). $I(A) \neq \emptyset$ seeing that $A = [0, 1] \in I(A)$. Notice that $I(A) = \{[x \land \sim x, x \lor \sim x], x \in A\}$.

LEMMA 8. Any minimal element of the ordered set $(I(A), \subseteq)$, whenever it exists, is a Boolean interval.

Proof. Let $S = [x_0, \sim x_0]$ be minimal element of I(A). Clearly $x_0 \le t \land \sim t \le \sim x_0$ for every t of S. Then $S_t = [t \land \sim t, t \lor \sim t] \in I(A)$ and $S_t \subseteq S$ for every $t \in S$. But since S is minimal, $S_t = S$ and therefore $t \land \sim t = x_0$ for every $t \in S$. Thus S is Boolean.

LEMMA 9. If A is a complete De Morgan algebra, then the ordered set I(A) has the Zorn's property for descending chains.

Proof. Let $C = \{S_j \colon j \in J\}$ be any chain of sets in I(A), $S_j = [x_j, \sim x_j]$. Since A is complete, there exists the element $x = \bigcup_{j \in J} x_j$. We next show that $\bigcup_{j \in J} x_j \leq \sim \bigcup_{j \in J} x_j = \bigcup_{j \in J} \sim x_j$. We have either $S_k \subseteq S_j$ or $S_j \subseteq S_k$, then $x_j \leq x_k$ or $x_k \leq x_j$. But $x_j \leq \sim x_j$, so $x_j \leq x_k$ or $x_k \leq \sim x_j$, then $x_j \leq x_k$ or $x_j \leq \sim x_k$. Hence, $x_j \leq x_k \vee \sim x_k = \sim x_k$ for every j, k. Then $\bigcup_{j \in J} x_j \leq \sim x_k$ for every k and therefore $\bigcup_{j \in J} x_j \leq k \in J \sim x_k = \sim k \in J \times k$. Whence k = 0 and k =

COROLLARY 10. Any complete De Morgan algebra has Boolean intervals.

LEMMA 11. A complete De Morgan algebra A is a Kleene algebra if and only if I(A) has least element.

Proof. By the above lemmas, if A is a Kleene algebra, it has a unique Boolean interval, which is the least element in I(A).

For the converse let $P = [b, \sim b]$ be the least element in I(A). Then, $P \subseteq [x \land \sim x, x \lor \sim x]$ for all $x \in A$. Since $b \in P$, then $x \land \sim x \le b$ for all $x \in A$ and $b \le y \lor \sim y$ for $y \in A$. Therefore $x \land \sim x \le y \lor \sim y$ for x, $y \in A$, that is, A is a Kleene algebra. (Note that in the converse, the completeness of A has not been used).

Let A be Kleene algebra. Define the following binary operations on I(A):

$$[x, \sim x] \lor [y, \sim y] = [x \land y, \sim x \lor \sim y]$$

[x, \simex x] \lapha [y, \simex y] = [x \lor y, \simex x \lapha \simey y].

From Kleene condition, it follows at once that $[x \land y, \neg x \lor \neg y]$ and $[x \lor y, \neg x \land \neg y]$ belong to I(A), if $x \le \neg x$ and $y \le \neg y$.

Moreover, it is easy to check that $(I(A), A, \land, \lor)$ is a distributive lattice with greatest element A.

In fact, $[x, \sim x] \land [y, \sim y] = [x, \sim x]$ if and only if $[x, \sim x] \subseteq [y, \sim y]$ for $[x, \sim x]$ and $[y, \sim y] \in I(A)$.

Observe that if A is a complete three-valued Moisil algebra, then I(A) has least element $[e, \sim e]$.

Indeed, we know that $[x, \sim x] \le [e, \sim e]$ if and only if $x \in [e, \sim e]$ and $\sim x \in [e, \sim e]$, but then $x \land \sim x = e$ and $x \lor \sim x = \sim e$. Then $[x, \sim x] = [e, \sim e]$. Therefore $[e, \sim e]$ is minimal in I(A). Since every minimal element of I(A) is Boolean, and since $[e, \sim e]$ is the unique Boolean interval of A, thus $[e, \sim e]$ is the unique minimal interval of A. Then $[e, \sim e]$ is the least element of I(A).

LEMMA 12. If A is a complete Moisil algebra, then I(A) is a complete Boolean algebra.

Proof. To prove that for all $[x, \sim x] \in I(A)$ there exists $[y, \sim y] \in I(A)$ such that $[x, \sim x] \land [y, \sim y] = [e, \sim e]$ and $[x, \sim x] \lor [y, \sim y] = [0, 1]$ it is equivalent to prove that for all $x \le e$ there exists $y \le e$ such that $x \lor y = e$ and $x \land y = 0$.

Let us put $y = \triangle \sim x \land e$. Then

(i) $x \wedge (\triangle \sim x \wedge e) = 0$ because $x \wedge \triangle \sim x = 0$.

(ii) $x \lor (\triangle \neg x \land e) = e$. Indeed, $\triangle(x \lor (\triangle \neg x \land e)) = \triangle x \lor (\triangle \neg x \land \triangle e) = \triangle x = 0 = \triangle e$ and $\nabla(x \lor (\triangle \neg x \land e)) = \nabla x \lor (\triangle \neg x \land \nabla e) = (\nabla x \lor \triangle \neg x) \land (\nabla x \lor \nabla e) = (\nabla x \lor \triangle \neg x) \land \nabla e = 1 \land \nabla e = \nabla e$, and by determination principle (see [12] and [14]) (ii) holds.

The completeness of I(A) follows from $\widehat{i}_{i \in I}[x_i, \sim x_i] = [\widehat{i}_{i \in I}x_i, \widehat{i}_{i \in I}\sim x_i]$, $\widehat{i}_{i \in I}[x_i, \sim x_i] = [\widehat{i}_{i \in I}x_i, \widehat{i}_{i \in I}\sim x_i]$, since A is complete.

Observe that the mapping $H: F(\sim e) \to I(A)$ defined by $H(\sim y) = [y, \sim y]$, for all element $\sim y \in F(\sim e)$, is an order isomorphism. Indeed, H is clearly a bijection and $\sim y \leq \sim y'$ if and only if $H(\sim y) \leq H(\sim y')$. Thus we can state

COROLLARY 13. If A is a three-valued Post algebra such that I(A) is a complete Boolean algebra, then A is complete.

Proof. By the above remark, if I(A) is a complete Boolean algebra,

then $F(\sim e)$ is a complete Boolean algebra. But in a three-valued Post algebra, $e = \sim e$, thus $F(\sim e) = F(e)$, which is isomorphic (Lemma 5) to the set B(A) of all Boolean elements of A. Then B(A) is complete, and this is sufficient (see [12]) to assure that A is complete.

Universidad Nacional del Comahue

Manuel ABAD

Universidad Nacional del Sur Av. Alem 1253 8000 Bahia Blanca Argentina

Luiz MONTEIRO

REFERENCES

- [1] Balbes R. and Dwinger P., *Distributive Lattices*, University of Missouri Press, Columbia, Missouri 65201, (1974).
- [2] Bialynicki-Birula A., Remarks on quasi-Boolean algebras. Bull. Acad. Polon. Sci. Cl. III 5 (1957), 615-619.
- [3] Bialynicki-Birula A. and Rasiowa H., On the representation of quasi-Boolean algebras. Bull. Acad. Polon. Sci. Cl. III 5 (1957), 259-261.
- [4] Birkhoff G., Lattice Theory, Amer. Math. Soc. Colloq. Pub., 25, 3rd. ed., Providence (1967).
- [5] Kalman J., Lattices with involution, Trans. Amer. Math. Soc. 87 (1958), 485-491.
- [6] Moisil Gr. C., Recherches sur les logiques non-chrysippiennes, Ann. Sci. Univ. Jassy, 26 (1940), 431-466.
- [7] Moisil Gr.C., Sur les anneaux de caractéristique 2 ou 3 et leurs applications, Bull. de l'Ecole Polytechnique de Bucarest 12 (1941), 66-90.
- [8] Moisil Gr.C., Sur les ideaux des algèbres Lukasiewicziennes trivalentes, Analele Universitatti C.I. Parhon. Seria Acta Logica. 3 (1960), 83-95.
- [9] Monteiro A., Matrices de Morgan caractéristiques pour le calcul propositionnel classique, An. Acad. Brasil. Ci. 32 (1960), 1-7.
- [10] Monteiro A., Algebras de Lukasiewicz trivalentes, Lectures given at the Univ. Nac. del Sur, Bahía Blanca (1963).
- [11] Monteiro A., Sur la définition des algèbres de Lukasiewicz trivalentes, Bull. Math. Soc. Sci. Math. Phy. R.P. Roum., 7 (55) (1963), 3-12.
- [12] Monteiro L., Algebras de Lukasiewicz trivalentes monádicas, Notas de Lógica Matemática Nº 32, Univ. Nac. del Sur, Bahía Blanca (1974).
- [13] Monteiro L., Algèbres de Post et de Moisil trivalentes monadiques libres, Logique et Analyse, 79 (1977), 329-337.
- [14] Varlet J.C., Algèbres de Lukasiewicz trivalentes, Bull. Soc. Roy. Sc. Liège, N° 9-10 (1968), 281-290.
- [15] Varlet J.C., Considérations sur les algèbres de Lukasiewicz trivalentes, Bull. Soc. Roy. Sc. Liège, Nº 9-10 (1969), 462-469.