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Résumeé

L’équivalence (bien connue) entre la sémantique des calculs propo-
sitionnels non-classiques qui est basée sur des interprétations philo-
sophiques et celle, plus sobre et plus ancienne, qui ne fait intervenir
que les structures algébriques sous-jacentes, est explicitée et expliquée
par la spécification d’une application démunissante qui réduit tout
“‘modele de Kripke” a4 un sous-modéle du ‘‘modeéle’” des filtres

premiers de 1'algébre (pseudo-) Booléenne des classes de formules
interdéductibles.

The tenor of the argument should be sufficiently clear from the title.
The thesis is basically that the algebra is already quite well known,
while the additional poetry only obscures and unnecessarily compli-
cates the essential aspects of the situation as they will be revealed to
those incisive enough to forego the imaginative sugarcoating.

The relevant algebraic analysis often enough appears in the litera-
ture (more often for the modal logics, where the facts are closer to the
surface, than for the intuitionistic) still enmeshed in the symbolism of
the initially presented formal systems and doused more or less
liberally with “‘possible world semantics’ sauce; there are even
treatments which show explicitly that algebraic validation comes to
the same as that using ‘‘Kripke models’ ; what has apparently not
been carried out is a structural, in contrast to a functional, compari-
son: one which relates the individual constructs in the two approaches
to each other. This is realized below by means of a canonically
defined map which sends the ‘‘possible worlds”’ of any ‘Kripke
model’” onto a special kind of subset in the Stone space of the
Lindenbaum algebra of the logic: a subset of filters which mirrors set
theoretically the formal validation procedure in the model (and thus
explains the functional adequacy of the algebra). The details are
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summarized under the rubric ‘‘Das Kripke-Modell an sich’* at the end
of the discussions which take up in order the types of systems treated
in the three cited Kripke references. Only propositional logics have
been investigated for lack of time; it may be possible to return to the
predicate logics on another occasion.

Some brief comments on this literature before getting down to
work. Already in his JSL review of the first Kripke paper, D. Kaplan
pointed out that in place of the plethora of ‘“‘models’’ one can make do
with a single structure: the ‘‘complete, deductively consistent sub-
sets’” of the formal system (algebraists read: ultrafilters of the
Boolean algebra i.e.: Stone space) equipped with the appropriate
relation. This ‘‘canonical model’” has been popular in subsequent
expositions (Lemmon, [HC chap. 17], Segerberg, Cresswell); it is
presented in Boolean form by Ursini; its naturalness may be guaged
by its having been recently reconstituted independently by Loparic;
and, as Lemmon p. 42ff has pointed out, the advantages (such as
decidability) that the finite models may offer are to be had by reducing
it with a suitable equivalence (a technique which has since taken on
the rather awesome title ‘‘filtration’’). As for explicitly reducing
modal ‘‘Kripke models’’ to such relation-equipped subsets of the
Stone space, constituents of the map to be presented below are
partially foreshadowed in [HC pp. 326-328] for the special case of the
T-system and (a more essential restriction) for finite models and
algebras — but marred by the apparent confusion of construing the
range of the map as the algebra; in Segerberg p. 30 where just the
kernel of the map puts in an appearance as that of an inessential
contraction of models — but note that the congruence assertion is in
default (specifically neither the ‘‘It should be clear’” on p. 327 of the
former nor the first ‘It is clear’” on p. 30 of the latter should be clear
to the reader); and most completely in Lemmon’s JSL articles where
Theorem 15 of I goes part of the way by associating to every ‘‘model
structure’’ an operator-equipped Boolean algebra of its subsets: then
by combining this with his proof of Theorem 32 of II (which is only
used to show that every algebra is a subalgebra of one of these) one
would effect the reduction as far as a relation-equipped subset in the
dual of some Boolean algebra.

This is also as far as the reduction is carried by the intuitionistic
literature. The adequacy of the algebraic analysis for intuitionistic
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logic goes back to Stone 1937 (a textbook treatment is in [RS]). In
developing the ‘‘Equivalence of algebraic and Kripke validity” (i.e.
that the same formulae are universally validated by both semantics)
Fitting, ch. 1 § 6 pp. 23-27, produces for every ‘‘Kripke model’ a
homomorphism to a pseudo-Boolean algebra which effects validation
of the same formulae (following a suggested exercise in Beth’s book ;
see below for a more streamlined proof) and for every such homomor-
phism a like - validating *“‘Kripke model’’ on the prime filters of the
image (by combining it with Stone’s 1937 representation whose proof
he retraces) — the same correspondences are developed by Hermes
§ 29 pp. 170-172. The composition of the maps between underlying
sets induced by these correspondences is almost the canonical map
below which demystifies intuitionistic ‘‘Kripke models’’: the final
link, which ties down the image as a subset of the ‘‘canonical’’
intuitionistic model furnished by Stone, is provided by composing
further with the dual of the homomorphism from the algebra of
(interdeducible) formulae.

Closest (certainly in spirit) to the present enterprise is Anderson’s
development of the ‘‘contracting’ of intuitionistic ‘‘Kripke models’’.
Formally he presents this as a reduction to a submodel with retention
of the original order, but it could equally be construed as a retraction,
in line with what is done here; however, he restricts himself to tree
models and whereas his treatment is optimal for these, admitting more
general partially ordered sets can result in further ‘‘contracting’’, as
will be seen below. The latter part of the section on intuitionistic logic
analyses Anderson’s work within the present framework.

Intuitionistic propositional logic :

A ““Kripke model’’ for this logic is taken to be a set W (the so-called
““possible worlds’’) equipped with an internal binary relation R (of
“‘possible succession’’) which is to be reflexive and transitive (i.e. a
preorder) and with an external relation V, between its elements we W
and the usual propositional formulae ¢, of ‘‘valuation’ or ‘‘valida-
tion’’ satisfying

(P0O) If V(w, ¢) then V(w’', ¢) for every w'Rw
(P1) V(w,$ Avy) just when both V(w, ¢) and V(w, )
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(P2) V(w, ¢ V) just when at least one of V(w, ¢) and V(w, y)
(P3) V(w, ~¢) just when not V(w, ¢) and (P0) is not violated
(P4) V(w, ¢ — ) just when either not V(w, ¢) or V(w, ), and
(P0) is not violated.
This is just the list on p.20 of Fitting (as taken directly from Kripke)
except that (PO) has been strengthened by including explicitly the
consequence Theorem 4.4 proved on p. 22, while (P3) and (P4) have
been reformulated by virtue of the so strengthened (P0).

For every formula ¢ let S(¢) c W be the subset of all weW for
which V(w, ¢) — the subset of those ““worlds’” in which ¢ is valid. The
content of (P0) — that with any w & S(¢) every w'Rw is also in S(¢) —
will be abbreviated by saying that S(¢) is an upper subset. Observe
that the upper subsets of W are closed for arbitrary (ordinary
set-theoretic) union and intersection i.e. form a complete sublattice of
the lattice of subsets of W, hence a complete, completely join
distributive lattice and thus in particular (e.g. Birkhoff p. 128 Theo-
rem 24) a bounded relatively pseudocomplemented lattice (a concept
found under various aliases e.g. as ‘‘pseudo-Boolean algebra’ in
[RS]). Now P1-P4 come to: S(¢ Ay) = S(¢p) NS(y), S(p V) =
S($) US(w), S(~ ¢) is the largest upper subset disjoint from S(¢), and
S(¢— ) is the largest upper subset contained in [W-S(¢)] US(y) —i.e.
they come to that the mapping S from the propositional formulae to
the upper subsets is a homomorphism when the formulae are cons-
trued as an algebra for the operations A, V,~,— (it is in fact the
absolutely free algebra for these operations on the propositional
variables, or atomic formulae, as generators) to the upper subsets of
W, under the corresponding operations of intersection, union,
pseudo- and relative pseudo-complement. But since the image is a
pseudo-Boolean algebra, this homomorphism factors into the quotient
map modulo the pseudo-Boolean identities (i.e. the intuitionistic
propositional tautologies [RS] p. 382) whose image is the largest
quotient pseudo-Boolean algebra (in fact the free one on the proposi-
tional variables as generators) followed by a pseudo-Boolean homo-
morphism to the upper subsets of W. It is even possible to pin down
the ‘‘possible worlds’ as sublunary entities: indeed since pseudo-
Boolean (i.e. intuitionistically) equivalent formulae are mapped by S
on the same upper subset, a fortiori V(w, ) for any individual w will
not distinguish such formulae. Now for fixed w, the totality of (classes



“KRIPKE SEMANTICS” = ALGEBRA + POETRY 287

of equivalent) formulae for which V(w, ¢) holds is, according to (P1),
a filter which according to (P2) is prime and to (P3) proper. Conver-
sely if V is defined to hold at every w just for the formulae (in the
inverse image under a homomorphism to a pseudo-Boolean algebra)
of a proper prime filter, then it verifies (P1) and (P2). As for (P0), it
Jjust expresses the order preserving character of the map from the
preordered set W into the inclusion ordered proper prime filters of the
pseudo-Boolean algebra of intuitionistically equivalent classes of for-
mulae. To have also (P3) and (P4) it must be the case that a ~¢ (or a
¢—v) fails to be in the image of a w only if ¢ is (and ¢ - or
equivalently ¢ — 1 — fails to be) in the image of some w'Rw. Since V is
order preserving, its image is therefore a set of prime filters such that
~¢, resp. ¢ -1, fails to belong to one of them only when ¢ belongs
resp. and 1 does not, to a larger one in the set. Calling for
convenience ‘‘->-justifying’’ any subset (in the dual of the free
pseudo-Boolean algebra) which satisfies this, we arrive at last at:
Das Kripke — Modell an sich:

A Kripke model (for intuitionistic propositional logic) is a preorde-
red set equipped with an order preserving map onto an —-justifying set
of proper prime filters in the pseudo-Boolean algebra of equivalence
classes of formulae. Its preorder, besides being contained in the
inverse image of the inclusion order, must like it provide for every ~¢
(or ¢$—1p) not in the image of a w, a w'Rw whose image contains ¢
(and excludes ).

The auxiliary preordered set W of “‘worlds’" is thus a dispensable
elaboration in that the same formulae would be validated directly by
the inclusion ordered set of the prime filters designated by, i.e. which
occur in the image of, the validation map V. In fact, the set of all
proper prime filters is —-justifying: if ¢ - does not belong to some
filter F i.e. dominates no element of it, then the filter generated by F
and ¢ does not contain vy and so is contained in a filter maximal for
excluding y, hence prime. Thus since the intersection of the prime
filters in a bounded distributive lattice is its unit — e.g. [RS] 19.2
p. 49 — every non-tautology vy will be excluded by some prime filter,
whence the subset of all its prime overfilters will be a ‘‘Kripke
counter-model’” for 1. This can be made ‘‘minimal -rejecting’
(Anderson p. 264) by starting with a prime filter maximal for exclu-
ding 1.
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But to exhibit 1 as a non-tautology it is not necessary to take all the
prime overfilters of a prime filter excluding it — any —-justifying set
would do. It is a fact — [RS] IV9.3 p. 141 — that every finite subset of a
pseudo-Boolean algebra can be completed to a finite algebra; hence -
[RS]IX3.2 p. 386 - that any non-tautology can be mapped, along with
its non-tautologous subformulae, homomorphically into the non-units
of a finite pseudo-Boolean algebra; and this can be extended by
freeness to a homomorphism from all the formulae, whence the dual
map will order inject the finite number of proper prime filters of the
image onto a finite Kripke counter-model. (A detailed syntactic proof
of the special case takes up Fitting’s chapter 2.)

Kripke has shown how every (finite) model can formally be
construed as a (finite) tree model with essentially the same validation
map V. For tree models Anderson has furnished a contraction process
which produces an uncontractable normal form tree. This process
does not get down to the proper prime filters in the image of V: here is
an Anderson tree whose endpoints are identified by V

T T
F T

sl

F T
T T

Such a subtree must occur in any tree counter-model for the two-va-
riable formula [(~~x) A(~~y)] > [(Xx—>y) V(y—X)]: this formula
could not have a tree counter-model in the poset of prime filters.

An “‘n-assignment Kripke model’’ is a finite poset K with smallest
element (actually in Anderson p. 262 more particularly a tree with
root) g, with the further designation of an n-tuple of upper subsets in
it; two such are ‘‘equivalent”, loc. cit. p. 266, if whenever an n-tuple
of propositional variables is validated with the respectively designated
n-tuples of upper subsets, the same formulae in these variables
become valid at the respective g. Here the validation assignment for
n-variable formulae at nodes of K is made by recursion on the
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(absolutely) free generation of formulae starting from the n proposi-
tional variables using (P1) to (P4). It follows as above that this is a
homomorphism from the n-variable formulae to the pseudo-Boolean
algebra of the upper subsets of K generated by the designated n upper
subsets, which thus factors via the free pseudo-Boolean algebra on n
generators.

The dual map sends the nodes of K in order-preserving fashion on a
finite (') set of proper prime filters of the free pseudo-Boolean algebra
on n generators (each node going to the classes of equivalent formulae
valid at it) and the image is, by the Stone representation theorem, a
model “‘canonical’’ for this n-generated presentation of the algebra of
upper subsets. But a priori, the same prime filter of classes valid at g
could be embedded in different —-justifying sets of filters in the dual of
the free n-generated algebra, and this would furnish distinct such
canonical models ‘‘equivalent” in the above sense. However, if we
define a stronger form of equivalence, between (not necessarily finite
or tree) models, whereby for every submodel (as defined on p. 263) of
the one there is a submodel of the other which is equivalent to it in the
preceding sense — then every model again becomes equivalent to one
built with an —-justifying subset of the proper prime filters in the free
pseudo-Boolean algebra on n generators; but now the models for
distinct such subsets are never equivalent and this yields a normal
form - alternatively one may show that ‘‘contracted’’ models equiva-
lent in this sense are isomorphic.

Modal propositional logic

A modal propositional logic in the most general sense is obtained by
augmenting the classical propositional connectives with an additional
unary operator [J, which is used along with the classical ones to
generate the modal formulae. The most common versions include the
classical propositional tautologies and rules, whence on the quotient
of these formulae modulo interdeducibility the classical connectives
still impose a Boolean structure ; if one wishes to take account also of

(Y Recall that the free pseudo-Boolean algebra on even one generator is infinite,

whence must have infinitely many prime filters: the homomorphism to the upper
subsets of the finite K is certainly not injective.
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O at this quotient Boolean level, one will want it to be well defined as
a unary operator on this algebra of equivalence classes of formulae. (%)
The latter comes to having p «+.q yield Op <~ Oq back in the logic.
This is the *‘rule RE (replacement of material equivalents)’’ whose
presence singles out the systems called ‘‘classical”” (Lemmon p. 18,
Segerberg p. 6) and ensures the substitutivy of interdeducibility « in
the modal (as well as in each propositional) connective. The resulting
quotient structure is a Boolean algebra equipped with a unary
operator (which it will not harm to denote with the same symbol O as
the logical operator which induces it).

Although they are not Kripke-style, we pause to dispose of the
“*semantics’’ for this type of system. Every function (] from A’ to A
may be described by the family (07 Ya) of inverse images (whose
non-void members partition A’). If the A's are Boolean algebras they
may be represented as algebras of subsets on their respective spaces
of ultrafilters and this description then becomes an assignment (17! to
every clopen subset C in U of a set of clopens in U’. This may in turn
be specified as an assignment to each uegU of the various sets of
clopens in U’ assigned to the different clopens C containing u: 071C
may be recovered as the set common to all those assigned to the ue C.
With A’ = A, this is the ‘‘Fundamental Theorem for Neighborhood
Semantics’’: the 07 !C assigned to u are (mis)called the ‘‘neighbor-
hoods’ of u, although it is the C which are its neighborhoods in the
Stone topology.

The above rule RE, whose content is that O is well defined as a
unary operator on the Boolean algebra (of classes of interdeducible
formulae), follows from having p — q yeld Op—Oq, whose content is
the stronger requirement that it be well defined as an order-preserving
unary operator. Lemmon calls this the ‘“‘rule RM’’, Segerberg ‘‘the
rule RR (regularity)’” but requires for a system to be ‘‘regular’’ that it
also provide the axiom (scheme) Clp A [0q — Cl(pAq) whose (additio-

(?) This is not the only way Boolean algebra can be used however. There is an
ingenious proof for the decidability of the modal system S2, which does not satisfy this
requirement, by McKinsey: he divides out not by the equivalence of full interdeducibi-
lity, but by the weaker one of strict interdeducibility, which leaves him with a Boolean
algebra in which the tautologies still constitute a proper filter; and then performs a
reduction to a finite subsystem of this algebraic-logical hybird in which a given
non-tautology is still outside the filter.
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nal) content is that (J preserve not only order but A. This entails Op A
O(pp—-q =0O[pA(p—q)] = Oqi.e. O(p—q < Op—0gq, the Boo-
lean translation of Axiom A6 in [HC] and A4 in Lemmon ; conversely
an order-preserving [J satisfying this preserves A: since p<p Aq—q
one has Op=0(p Aq) - Oq (also proved as T3 in [HC] p. 34).

The missing order-preservation becomes available when this axiom
is combined with the ‘‘rule RN of necessitation’” which authorizes the
inference from p to Op; its content, that [ preserve tautologies (by
RE it would suffice for it to send a single tautology, and by RM even
any formula, on a tautology) becomes, in the Boolean quotient
algebra, preservation of the unit 1.

These “‘normal’’ systems are commonly axiomatized by using just
this A6 and necessitation as the modal supplement to the standard
classical formalism, rather than by requiring explicitly that [ act on
the Boolean equivalence classes as an A-monoid endomorphism. One
then obtains the most widely studied systems by further specialization
(Cf [HC]): system T by adding the requirement that (J be decreasing
(more formally by subjoining axiom A5: Op—p); system S4 that it
also be idempotent (more formally, the further axiom A7: Op — (O0p)
or equivalently, induce the identity on its image; and system S5 that
also this image be closed under negation (more formally axiom A8:
~Op—-0O~Op).

A “*Kripke model’’ (for a normal system) is again a set W equipped
with an internal binary relation R and an external relation V, between
its elements and now the modal propositional formulae, satisfying

(P1) V(w,o Ay) just when both V(w, @) and V(w, )
(P3) V(w, ~@) just when not V(w, )
(P5) V(w,Oq) just when V(w’', ¢) for every w'Rw.

The analysis here is even easier than it was before. (P1) and (P3) just
say that V assigns to every we W a homomorphism, as regards only
the combination of formulae by these classical connectives, to the
two-element Boolean algebra: thus an ultrafilter in the quotient
algebra of formulae modulo the Boolean identities. (Observe that (P5)
in conjunction with (P1) shows that V also does not distinguish
(e Ay) from Clg Ay, and since 1 belongs to all ulirafilters this
modelling could only be appropriate for normal systems.) Thus,
without changing the sets of formulae validated at elements of the
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model (which will continue to be those in the corresponding ultrafil-
ters) we may again substitute for the possible worlds W their image in
the Stone space of ultrafilters; and then need only equip this image
with a binary relation satisfying (P5) in order to make it a model. The
strongest possibility would be to relate u’ to u just when geu’
whenever O eu: thus would be the relation u’ >~ 'u. This makes
the map from worlds to ultrafilters a relational homomorphism -
w'Rw implies u'>07'u for the image ultrafilters — and under any
such, N{u’ : w'Rw} remains at least as small, whence its coincidence
with 07 'u, which is the content of (P5), will be maintained: therefore
this does make the image a model. Calling for convenience ““O-justi-
fying’* any subset of the Stone space for which every [J7! of one of its
u is the intersection of ultrafilters from the subset, we have identified
Das Kripke-Modell an sich:

A Kripke model (for a normal modal propositional logic) is a set W
equipped both with a map onto a O-justifying subset of the Stone
space of ultrafilters and with any relation contained in the inverse
image of u’ 507 'u which (like it) includes, for every O not in the
image of a w, a pair (w’, w) with @ not in the image of w’.

It remains to remark that the Stone space of all ultrafilters is
U-justifying (®): for since OJ is A-preserving, (™ 'u is a filter and is
therefore the intersection of the ultrafilters containing it.

In general this map from the a priori given model of *‘worlds’’ to the
canonically determined Stone space of ultrafilters can only be expec-
ted to be a relational morphism; the more restrictive *‘p -** or ‘‘frame
morphisms’’ referred to e.g. Segerberg p. 37, Goldblatt p. 53 - i.e.
those relational morphisms which also send the section of the domain
relation at each element onto (rather than just into) the section of the
coldomain relation at its image : thus here which send the w'Rw onto
the u'>07'u whenever w is sent on u — will be obtained when R is the
strongest relation satisfying PS on W, thus the strongest for which O¢
fails to be validated at any w only if ¢ fails to be validated at some
w'Rw: i.e. when R fails to relate w only to those w' at which some 0,
whose (1 is validated at w, fails to be validated ; and also when every
filterbase of validation subsets of W has non-void intersection.
Indeed, letting f be the map from worlds to the Stone space, from

(*) This is the first Remark of Ursini.
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O~ fw cu' follows f ' O™ 'fw —f~'u’ = some principal filter w' by the
latter condition, which inclusion entails w'Rw by the former; and
f™'u’ —w ensures u’ = fw’ by separatedness of the Stone space. This
is proved by Goldblatt in the course of his 13.5 Theorem under
superfluous supplements: that the space W be separated by the
validation subsets (Axiom I p. 64) and that the map is to the Stone
subspace dual to the quotient algebra obtained by reducing modulo
the universally validated formulae — this has the effect of making f a
surjection.

These ‘‘descriptive frames™ of Goldblatt are of course nothing
other than Stone represented modal algebras with the above ‘‘canoni-
cal” relation on the [-justifying set of all ultrafilters. Van Benthem
has noted that every relation-equipped set W is embedded in relation-
preserving fashion as the principal ultrafilters in the Stone representa-
tion space of all ultrafilters on the power set of W with the modal
structure derived from the initial relation.

We pass quickly through the more specialized normal systems. If
Op <p then u> O™ 'u so that R may be taken reflexive ; if O Op = Op
then u’ >0 'u is transitive whence this may be imposed on R ; if both
hold the relation is the same as [0 'u’ > 'u or, since ultrafilters are
sent by ~ on complements, (17! ~u'c 0" *~u, and now A8 (0" ! ~uc
O '~0O 'uc O ' ~u’, shows it symmetric.

Finally, we drop the ‘‘rule of necessitation RN but retain the
remainder of the axiomatic base, i.e. we treat Segerberg’s ‘‘regular
systems’’: algebraically, [0 remains an A-endomorphism on the
Boolean algebra but may now send 1 on some element (11 = 1. There
will in this event be ultrafilters which do not contain (11, hence by
order-preservation of (1, no Op: i.e. for which O™ 'u is void — and
these cannot be excluded from consideration since the intersection of
the ultrafilters in their complement is the non-trivial principal filter
generated by O1, for no element of which could they produce a
counter-model. The Kripke semantics way around this is to exempt
these ultrafilters from the requirement (P5) so as to admit ‘‘non-nor-
mal (%) worlds in which no proposition is necessary’’ as elements of
W: the exclusions of the Og from the ultrafilters that these w
determine — by virtue of the still valid clauses (P1) and (P3) — will not

(%) Segerberg’s term is ‘‘singular’’.
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need to be justified by a (P5) appeal to w'Rw. Thus there need not be
any w' related to these w; on the other hand, one might need the
presence of such an ultrafilter to exclude a ¢ from a non-void O™ u -
e.g. if ¢ were 01 — and so one will allow these non-normal worlds to
function as w' in w'Rw — although by the above this need be done only
for ‘““normal’’ w. (The further requirement made in [HC] p. 275/6 that
every non-normal world does function in this way, while it may be
imposed for the system S2 discussed there, need not hold e.g. for even
the slightly weaker E2 where for (01 = 0 there are no models with
normal worlds).

Another possibility would be to allow a single void ‘““world’’ related
just to the ultrafilters not containing [J11. This would allow retaining
(P5) at the cost of modifying (P3) to hold with this one exception.

With what kind of poetic fancy might one imbue such a void
‘‘possible world”’? It is a world in which neither a formula nor its
negation are valid, in which none of our usual distinctions can be
drawn: a world of total uniformity. Physics has described such a
world for us: the ‘‘heat death’’ or state of maximum entropy towards
which the universe is running down. The worlds in which no proposi-
tions are necessary, thus in which everything is possible - one might
call them ‘“‘chaotic’” or ‘‘lawless’ - would then be those one step
away from extinction.

Das Kripke-Modell an sich may be formulated for these non-normal
(regular) logics as above for the normal ones: under the first alterna-
tive **C-justifying’’, in the ultrafilter space ordered by u’ >0 'u + ¢,
should be taken to apply only to the subset of ultrafilters which meet
the image of O and the condition on R only to the ‘‘normal’’ worlds w
i.e. for which (P5) is in force ; under the second, one may take over the
previous wording and order after augmenting the ultrafilter space with
the new element ¢ and let this element serve as image for any
“‘entropic’’ element in the model.
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