NATURAL DEDUCTION SYSTEMS FOR SOME QUANTIFIED
RELEVANT LOGICS

Ross T. BRADY

On the whole, natural deduction systems enable proofs of most
theorems to be obtained far more easily than in a corresponding
Hilbert-style axiomatization. So, it is worthwhile determining natural
deduction systems for sentential and quantified relevant logics for
which there is some point in their study, e.g. those systems appearing
in the literature and those that are assuming importance as logics that
avoid the set-theoretic paradoxes. (See [3] and [5] for relevant logics
that enable naive set theory to be shown to be non-trivial and simply
consistent, respectively.)

Anderson in [1] was the first to establish a natural deduction system
for a relevant logic. He showed that axiomatic systems for E and EQ
have the same sets of theorems as the respective natural deduction
systems E* and EQ*, which are now called FE and FEQ after Fitch.
The method of proof used by Anderson is applied in Anderson and
Belnap, [2], to yield the natural deduction systems FR, FT, FRM and
FEM for the logics R, T, RM and EM, respectively.

In this paper, I will employ Anderson’s method to obtain natural
deduction systems for the sentential and quantified relevant logics
axiomatized in § 1. The method would also be extendible to include
many additional systems not listed in § 1, for which interest may be
found.

§ 1. Hilbert-style Axiomatizations.
All the sentential logics will have primitives, ~, &, V, —, and
sentential variables, and are composed from the following axioms and

rules as indicated.

Axioms.
Al. A=A,
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A2. A&B-A.

A3. A&B-B.

A4, (A-B)&(A-C)-».A-B&C.
AS. A-AVB.

A6. B— A VB.

A7. (A-QC)&(B—-C)—». AVB-C.
A8, A& (BVC)—»(A&B)V(A&CQ).
A9, ~~ASA.

Al0. A-~B—-. B>~A.

All. (A-»B)&(B—-C)—». A-C.
Al2. A V~A.

Al3. A-~A->~A.

Al4, A-B—». B-C—. A-C.

Al5. A-B-.C->A—-.C->B.

Al6. (A—. A-B)—. A>B.

Al7. A—-. A-B-B.

Al8. A B> . A& C-»>B&C.

Al9. A-B>. AvC-»BVC.

Rules.

R1. A, A-B=B.

R2. A,B=A&B.

R3. A-B,C-»D=B->C-. A->D.

R4, A-~B=B->~A.

RS. CVA, CV(A—>B)=C VB,

R6. EV(A—B), EV(C—D)=EV(B-C—. AsD).
R7. CV(A-~B)=CV(B-~A).

Sentential Logics.

B = Al9, RI1-4.

DW = B + A10 — R4.

DI = DW + All.

DK = DJ + Al2,

DL = DJ+ Al13 - Al2.

TW = DW + A14 + A15 - R3.

T] = TW+All
TK =TI+ Al2.
T =TK+AI3+Al16—All-Al2.
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RW = TW + A17 — AlS.

R =T+Al17-Al13-AlS.
=RW + Al6.

RF =R+ Al8+ Al9.

Disjunctive Rules.

Some of these logics can be extended by using disjunctive rules (R5-7)
where appropriate. A superscript ‘? will be used to indicate such an
extension in the following logics:

BY = B+R5+R6+R7—R3-R4.

DWY = DW + R5 + R6 — R3,

DJ¢ = DJ+R5+ R6—R3.

DK¢ = DK + R5 + R6 — R3.

DLY = DL + R5 + R6 — R3.

TW9 = TW + RS,

TJ¢ = TJ+RS.

TK¢ = TK + RS.

RW¢ = RW + R5.

The subtraction of axioms and rules in the above is to eliminate
redundancies.

Quantificational Extensions.

The quantificational extension XQ of any of the above sentential
logics X without disjunctive rules can be obtained by adding the
primitives, V, 3, and individual and predicate variables, and the
following axioms and rule:

QAL (Vx)A — A¥fx, where y is free for x in A.

QA2. (Vx) (A—B)—. A—(Vx)B, where x is not free in A.
QA3. (Vx) (A VB)— A V(Vx)B, where x is not free in A.
QA4. AYx - (3x) A, where vy is free for x in A.

QAS. (Vx) (A—-B)—. (Ix) A— B, where x is not free in B.
QAS. A & (3x)B—(3x) (A & B), where x is not free in ‘A.
QRI1. A=(YA.(Y

() Onp. 212 of [1], Anderson uses the clause ‘if A is an axiom scheme then ( ¥x)A is
an axiom scheme’ instead of the Generalization Rule. Here, I prefer the rule, as it is
more customary and there is no problem relating such an axiomatization to my
corresponding natural deduction system.
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It is also possible to introduce these logics with ‘V’ and * 3’ defined
in the usual way, by omitting A5, A6, and A7 in each of the above
sentential systems and by omitting as well QA4, QA5 and QA6 in each
of the quantified systems, except that A7 is retained in B and B9 and
QAS is retained as well in BQ and BYQ.

The quantificational extension XQ of any of the sentential logics
X¢ with disjunctive rules can be obtained by adding the appropriate
symbols, the axioms QA1-6 and the rule QR1, as above, by deleting
R5 and replacing R6 and R7 by R3 and R4, respectively, and by adding
the following two meta-rules:

MR1. IfA=BthenCVA=CVB

QMRI. If A=B then (Ix)A =(3x)B

Both of these meta-rules carry the proviso that, in the derivation of B
from A, QR1 does not generalize on any variable free in A.

These meta-rules enable the right hand derivations, CVA =C VB
and (3x) A =(3x) B, respectively, to be included in a proof, provided
the left hand derivations, A =B, subject to the proviso, can be carried
through. This derivation A =B can be set out as a subproof of the
main proof. Also, the need for these meta-rules arises when combi-
ning the disjunctive rules with the quantificational extension because
there is a need to allow arbitrary interactions between the derived
rules established by these two meta-rules, and these interactions are
difficult to represent using transformation rules.

Y Y Y
On thi .. .
n this table, IX ; \ X and X / signify that X is

is theorem-wise and rule-wise contained in Y, though it may be the
case that some of the pairs X and X have the same theorems.

Motivation for the Logics.

Of course, T and R are studied in [2], as well as in other sources, but
I do offer a slightly simpler natural deduction system for T than that
givenin [2], pp. 346-7. RF is studied in [11] as an interesting extension
of R, which, though not a relevant logic, falls short of being classical. |
have included it because it has a rather interesting natural deduction
system. The logic B is the weakest system which is given a Routley-
Meyer semantics in [11].
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Table of Sentential Logics.




360 ROSS T. BRADY

The interest in the remaining logics is essentially in their ability to
produce a simply consistent or a non-trivial naive set theory. White, in
[12], has shown that the Lukasiewicz infinitively-valued logic L,
yields a simply consistent naive comprehension axiom. The logic
RW¢, and hence RW, is contained in L,, and so the result apllies to it
also. In my paper, [5], I showed that TW, and also TW¢, yields a
simply consistent naive set theory consisting of a comprehension
axiom and an extensionality rule. Also, Kron, in [7], establishes
decision procedures for RW, and TW,, the positive fragments of RW
and TW. It is hoped that RW and TW are decidable also, and this
provides additional interest in these logics.

In [3], I showed that DK, and also DK¢, yields a non-trivial naive
set theory, i.e. the set-theoretic paradoxes enable contradictions to be
proved, but not all formulae are provable. [9] and [10] can be
consulted for the motivation behind this approach. DL was introduced
in the earlier work, [8], as a candidate for a logic which would yield
such a set theory. I have also shown in [4] that DK and indeed all
logics X contained in it satisfy the Depth Relevance Condition : For all
formulae A and B, if i A—B then A and B share a variable at the
same depth.

I have shown () that the simple consistency result of [5] holds with
TW¢d extended to TJ¢, i.e. with A11 added. I have also shown (%) that
the non-triviality result of [3] holds with DKY extended to TKY, i.e.
with A14 and A15 added. The two following remarks will then fill the
gaps remaining in the table of logics. Firstly, DW is included as a logic
which may not have much intrinsic interest but is a stepping stone
between B and DK, and between B and TW. I believe that DJ and DJ¢
are not just stepping stones, but will have substantial interest as

(® This can be fairly easily shown by replacing the Lukasiewicz 3-valued logic L;,
used in [5], by the following 3-valued matrix logic Cs:

~ &1 % 0 Cl1 % o
*110 *1 |1 2 0 *1{1 0 0
2| V2 | 1 0 “il1 1 0
011 0f0 0 o0 0j1 1 1

(®) This can also be easily shown by replacing L in [5] by the matrix logic Ds, which
is the same as C; above, except that *'2’ is also designated.



SYSTEMS FOR SOME QUANTIFIED RELEVANT LOGICS 361

paradox-avoiding logics. () Secondly, the reason for the interest in the
logics with disjunctive rules, i.e. with superscript ‘®’, is that such
logics have a simpler semantics, called a reduced modelling, the
principle feature being that such disjunctive rules preserve truth in the
base set-up T of each model structure. Details of this can be found in

[11].

§2. The Natural Deduction Systems.

The natural deduction systems FX and FXQ for the above senten-
tial logics X will take the form of the Fitch-style systems expressed in
Anderson and Belnap (2], pp. 346-7, with the quantificational exten-
sions taken from Anderson, [1]. Restrictions will have to be placed on
the -»E, ~E and VE rules which are appropriate for the logic
involved, except for the stronger logics R and RF, where no restric-
tions are needed. A rule form of VE will be introduced for those logics
with disjunctive rules. Also ~I will be deleted or weakened for those
logics without A —»~A —~A. Further, B and B9 require a weakening
of the ~E rule, and RF requires a strengthening of the rules, &I and
VE.

The sentential natural deduction systems have as primitives, sen-
tential variables and connectives, ~, &, V, and —. Their quantifica-
tional extensions have in addition individual and predicate variables
and quantifiers, ¥ and 3. We start by presenting FB in full, and then
indicate the additions and alterations for the other sentential systems.
FB.

Hyp. A formula A may be introduced as the hypothesis of a new
subproof, with a subscript {k}, where k is the rank of the new
subproof. (Rank is defined on p. 70 of [2] as the number of
vertical lines to the left of the formula A. One could also call
this the depth of the subproof.)

Rep. A, may be repeated in the same subproof, retaining its index
set a.

(*) T am writing a book, ‘“Universal Logic", in which I will be arguing in favour of
DJ? as a general relevant entailment, which in particular yields a consistent naive set
theory and also solves the semantic paradoxes in a similar way.



362

Reit.

-l

VI.

VE.

&V.
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A, may be reiterated into any subproof inside the subproof
containing A,, retaining the index set a.

From a proof of B, on the hypothesis Ay, toinfer A»B,_y,
in the next outer subproof, provided k €a. (Such a subproof
has a rank, k—1.)

From A, and A— B,, to infer B, ,,, provided the B-restriction
holds (see below).

From ~B, and A - B,, to infer ~A,.

From A,, to infer ~~A,.

From ~~A,, to infer A,.

From A, and B,, to infer A & B,.

From A & B,, to infer A,.

From A & B,, to infer B,.

From A,, to infer A VB,.

From B,, to infer A VB,.

From A VB,, A-C, and B C,, to infer C, ,, provided the
B-restriction holds (see below).

From A & (B vV C),, to infer (A & B) V(A & C),.

B-restriction: If b+¢ then a is a singleton set {m} such that

FDW.

FDJ.

FDK.

FDL.

FTW.

F1J.

max(b) <m.

As for FB, except for ~E, which is as follows:

~E. From ~B, and A—B,, to infer ~A, ,,, provided the
B-restriction holds.

As for FDW, except for -E, ~E and VE, where the B-restric-

tion is replaced by the DJ-restriction: If b +¢ then (i) a +,

(ii) max(b) < max(a), and (jii) a — {max(a)} =b or ¢.

Note that the B-restriction can be obtained by replacing (iii) by

a— {max(a)} = ¢, or by adding (iv) aNb = ¢.

As for FDJ, with the addition of the following ~I rule:

~I. From A-~A,, to infer ~A,.

As for FDK, but with the stronger ~I rule:

~[.  From A—~A,, to infer ~A,.

As for FDW, except for -E, ~E and VE, where the B-restric-

tion is replaced by the TW-restriction: If b + ¢ then (i) a + ¢,

(ii) max(b) <max(a), and (iii) a Nb = ¢.

As for FTW, except that the TW-restriction is replaced by the

TJ-restriction : If b # ¢ then (i) a + ¢, (ii) max(b) < max(a), and
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FT.

FRW.

FR.

FRF.

VE™,
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(iii) for all natural numbers m and n, if n €a Nb and m < n then,
mEa iff meb. (%)

As for FTJ, with the addition of the following ~I rule:

~I.  From A—~A,, to infer o

As for FTK, but with ~I strengthened to:

~I.  From A—~A,, to infer ~A,, and with the TJ-restric-
tion replaced by the T-restriction: If b+ ¢ then (i) a *¢ and
(ii)) max(b) = max(a).

Note that there is no restriction on the Reit. rule, as appears in
(2], p. 347, and that the T-restriction is more precisely put than
in [2]. |

As for FTW, with the TW-restriction replaced by the RW-res-
triction: aNb=¢.

As for FT, with the rules -E, ~E and VE without restriction.
This is exactly the system appearing in [2].

As for FR, but with &I and VE strengthened to the following:
&I.  From A, and By, to infer A & B, ,,,, provided a=b=¢
or (a +¢ and b + ¢ and max(a) = max(b)).

VE.  From A VB,, A->C, and B-C,, to infer C, ,, ..
Each of the above natural deduction systems FX for X without
disjunctive rules can be converted into the system FX9 by
adding the rule form of VE:

From A VB,, A, =C,, and B, =C,, to infer C,, where

(i) the rule is applied only to proofs and not to subproofs of
proofs,

(i) A,=C, means that C, is derivable using natural de-
duction rules from the assumption A, made in the proof, i.e.
A, is not a hypothesis of a subproof, and

(i)  the formula A VB,, the derivations A,=C, and
B,=C, and the conclusion C, are all subject to the same
sequence of assumptions (if any).

(%) (iii) of ‘the TJ-restriction can be replaced by the following:

(i)’ a—

{max(a)} = boraNb = ¢.

Any pair (a, b) satisfying (iii)’ satisfies (iii}, but the converse fails. This makes (iii)
superior to (iii)’ as any proof of a theorem requiring the satisfaction of (iii) and not (iii)’
would have to be replaced by some alternative proof if (i)’ was adopted, and such an
alternative proof may be hard to find.
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Note that the term ‘assumption’ is used for the hypothesis of a

derivation, i.e. A, and B, in VE".

Each of the above sentential natural deduction systems FX for X
without disjunctive rules can be given a quantificational extension
FXQ by adding the following rules:
¥I. From A,, to infer (Vx)A,, provided x is not free in any

hypothesis H;,, with k Ea.

VE. From (Vx)A,, to infer AY/x,, where v is free for x in A.

¥V. From (¥x)(A V B),, toinfer A V (V¥x)B,, where x is not free in A.

. From AYfx,, to infer (Ix)A,, where y is free for x in A.

iE From (3x)A, and ( ¥x)(A - B)y, to infer B, ,, where x is not

free in B, and provided a and b satisfy the same restriction as for
the rules »E and VE, as is appropriate for the logic X involved.

1&. From A & (3x)B,, to infer (3x)(A & B),, where x is not free in

A.(%

Each of the sentential natural deduction systems FX9can be given a
quantificational extension FXQ by adding the above quantificational
rules, VI, YE, ¥V, 31, JE and 3i&, by putting a proviso on VEF, as
given below, and by adding the rule 3E’ below.

VE". From A VB,, A,=C,, and B,=C,, to infer C,» where this
rule is carried out in the same manner as indicated for FX¢, but
with the proviso that in the derivations, A, =C, and B,=C,,
V1 is not used to generalize on any free variable of A and B,
respectively.

3£, From (3x)A, and A, = B,, to infer B, where x is not free in B
and where the rule is carried out in the same manner as for VE'
and has the proviso that in the derivation, A,=B,, VIis not
used to generalize on any free variable of A.

§3. The Equivalence between the Sentential Logics X and the Sys-
tems FX.

(%) Anderson entirely follows Fitch, [6], in setting up his natural deduction system,
whereas I have not differentiated hypothetical and categorical subproofs for the
quantificational extensions. However, the form of my quantificational rules reflects
Anderson’s in [1], pp. 212-3, except that I do not place any restriction on the Reit rule.
This lack of restriction is better as it gives more flexibility in proofs.
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We first show that B and FB are equivalent, i.e. have the same
theorems, and then indicate the modifications to this equivalence
proof that are required for the remaining sentential logics.

Theorem 1.
For all formulae A, if 5 A then iz A.

Proof. As can easily be checked by the reader, all the axioms of B are
theorems of FB and all the rules of B preserve theoremhood in FB.

Theorem 2.
For all formulae A, if g A then iz A.

Proof. The proof proceeds in the manner of Anderson [1], pp. 206-
210, and of Anderson and Belnap [2], pp. 24-6. We begin with the
definition of a quasi-proof.

A quasi-proof in FB is a natural deduction proof in FB except that the
following 4 extra rules are allowed:

Thm. Any theorem A, of B may be inserted at any point in a
proof.

Pref. From A - B, to infer C»> A —. C-B,.

Suff. From A-B,, to infer B C—. A>C,,.

Contrap. From A —» B, to infer ~B—>~A,.

We take a proof in FB of a formula A’ and, noting that it is also a
quasi-proof, replace each innermost subproof by corresponding steps
in its next innermost subproof to form a new quasi-proof. By
successive applications of this procedure a quasi-proof is obtained
without any subproofs at all. Such a quasi-proof can then be seen to
yield a proof of the formula A’ in B.

Let us consider an innermost subproof Q of a quasi-proof P of A’ in
FB, diagrammed as follows:
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This innermost subproof is replaced by steps in the next innermost
subproof of P to form the sequence Q', as follows:

I.e. if C, has k b put
A—C,_y,, and if D,
has k &c put D..
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Then we need to show that the quasi-proof P with the subproof Q
replaced by the sequence Q' forms a quasi-proof P’ of the formula A’'.
To do this, we consider in turn each of the rules that can be used in Q.

Hyp.

Rep.

Reit.

-l

k.

~E.

Ay, of Q is replaced by A— A, in Q’, which satisfies the rule
Thm.

If C, is replaced in Q with k€a, then A->C,_ (¢ can be
repeated in Q'. If C, is repeated in Q with k a, then it can also
be repeated in Q'.

If C, is reiterated into Q then k €a and C, can be reiterated
into Q' or repeated in QQ'.

This can only be applied to the conclusion B, of Q, yielding
A—B,_,,, which is what this proof establishes as a conclu-
ding step for Q’. Thus Rep. can be used to join up Q' to the rest
of the quasi-proof P.

Let D, ,, be derived from C, and C—>D, in Q, with the
B-restriction holding. There are 4 cases:

(a) k#a and k &b. The same application of -E is then
made within the sequence Q.

{b) k<aand k<eb. Then k =max(b) and by the B-restric-
tion a= {m}, for some m, and k <m, which is impossi-
ble, Q being innermost.

©) k €a and k &b. Then k = max(a).

(1) Let b=¢. Let A-C,_, and C—-D, of Q' be
derivable. By Pref and -E, A>D,_,, is deriva-
ble.

(ii) Let b=+¢. Then, by the B-restriction, a = {k}.
Let A—»C,; and C— Dy, of Q' be derivable. By Suff
and -E, A — Dy is also derivable.

Note that (a Ub) — {k} = b, making b the required index

set.

(d) k<=aandk<b. Thenk = max(a) = max(b). Since b + ¢,
by the B-restriction, max(b)<max(a), which is a
contradiction.

Let ~C, be derived from C—D, and ~D, in Q.

(a) Letk=a. Let C»D,and A—~D,_,, of Q' be deriva-
ble. By Contrap, Pref and »E, A—~C,_, is deriva-
ble.



368 ROSS T. BRADY

(b) Let k ¢a. Then ~E can be applied within Q’.
~~I. Let ~~C, be derived from C, in Q.
(a) Let k€a. A—»~~C,_,, can be derived from

A-C,_y, in Q' by inserting the theorem A—C-.

A—~~C, and using —>E.

(b)  For k &a, apply ~~I within Q'.
~~E, &I, &E, VI and &V are all similar to ~~I with the following
respective theorems of B being inserted: A—»~~C—. A-C,
(A-C)&(A->D)». A-C&D, A-C&D—. A5>C,A->C&D-.
A-D,A->C-». A-CVD,A>D->. A-CVD,A>C&(DVE)-.
A—-(C&D)V(C&E).
VE. Let E,,be derived from CVD,, C-»E, and D> E, in Q,

where the B-restriction holds. There are 4 cases:

(a) ke¢aand k&b. VE is applied within Q’.

(b) k #a and k €b. This is impossible, as for case (b) of -E

above.

() k €a and k ¢b. Then k = max(a).

(i) Letb=¢. Let A>C VD, _ 4y, C—E, and D-E,
of Q' all be derivable. By &I, inserting
(C-E)&(D—-E)-». CVD-E, and -E,

C VD—E, is derivable. Further, by Pref and >E,
A—E,_, is established, as required.

(i) Let b=¢. By the B-restriction, a= {k}. Let
A-C VD,, C—»Ey and D—E, of Q' be derivable.
By &I, inserting (C»E)& (D—>E)-. C VD-E,,
—E, Suff and -»E again, we obtain A—E,, as
required.

(d) k<aand kEb. As for case (d) of -»E, this is impossi-
ble.
It remains to examine each of the rules of a quasi-proof of A’ with
no subproofs to see that they are derived rules of B and thus to show
that A’ is provable in B. This is easily shown and is left to the reader.

Theorem 3.
For all formulae A, if ; A then gy A, for each sentential logic X.

Proof. 1t is a straight-forward procedure to check the derivability in
FX of each axiom of X and to check the preservation of theoremhood
in FX of each rule of X.
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Theorem 4.
For all formulae A, if g, A then i A, for each sentential logic X.

Proof. For each logic X, other than B, the differences will be indicated
between the proof of the theorem for it and the proof given for B in
Theorem 2. Generally, each Thm rule of a quasi-proof of FX is
modified so that theorems of X are inserted.

DW.

~E,

DJ.

—-E.

VE.

DK.

The rule Contrap is removed as a rule in quasi-proofs. The

case ~E is as follows:

Let ~C,, be derived from ~D, and C—D, in Q, with the

B-restriction holding. We need only consider k €a and k &b,

for reasons given in the —E case for system B.

(i) Letb=¢. Let A»>~D,_, and C— D, of Q' be deriva-
ble. By inserting C »D —. ~D—~C,, and by —E, Pref
and —E again, A—~C,_,, is derivable.

(ii) Letb+¢. Let A»>~D, and C— D, of Q' be derivable.
Again, by inserting C»D—. ~D—>~C,, A>~C, is
derivable.

As for DW except for -E, ~E and VE, where the DJ-restric-

tion applies.

Let D,,, be derived from C, and C—D, in Q, with the

DIJ-restriction holding. We only need consider k €a and k &b

for the same reasons as for system B.

(i) Let b #¢. This case proceeds as for system B.

(i) Let b+¢ and a= {max(a)} = {k}. This case also pro-
ceeds as for B.

(i) Let b+¢ and a— {max(a)}=b. Let A»C,_,, and
C—D, of Q' be derivable. By &I, (A—C) & (C— D),
and, by inserting (A—-C) & (C—»D)—. A-D,, A->D,
is derivable, as required.

This is similar to -E, but with insertion of C»>D—. ~D—

~C, (see ~E above for DW.).

Again, this is similar to —E, with insertion of

(C->E)&(D-E)-. CVD—E, (see VE for B.).

As for DJ with the addition of the case ~I (from A-~A, to

infer ~A,). Since k&¢, we need only the proof of

A—~A=~A, as a derived rule of DK. However, this is a

standard proof using A V~A.
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As for DJ with addition of the case ~I (From A — ~A,, to infer

Ay).

Let ~C, be derived from C—»~C, in Q. If k ¢a, then ~I can

be applied in Q". If k€a, let A». C»>~C, , of Q" be

derived. By inserting the theorem (A —. C—»~C)—. A—s~Cy
and applying -E, A—~C, _,, is obtained.

As for DW with the removal of the rules Pref and Suff, as well

as Contrap, from the list of extra rules allowable for quasi-

proofs, and with the following changes in the cases -E, ~E
and VE to allow for the TW-restriction.

Let D,,, be derived in Q from C, and C—-D,, with the

TW-restriction holding. The TW-restriction narrows the cases

for k down to k€a and k €b.

(i) Letb=¢. Let A»C,_,, and C—»D, of Q' be deriva-
ble. By inserting C»D—-. A-C—. A-D, and by
applying —»E twice, A—D,_y,, is derivable.

(i) Letb+¢. Let A>C, , and C—D, of Q' be deriva-
ble. By the TW-restriction, aNb= ¢ and hence (a —

{khnb= ¢.

Three subcases emerge:

() a={k}. Let A»>C, and C—D, of Q' be derivable. By
inserting A—»C—. C—»D-. A-»D,and by applying >E
twice, A —» D, is derivable.

(I a—{k}+*¢ and max(a — {k}) <max(b). Let A—>C,_,
and C—D, of Q' be derivable. By inserting A —C —.
C—-D-. A>D, and applying —E, we obtain C—D-.
A—D,_y,. Since the TW-restriction is satisfied, we can
apply —E to yield A-D, yy, - 13-

(Il  a— {k} +¢ and max(b) < max(a— {k}). As for (II), but
with C-»D—. A->C—. A->D, inserted.

~E and VE are dealt with in the manner of =E, but C>D—.

~D—-~C,and (C-E) & (D> E)—. C VD E,, respectively,

need inserting.

As for TW, but noting that (iii) of the TJ-restriction holds for

the pair (a — {k}, b), thus enabling (II} and (III) to go through,

and noting that the following subcase (IV) needs to be added:

(IV) a-{k} +¢ and max (a— {k}) = max(b). Since (iii) of
the TJ-restriction holds for (a — {k}, b), a— {k} = b.
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Thus, given A-C,_,, and C-D, of Q,
(A—-C) & (C—-D), and, by inserting
(A->C)&(C-»D)—. A»D,, A— D, are derivable.
As for TJ, with the case ~I added. This case is dealt with as
for DK.
As for TW, with the case ~I added (from A —>~A,, to infer
~A,), and with changes in -E, ~E and VE corresponding to
the T-restriction. We need consider only ~I and —E.
Fork €a, A—»~C,_y, is inferred from A—. C—»~C,_,, using
the theorem, (A—. C»~C)>(A—> G 41 7
For k €a and k &b, there are 4 subcases:
(i) b=¢, (ii)) b+¢ and a= {k}, (iii) b+¢, a— {k} *+¢ and
max(a — {k}) =max(b), and (iv) b+¢, a—{k}+¢ and
max(b) =max(a — {k}). These are dealt with similarly to the
corresponding subcases for TW. However, there is a new case
to be considered for T:
k=aand k €b. Here, k = max(a) = max(b). Let A — C,_yyand
A—. C->D,_y, of Q' be derivable. There are 4 subcases:
(iy b={k}, (i) b+{k}, a={k}, i) b={k}, a=+{k},
max(a— {k} =max(b— {k}), and (iv) b+{k}, a-+{k},
max(b — {k}) =max(a— {k}).
These subcases can be dealt with similarly to subcases
(i) — (iv) of the above case for k, with the insertion of A - C —.
(A-.C->D)-. A-D,orof(A—-.C-»D)-». A->C—. A-D,
yielding A - Dy, for each subcase.
Note that the unrestricted Reit rule is used, which is preferable
to the Anderson and Belnap version in [2], as it allows more
flexibility in the natural deduction proofs.
As for TW, with -E and hence ~E and VE set out as follows:
The case, k €a and k ¢b, can be simplified into one subcase
since (a— {k}) Nb=¢, by the RW-restriction. There is an
additional case: \
k#aand k €b. Let C;and A—. C—»D,_, of Q' be derivable.
Insert C—. C—»D-D, and hence derive C»>D-D,.
Then, insert (A—. C»D)-. (C>D->D)». A— D, and ob-
tain A—D, (- (), since aN(b— {k}) = ¢ by the RW-restric-
tion.
Note also that a U(b— {k}) =(a Ub) — {k}.
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As for T, with -E and hence ~E and VE set out as follows:

The cases, (k =a and k €£b) and (k €a and k €b) can be taken

as appears for T, or they can be simplified into single subcases

due to the lack of restriction on -E in FR.

There is an additional case:

k ¢a and k €b. This is dealt with as for RW above, without

reference to any restrictions on —»E.

As for R, with &I and VE changed as follows:

Let C & D, , be derived in Q from C, and Dy, subject to (a = ¢

and b= ¢) or (a +¢ and b +¢ and max(a) = max(b)).

(i) k&aand kb, Apply &I in Q'.

(i1) k &a and k=b. Here, max(a) <max(b), which is im-
possible.

(ii) k<=a and k &b. max(b) < max(a), which is also impos-
sible.

(ivy ke=a and kEb. Hence, k=max(a)=max(b). Let

A—-C,_ and A-D,_,, of Q' be derivable.
By inserting theorems, A—-C—. A-C& A, and
A-D-. C&A-C&D,, we obtain A-C&A, _y,
and C&A—-C&D,_g,. Hence, A» C&D,_gy
-y by standard moves from FR. Note that
(a—{k}) U(b—{k})= (a Ub)— {k}, as required.

Let E, ;. be derived in Q from C vD,, C-»E, and D> E,.

There are 8 cases to consider.

(i) k&a, k&b and k ¢c. Apply VE in Q.

(i1) k=a, k&b and k&c. Let A-C VD,_» C—>E, and
D—-E; of Q' be derivable. By inserting C—E .
CVD-EVD, and D>E—. E VD—E,, we obtain
A->Eq ybuo- -

(iii) kea, ksbandkec. Let CVvD,, A-. C—E,_, and
D—E. of Q' be derivable. By insertion of C— E —.
CVD-E VD,, we obtain A». CYD-E VD, _,.
Further, by inserting D-E—. E Vv D-E,,
CvD-SEVD-. CVD—=E, and hence A —.
CVD—>Eyy-q Iis derivable. Hence, CVD-.
A—>Ep -y and A= E py g - gy

(iv)  k=a, k€b and ke¢c. Let A-C VD, 4y, A-
C—E,_{; and D-E, of Q' be derivable. By inserting
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C—-E-. CVD-E VD,, we obtain A—.
CVD—EVD,_y, and hence A—E VD, y_y,;. Fur-
ther, by inserting D-E—. EVD—E,, we obtain
E VD—-E. and hence A»E,, - (-

(v) k &a, k &b and k c. Similar to (iii).

(vij ke=a, kéb and k=c. Similar to (iv).

(vi) kea, k€band kec. Let CVD,, A—». C-E,_y, and
A—. D>E._y, of Q' be derivable. First, note that
(A-.CoE)». (A->. D> E)-.

A—(C—E) & (D—E), is a theorem of RF. Hence,
A—-(C>E) & [D->E)pyy-4 and then A-.
CVD—=E, - are derivable.

Then since CVD—. A—E; -4 A=Equbuo-w
follows.

(vii) k<a, k€b and k€c. Let A-CVD, 4, A-.
C—E,_; and A-. DE__, of Q' be derivable.
Again, A». CVD->E, _y,; is derivable, and this
yields A—>E, ;- (> as required.

We next consider the systems FX¢ all of which have the rule VE*
added. Consider first the system FB® with VETapplied, not within the
scope of any assumption, and with no applications of VET used in
establishing its rules, A, = C, and B, = C,. We show that VE'
preserves theoremhood in B9 That is, we assume that AVB is a
theorem of B¢ and that A = C and B = C are derived rules of B (also
BY),

To prove that C is a theorem of B¢, we show that each step D in the
derivation of C from A can be replaced by B VD, and each step E in
the derivation of C from B can be replaced by C V E. Thus, a proof of
C in B9 can be obtained by showing that each step B vD and C VE,
above, is a theorem of B9, Any theorem F used in the proof of C from
A or from B, can be replaced by the theorem B VF or CVF,
respectively. It remains to check the rules of B.

(i)  An application A’', A’'>B’' = B’ of Rl, can be replaced by
BVA’, BV(A'>B’) = B VB’ due to RS of B4,

(i) An application A’, B’ = A' & B’ of R2, can be replaced by
BVvA', BVYB' =BV(A'&B’), as it is a form of distribution
derivable using AS.
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(ili) An application A'>B', C'D’' =B'-C'—. A'»D’ of R3,
can be replaced by BV(A'-»B'), BV({C' -»D)=
BV(B'-C'—. A’»D’) due to R6 of B4

(iv) An application A’>~B’ = B'>~A’ of R4 is replacable by
BV(A'"->~B") B V(B'>~A’) due to R7.

Similarly, ‘CV’ can replace ‘BV’ in (i) — (iv).

We next move to the general case where assumptions can lie inside
other assumptions. In the same manner as above, each assumption A;
has a disjunct D; which is added to the left of it and D, is added to each
step up to the conclusion C; of A;. So a step E inside the scope of
assumptions A,, ..., A, is replaced by a step D, V... VD, VE, where
D; is the disjunct added to the left of assumption A;, for each i. So, if
the rule: from A VB, A = C and B = C, to infer C, is applied inside

assumptions, A,, ..., A,, with corresponding disjuncts, D,, ..., D,,
then it is replaced by the steps, D; V... VD, VA VB, D, V...VvD, Vv
BV, veeeis Dy Vo YD VBYVC, Dy ¥ i YDVC VB, 55, DUV

vD, VCVC, and finally, D, vV ... vD, VC.
As each pair of assumptions are eliminated, so are their corresponding
disjuncts, until finally all the disjuncts are removed. That theorem-
hood in BYis maintained throughout such a proof can be seen from our
simpler case above, where a single disjunct is replaced by a string of
disjuncts. This completes the proof of Theorem 4 of B9,

The remainder of the systems FV9 can be dealt with in the same
way as FBY with appropriate removal of rules R6 and R7 from the
sentential logics X9,

§ 4. The Equivalence between the Quantificational Logics XQ and the
Systems FXQ.

We show that XQ and FXQ are equivalent, with X a sentential logic
without disjunctive rules. Recall that the quantificational axioms and
rule of XQ are the same for all such X, and that the quantificational
natural deduction rules of FXQ are the same for all such X.

Theorem 5.
For all formulae A, if g, A then gy, A.
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Proof. This is simply a matter of proving QA1 - 6 in FBQ and showing
that QRI1 is a derived rule of FBQ.

Theorem 6.
For all formulae A, if 5y, A then g, A.

Proof. We consider each of the quantificational rules of FXQ, applied
in an innermost subproof Q, to see if, when modified as described for
Q' of the proof of Theorem 2, they are derivable in FXQ, with the help
of the additional rules for quasi-proofs.

vi.

vE.

vV,

Let (¥x)C, be derived from C, in Q, with x not free in any

hypothesis H;,, where i €a. If k €a, VI can be applied in Q’.

Letk€aand A—C,_y, of Q' be derivable. x is not free in any

hypothesis Hy,, where i=a—{k}. Hence, by VI,

(¥x) (A—C),_y, is derivable. Note that x is not free in A since

Ay, is a hypothesis and k €a. Then we can insert the theorem

(VX)(A-C)—». A—(¥x)C,, and obtain A—(¥x)C,_ (k1> @s

required.

Let C¥/x, be derived from ( ¥x)C, in Q, where y is free for x in

C. If k&a then VE can be applied in Q'. Let k=a and

A—(Vx)C,_y, of Q' be derivable. Then insert the theorem

A—(Vx)C—. A->C¥x, and obtain A —CY/x, _,, as required.

Similar to VE, using the theorem, A—(Vx)(C VvD)-.

A—C V(¥x)D, where x is not free in C.

Similar to VE, using the theorem, A—-CYx—. A—(Ix)C,

where vy is free for x in C.

Let D, ;, be derived from ( 3x)C, and ( ¥x)(C — D), in Q, where

x is not free in D and (a, b) satisfies the same restriction as for

—E and VE in the system FX.

(a) k ¢&aand k &b. Apply 3E in Q.

(b) k¢aand k €b. Let (I)C, and A - (Vx)(C > D), _y, of
Q’ be derivable. This case only arises for systems
FRWQ, FRW9Q, FRQ and FRFQ. In which case, we
have the theorem (3x)C—. (3x)C—-D—-D,, and hence
(3x)C - D —> D, is derivable. Insert A—- (¥x)(C ->D)—.
A-. (X)C-D, and obtain A—. (IX)C—-D,_,. For
FRWQ and FRWYQ, alb = ¢ and hence aN(b —
{k}) = ¢. So —E can be applied to yield A - D, ,;, _ (.
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(c) k<aand kéb. Let A—(3Ix)C,_,, and (¥x)(C— D), of
Q' be derivable. Insert ( ¥x)(C—D)—. (I&x)C—-D,, and
obtain (3x)C—D,. Then A—»D(au,,,) ) 18 derlvable by
following the procedure given in the —E case for each
of the natural deduction systems.

(d) k<aand k€b. Let A—(3x)C,_,, and
A - (Yx)(C— D), _, of Q" be derivable. This case only
appears for systems FTQ, FRQ and FRFQ. In which
case we can insert the theorems, (A—. (IX)C—>D)—.
A—(IX)C—. A-»D, or A->(Ix)C—. (A-.
(3x)C—-D)—. A—-D,, as required to obtain
A—-Dgy)- - The procedure is given under —E for
FT, a simplification of which applies for FR and FRF.

3&. Similar to VE, using the theorem, A—C & (3x)D—.

A —(3x)(C & D), where x is not free in C.

It is easy to check that each of the quantificational natural deduc-
tion rules are derived rules of BQ, when considered outside the scope
of any subproofs.

We now show that X4Q and FXQ are equivalent for any sentential
logic X9 with disjunctive rules.

Theorem 7.
For all formulae A, if iz 4, A then gy 4, A.

Proof. We essentially need to show that any derived rule produced by
a meta-rule is a derived rule of FB%Q. For derived rules produced by
MRI, this is shown using VE', and for derived rules produced by
QMRI1, we use JE".

Theorem 8.
For all formulae A, if gy 4, A then K 4, A.

Proof. We need just consider the rules VETand 3E* to see that they
are derivable in B9Q. This is less complex than in the proof of
Theorem 6 because the employment of MR1 and QMR1 in proofs in
BYQ is similar to the employment of VE*and 3E*in FX9Q, and also
the provisos on both types of rules are essentially the same. In fact,
we use MR1 to derive VE"in BYQ, given that A, = C, and B, = C,
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are expressible as derived rules of B4Q with no generalization on any
free variable of A or B, respectively. Also, QMR1 is similarly used to
derive JEFin BYQ.
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