ON THREE-VALUED MOISIL ALGEBRAS
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In this paper we investigate the properties of the family I(A) of all
intervals of the form [x, ~x] with x < ~x, in a De Morgan algebra A,
and we obtain a necessary and sufficient condition for a complete De
Morgan algebra to be a Kleene algebra in terms of I(A) (Lemma 11).
We prove that I(A) is a complete Boolean algebra if A is a complete
Moisil algebra (Lemma 12).

Let A be a distributive lattice which is bounded, that is, has a
largest element 1 and a smallest element 0. We use x Vy for the join,
and x Ay for the meet of two elements x, y in A. If ~is a unary
operation defined on A satisfying ~~x = x and ~(x Vy) = ~x A~y,
A is called a De Morgan algebra. The set of all complemented
elements of A is noted by B(A). A Kleene algebra is a De Morgan
algebra satisfying: x A~x <y V~y [5]. A three-valued Lukasiewicz
algebra is a system (L, 1, ~, A, V, V) such that (L, 1, ~, A, V) is a De
Morgan algebra and V is a unary operation (called possibility opera-
tion) defined on A with the properties: ~xVVx= 1, x A~x =
~xAVxand V(x Ay) = Vx ATy, [6], [7], [8], [10], [11], [14].

The necessity operation Ais defined by Ax = ~V~x. L is called a
centered three-valued Lukasiewicz algebra, or a three-valued Post
algebra, if it has a center, that is, an element c of L such that ~¢ = c.
The center of L (if it exists) is unique [6], [7], [8], [12], [15].

An axis of a three-valued Lukasiewicz algebra L is an element e of
L with the properties: Ae = 0and Vx < Ax V Ve for all x of L. Again,
if the axis of L exists, it is unique. Following A. Monteiro, L is called
athree-valued Moisil algebra if it has an axis. For the basic properties
of three valued Moisil algebras we refer to [12], [13], [15].

Let E be a three-valued Moisil algebra, and e €E the axis of E. In
[12] L. Monteiro proved that:

(1) x = (AxVe) A VX, for all x€E, and
(2) x = (AxV~e) A Vx, for all x=E.

Let us introduce the following set:



408 MANUEL ABAD and LUIZ MONTEIRO

S = {t€E: x = (Ax Vt) A Vx, for all x€E}.

From (1) and (2) it is clear that.e and ~e belong to S. On the other
hand, we know that Ae = 0 and this is equivalent to say that e < ~e,
thus the interval [e, ~¢] = {y€E: e <y =<~e} can be considered.

LEMMA 1. S = [e, ~e€].

Proof. If y E[e, ~e], e <y < ~e, then we have x = (Ax Ve) A Ve
(AxVy) A Vx = (Ax V~e) A Vx = x for all x<E. Therefore x
(Ax Vy) A Vx for all x €E, whence y 8.

If sE€S, then x = (Ax Vs) A Vx for all x€E. Then e <s, for e
(beVs) A Ve = (0Vs) A Ve = sAVes<s, and s<~e, for ~e
(A~eVs) A V~e = (A~eVs) Al = A~eVs=s.

It is well known that S = [e, ~e] is a distributive lattice, the
elements e and ~e being the least and greastest elements of S
respectively [4]. It is not difficult to see that (S, ~e, ~, A, V) is a
Kleene algebra. Furthemore, S is a Boolean algebra. For, if s €S, then
~eESand t = s A~s€ES, then (i) x = (Ax V(s A~s)) A Vx for all
x €E. Since (ii) At = A(s A~s) = AsAA~s = 0, from (i) and (ii)
from definition and uniqueness of the axis, we have (iii) s A~s = e,
whence (iv) s V~s = ~e. So S is a Boolean algebra.

A

Now we define the following mapping f: E— [e, ~e],

f(x) = (~e AXx) V e, for each x €E.

LEMMA 2. The mapping f has the following properties.

F1) f(1) = ~e; F2) f(0) = e; F3) fix Ay) = f(x) Af(y); F4) f(~x) =
~f(x); F5) f(x Vy) = f(x) Vf(y);
F6) f(s) = s if and only if s€[e, ~e].

From F1 to F4, it follows that f is an M-homomorphism (homomor-
phism between Morgan algebras). From F6, it follows that f is an
M-epimorphism. L. Monteiro [12] proved that if E is an algebra with
axis e, then E is isomorphic to the direct product of a Boolean algebra
B and a centered three-valued Lukasiewicz algebra C. More preci-
sely, B is the principal ideal generated by ~Ve, I(~Ve) =
{x€E: x<~Ve}, and Cis I(Ve) = {x€E: x < Ve}.
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LEMMA 3. I(~Ve) and S are isomorphic Boolean algebras.

Proof. The correspondence h(x) = x A~ Ve sets up an M-epimor-
phism from E onto I(~Ve). It is an easy verification that Ker f =
Ker h, which completes the proof.

LEMMA 4. A three-valued Lukasiewicz algebra L is a Moisil alge-
braif S = {s€L: x = (Ax Vs) A Vx, for all x €L}, is a nonvoid set.

Proof. It is clear that S is closed under A and V. If s €S, then ~x =
(A~xVs) A V~x, for all x€L, hence x = (VX A~s) V Ax for all
x€L and then ~s<S. From this, sA~sES for s=S. But
A(s A~s) =0 and x = (AX V(s A~s)) A Vx for all x €L, therefore
e = s A~s is the axis of algebra L. From lemma 1, S = [e, ~e].

We remark that L has a center c ifand only if S = {c}. Forif L has a
center ¢, we know that ¢ is also an axis [12] and then S = [c, ~¢] =
[c, c] = {c}. Conversely, if S has only one element ¢, by lemma 4, ¢ is
an axis of L and moreover ~c €S = {c}, thus ~¢ = ¢ and so ¢ is the
center of L.

We now deal with the dual concept of ideal. Recall that a filter is a
nonvoid subset F of a lattice L with the properties: a€F, x €L, a<x
imply x €F, and a€F, b€F imply a Ab €F. Given an element a in
any lattice L, the set F(a) = {x €L :a<x} is evidently a filter: it is
called a principal filter of L.

LEMMA 5. Let E be a three-valued Moisil algebra, e its axis. Then
the ordered sets F(e), I(~e) and B(E) are isomorphic.

Proof. Define H: F(e) - B(E) by H(x) = Ax, and G: F(e) - I(~e) by
G(x) = ~X.

DEFINITION 6. Let (A, 1, ~, A, V) be any De Morgan algebra, X,
Yo elements of A such that Xo <y,. The interval S = [X,, o) is said to
be Boolean if the system (A, Yq, ~, A, V) is a Boolean algebra.
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EXAMPLES.
1
d X ~X
a d
5 b c
0
Fig. 1
1 X ~X
a £ 0 1
a e
c d b f
c e
5 b d d
0
Fig. 2

In the algebra of fig. 1, [a, d] is Boolean, and [0, 1] is not Boolean.
In the algebra of fig. 2, [a, e] with its natural ordering is a Boolean
algebra, but it is not a Boolean interval because ~¢ = ¢ #+d. The only
Boolean intervals are [c, ¢] and [d, d].

REMARK. If S = [x,, Y] is a Boolean interval, then 1) ~x4 = yg; 2)
X A~X = Xp for all x€8S. Furthemore, the condition 1 implies 3)
~ScS, and conversely, if ~[Xg, Vo] E[X0, Yol, then ~x, and ~y,
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belong to [Xo, Yo|, 50 Xo < ~¥, and ~x, <y,, whence x, = ~y,. Thus,
every Boolean interval can be written as [xg, ~X,] With X, < ~X,.
However, an interval of this kind need not be Boolean as we can see
for [0, 1] of the examples above.

It should pointed out that a De Morgan algebra need not have
Boolean intervals, as the following example shows.

EXAMPLE. Let T = {0, ¢, 1}, with0<c<1,and ~0 = 1, ~¢c = c,
~1= 0. T is a Kleene algebra, and if N is the set of all positive
integers, it is readily verified that A = TN is a Kleene algebra with
pointwise operations.

Let K, be the set of all f=T™ such that f(x) {0, 1} for all x €N,
and K, the set of all f=TN such that there exists a nonvoid finite
subset F of N with f(x) = c for all x€F, and f(x) {0, 1} if x F.
Clearly K, NK; = 0. Consider K = K, UK,. It is easy to see that K is
a proper Kleene subalgebra of A. Suppose [f, ~f] is a Boolean interval
of K. Since f<~f, then f(x) €{0,c} for all x €N, so there exists a
finite subset F of N such that f(x) = ¢ forall x F and f(y) = 0 ify&F.
Let iy be a positive integer such that i, €F, and defineb€K: b(x) = ¢,
if x€F U{io}, b(x) = 0, otherwise. Then b &[f, ~f], and b<~b, so
b A~b = b=f, which contradicts that [f, ~f] is Boolean.

LEMMA 7. If A is a Kleene algebra and there exists a Boolean
interval in A, it is unique.

Proof. Let S, = [e, ~e] and S, = [f, ~f] Boolean intervals.
Since A is a Kleene algebra: (1) e = e A~e<f V ~f = ~f. Then
eVfis ~fvf= ~f, hence fseVf< ~f, so e VfES,, then (2)
(eVf) A ~(e V) =f. By (1), fs~e then e<fVe < ~e Ve = ~e,
hence e VIS, then 3) (e Vf) A ~(e Vf) = e. From (2)and (3) e = f
and ~e = ~f. Then S, = S,.

Denote the set of intervals of a De Morgan algebra A of the form
[x, ~x] with x <~x by I(A). I(A) +0 seeing that A = [0, 1] €I(A).
Notice that I(A) = {[x A~X, x V~x], xEA}.

LEMMA 8. Any minimal element of the ordered set (I(A), <),
whenever it exists, is a Boolean interval.
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Proof. Let S = [xo, ~Xo] be minimal element of I(A). Clearly x,<
t A ~t<~x, for every t of S. Then S, = [t A~t, t V~t]€I(A) and
S,ES for every t=S. But since S is minimal, S, = S and therefore
t A~t = X, for every t €S. Thus S is Boolean.

LEMMA 9. If A is a complete De Morgan algebra, then the ordered
set I(A) has the Zorn's property for descending chains.

Proof. Let C = {S;: j €J} be any chain of sets in I(A) S; = [x;, ~x]-

Since A is complete, there exists the element x = )] x;. We next show
that 3 x; <~ x; = {3 ~X;. We have either S, S; or S;CS,, then
Xj < Xi OF Xk <X;. But x; < ~x;, 50 X; <X, or X < ~X;, then Xj =Xk Or
Xj<~Xx. Hence, x;<xx V ~Xx = ~x, for every j. k. Then Yy =
~ X for every k and therefore ) x; < (3 ~x, = ~ Xx. Whence S =
(¥ x5, ~7 %] €1(A). Let us see that S =/0S;. If t S then x; < ¥ x;
st ~x;<~xforallj,andt € S;. Conversely, t€/0)S; implies
that x; <t < ~x; for every j and then }¥[x; <t =< ~x, thatis, t 8.

COROLLARY 10. Any complete De Morgan algebra has Boolean
intervals.

LEMMA 11. A complete De Morgan algebra A is a Kleene algebra if
and only if I(A) has least element.

Proof. By the above lemmas, if A is a Kleene algebra, it has a unique
Boolean interval, which is the least element in I(A).

For the converse let P = [b, ~b] be the least element in I(A). Then,
PS[x A~x, x V~x] for all x €A. Since b P, then x A ~x <b for all
X€A and b<y V~y for y=A. Therefore x A~x<y V~y for x,
y €A, that is, A is a Kleene algebra. (Note that in the converse, the
completeness of A has not been used).

Let A be Kleene algebra. Define the following binary operations on
I(A):

[x, ~x] V [y, ~y] = [x Ay, ~x V ~y]
[x, ~x] Aly, ~y] = [x Vy, ~x A~y].
From Kleene condition, it follows at once that [x Ay, ~x V ~y] and
[x Vy, ~x A~y] belong to I(A), if x <~x and y < ~y.
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Moreover, it is easy to check that (I(A), A, A, V) is a distributive
lattice with greatest element A.

In fact, [x, ~x] A [y, ~y] = [X, ~x] if and only if [x, ~X] E [y, ~¥]
for [x, ~x] and [y, ~y] EI(A).

Observe that if A is a complete three-valued Moisil algebra, then
I(A) has least element [e, ~¢].

Indeed, we know that [x, ~x] < [e, ~e] if and only if x E[e, ~e] and
~X€[e, ~e],butthen x A~x = eand x V~x = ~e. Then [x, ~x] =
[e, ~e]. Therefore [e, ~e] is minimal in I(A). Since every minimal
element of I(A) is Boolean, and since [e, ~¢] is the unique Boolean
interval of A, thus [e, ~¢] is the unique minimal interval of A. Then
[e, ~e] is the least element of I(A).

LEMMA 12. If A is a complete Moisil algebra, then I(A) is a
complete Boolean algebra.

Proof. To prove that for all [x, ~x] €I(A) there exists [y, ~y] €I(A)
such that [x, ~x] A [y, ~y] = [e, ~e] and [Xx, ~Xx] V [y, ~y] = [0, 1] it
is equivalent to prove that for all x <e there exists y <e such that
xVy=eand x Ay = 0.

Let us puty = A~x Ae. Then

(i) x A(A~x Ae) = 0 because X AA~x = 0.
(i) x V(A~x Ae) = e. Indeed, Ax V (A~x Ae)) =
Ax V(A~xAhe)= Ax= 0= Ae and V(x V(A~xAe)) =
VX V(A~xAVe) = (VX VA~X) A(VXVVe) = (VX VA~X) A Ve =
1 AVe = Ve, and by determination principle (see [12] and [14]) (ii)
holds.

The completeness of I(A) follows from (2 [x;, ~Xi] = [ %1, 12 ~ %],
X [xi, ~x;] = [[51xi, N4 ~Xi], since A is complete.

Observe that the mapping H: F(~e) —» I(A) defined by H(~y) =
[y, ~y], for all element ~y EF(~e), is an order isomorphism. Indeed,
H is clearly a bijection and ~y <~y if and only if H(~y) <H(~y").
Thus we can state

COROLLARY 13. If A is a three-valued Post algebra such that 1(A)
is a complete Boolean algebra, then A is complete.

Proof. By the above remark, if I(A) is a complete Boolean algebra,
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then F(~e) is a complete Boolean algebra. But in a three-valued Post
algebra, e = ~e, thus F(~e) = F(e), which is isomorphic (Lemma 5)
to the set B(A) of all Boolean elements of A. Then B(A) is complete,
and this is sufficient (see [12]) to assure that A is complete.
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