PARACONSISTENCY, PARACOMPLETENESS, AND VALUA-
TIONS

Andréa LOPARIC and Newton C. A. DA COSTA

1. Introduction

A theory 7 is called inconsistent if among its theorems there are at
least two, one of which is the negation of the other. When this is not
the case; & is said to be consistent. We call & trivial when all
formulas (or all closed formulas) of its language are also theorems of
G If there is at least one formula (or closed formula) of the language
of @ that is not a theorem of &, then & is said to be nontrivial.

A paraconsistent logic is a logic (a logical calculus or simply a
calculus) which can be used in the systematization of inconsistent but
nontrivial theories. These ‘paraconsistent’ theories, therefore, may
contain inconsistencies (contradictions), i.e., pairs of theorems such
that one is the negation of the other, without being trivial. Obviously,
most of the extant systems of logic, such as the systems of classical
logic, are not paraconsistent( in relation to paraconsistent logic, its
applications, and its philosophy, see [1] and [3]).

Every logical system whatever has a two-valued semantics of
valuations, which constitutes a generalization of the standard seman-
tics (cf. [8] and the next section of this paper). Taking this fact into
account, we can define precisely the notion of paraconsistent logic; a
logic is paraconsistent if it can be the underlying logic of theories
containing contradictory theorems which are both true. Such theories
we call paraconsistent.

Similarly, we define the concept of paracomplete logic: a logical
system is paracomplete if it can function as the underlying logic of
theories in which there are (closed) formulas such that these formulas
and their negations are simultaneously false. We call such theories
paracomplete.

As a consequence, paraconsistent theories do not satisfy the
principle of contradiction (or of non-contradiction), which can be
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stated as follows: from two contradictory propositions, i.e., one of
which is the negation of the other, one must be false. Moreover,
paracomplete theories do not satisfy the principle of the excluded
middle, formulated in the following form: from two contradictory
propositions, one must be true.

The objective of the present paper is twofold: 1) to develop a
propositional system of logic at the same time paraconsistent and
paracomplete, which, in a certain sense, contains the classical propo-
sitional logic; 2) to illustrate how the method of valuations is
convenient for the better understanding of a logical system (some
applications of the semantics of valuations may be found in [2], [4],
[10] and [16]).

The system studied in this paper may be seen as a kind of logic of
vagueness (in the sense of [6] and perhaps also in the sense of [7]; it
also constitutes an alternative to the dialectical logic in the sense of
the logic DL of da Costa and Wolf (see [5] and [6]), which formalizes
some views of McGill and Parry ([12]). Moreover, our system
presents some connections with the dialectical logic DK of Routley
and Meyer (cfr. [13]). One of the consequences of these parallels is
that the main ideas of dialectics seem to be really vague, not being
susceptible to unique characterization by a formal system.

Nonetheless, we do not intend here to explore the possible applica-
tions of our system, from the philosophical point of view or otherwise.
Our aim is merely a technical one: to emphasize the relevance of the
semantics of valuations, showing that with the help of such semantics
one can, in various cases, obtain decision methods which really
constitute a natural extension of the common two-valued truth-table
decision method of the classical propositional calculus. In fact, we
conjecture that any calculus that is decidable at all, is decidable by the
corresponding semantics of valuations, i.e., more precisely, by the
device which we shall name ‘valuation tableaux’ (for these tableaux
see, for example, [4], [9], [10] and [11]).

2. The semantics of valuations

A (logical) calculus € is an ordered pair<A, Z >, in which A is a set
of formulas of a given language %, and Z is a collection of inference
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rules; A and Z are supposed to be nonempty, and A is called the set
of axioms of €. In this paper, ¥ will a propositional language. In
general, we assume that ¥ contains propositional variables (normally
a denumerable infinite set of such variables), parentheses and
connectives. The connectives are supposed to have finite ranks
(although this point is not essential to our discussion). Usually, the
language contains connectives for implication (=), conjunction (&),
disjunction (V) and negation (7); there may also be intensional ones,
like the modal and deontic connectives. The concept of formula is
introduced as usual. Capitan Roman letters will stand for formulas ;
sets of formulas will be denoted by capital Greek letters. The notion of
inference rule could be made precise, but this is not essential to our
objectives here. We recall only that a rule relates a new formula (the
conclusion) to a given set of formulas (the premisses). For a given
rule, the number of premisses is always finite and fixed.

In a calculus €, it is easy to define when a formula A is a syntactical
consequence of a set I'of formulas. When this is done, we write
I'e A.IfI'= @, A is said to be a thesis or a theorem of %, and this
fact is symbolized as follows: tz A. The symbol ‘t;’ has all the
expected properties. We write simply ‘~’, instead of ‘7", when there
is no doubt about the calculus we are considering.

Definition 1. — Let €—<A, > be a calculus and e a function from
the set of formulas of the language L of € into {0, 1}. We say thate isa
(two-valued) evaluation associated with % if we have:

1) If A€A, thene(A) = 1;

2) If all premisses of an application of a rule belonging to #
assume the value 1 under e, then the corresponding conclusion also
assumes the value 1;

3) There exist at least one formula A such that e(A) = 0.

Let & be the set of evaluations of a calculus €, e €&, and I a set
formulas of the language of ¥. We say that e satisfies I' if, for every
A €T, e(A) = 1. We can easily prove the following properties.

i) IfT' A, then, for every e €6, if e satisfies T, then e(A) = 1;

ii) % is trivial if, and only if, & = ® (¥ is said to be trivial if, for
every formula A of its language, we have that — A).
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Let = U{A} be a set of formulas of a nontrivial calculus €. X is
called A-saturated if = ~A and, for every B&X, T U{B}—A. We
clearly have (see [8] and [9]):

iii) If X is A-saturated, then X B if, and only if, BEX;

iv) If T +< A, then there exists an A-saturated set = such that
I'e2n

v) The characteristic function of an A-saturated set is an evalua-
tion.

An evaluation which is the characteristic function of an A-saturated
set is called a valuation. Let ¥ be the set of all valuations associated
with €. Using ii, iii, iv, and v, we can easily show that:

vi) € = @ if, and only if, ¥ = &,

The notion of semantical consequence, with respect to a non-trivial
calculus €, is introduced without difficulty. We say that A is a
semantical consequence of I' if, for every valuation v which satisfies
I',v(A) = 1(in which case we write I' = A, or simply ' =A). If T = @,
we say that A is valid in € (and we write F A or = A).

Any nontrivial calculus (logical system) has a two-valued seman-
tics, in the sense of the following theorem:

Theorem 1. - T+ A if, and only if, TEA.
Proof. — Follows from i-v above.

The soundness and completeness of the classical propositional
calculus are special cases of the preceeding theorem. The same is true
of several other calculi (see, for example, [4] and [10].

A valuation v, such that v(A) = 1 for every A belonging to a
collection I' of formulas, is called a model of T.

A theory based on a calculus € is any set & of formulas of #, the
language of ¥, such that if #+—A, then A€%. When @ = {A:
XA}, A is called a set of axioms for @. A model of % is any
valuation v of € such that v(A) = 1for every A €& . The theorems (or
theses) of @ are the formulas that belong to @.

& is paraconsistent if, and only if, there are theories, based on %,
having models v for which v(A) = v("1A) = 1, for some AEZ,
Similarly, € is paracomplete if for some theory &, based on %, & has
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a model v such that, for some formula A, v(A) = v("1A) = 0, and
conversely.

Remark. — Sometimes, in order to define the relation I' - A with
respect to a given calculus € = <A, & >, it may occur that some rules
of # have to undergo certain restrictions, which take into account the
cases where I'+® (as occurs in modal logic with the rule of
necessitation and in predicate logic with the rule of generalization).
However, Theorem 1 remains valid under convenient, clear adapta-
tions.

It seems worthwhile to observe that the semantics of valuations
satisfies Tarski's conditions of formal correctness and of material
adequacy (see [14] and [15]). In particular, Tarski’s criterion &
remains valid. These aspects of the semantics of valuations would
become more evident if we were to consider predicate logic instead of
propositional logic (cf. [2]).

A large part of our results and comments apply to first-order logic,
with or without identity, and even to higher-order logic; of course,
profound adaptations are required, since, in particular, we have to
analyse the behaviour of the quantifiers.

3. The system m

We introduce now a paraconsistent and paracomplete calculus, =,
with a very weak primitive negation, but where a kind of classical
negation is definable. The language of n contains the set {—, &, Vv, "1}
of primitive connectives, and an axiomatic basis for it is given by the
following postulates (where A°® = “IA & TTA) & (A V T1A):

1) A-(B—>A)

2) (A-B)—> ((A-(B-0) > (A->0(C)
3) A, A-B/B

4) (A&B)-> A

5 (A&B)—> B

6) A-> (B-(A&B))

7 A-(AVB)

8) B> (AVB)
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9 (A-C) > (B-0C) > (AVB)-=(Q)

10) A? V(A& TA) VT 1(AVTIA)

1 "TAVTIA) » A& T1A)

12) (A& T1A) » (A& 1A)—»B)

13) "(AVTIA) > ((AV T 1A)>B)

14) (A & B%) -» (A& B)? & (A VB)? & (A—>B)? & (T 1A)9)

Theorem 2. — The following schemes are not valid in x;

) TIA-A
A-TTTA

3) TKA&TIA)

4 (A& 1A)->B

5) AVTlA

6) ( AV 1A)> B
N(A->"1A) - 1A

8 1AV TIA

9) (A—=B) - (A-"1B) » " 1A)
10) (1B->"1A) - (A—>B)
1) (A-B) > ("B=>"1A)
12) 1A - (A—-B)

13) " KA—-A)—>B

14) (A VB) > (A& TIB)
15) "KA&B) - (T1AV™IB)
16) C1Av 1By - KA&B)
17) (A& " 1B) - KA VB)
18) (A-»B)—> KA& 1B)
19) "KA& 1B) - (A-B)
20) T KAV 1A

Theorem 3. — The following schemes are provable in 7t:

T1) (A vV TIA) - (A—B)

T2) (A& (A& T1A)) - (A>B)
T3) A V (A—B)

T4) (A& T1A) V YA & TIA)

TS) (A& J1A) & (A& T1A)) - B
T6) (A& T1A) & “KA & TIA))
T7) (AVTIA) V KA VTIA)
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T8) KAV 1A)—» (A& 1A)—»B)
T9) AV (A& T1A)
T10) T1A V "A & T1A)
T11) 1AV 1A) & KA VT1A)
T12) (A& T1A)®
T13) (A& T1A))°
T14) (A V1A
T15) A
T16) (A—»B) > (A—(B—> KB V7IB)) > (A—» KA VTIA))
Ti7) (A-"KAVTIA) > KA->"KAVTIA)) V
KA-"KAVTIA)))) - A
T18) (kA& T1A) & (B V "IB)) - ((TIB—"1A) » (A—>B))
T19) (kB& 71B) & (A V T1A)) > ((A—»B) » (TIB— "1A))
T20) A% > (A—>"T1A)
T21) A2 (T 1A= A)

Definition 2. — ~A = A—"KAVTIA). (‘“~ is the strong or

classical negation of ).

Theorem 4. — ‘~ has all properties of the classical negation.
Proof. — In fact, we have in mt:
—(A—-B) > (~B—>~A) (by T16),
and
—~~A->A (by T17).

Thus, since postulates 1-9 above, together with the schemes
(A—>B) —» (~B— ~A) and ~~A — A, constitute an axiomatic basis for
the classical propositional calculus (in which ‘—’, ‘&’, ‘v’ and ‘~ are
the primitive connectives),  contains, in an obvious sense, that
calculus.

4. Valuation semantics and decision method for nt

Let V, be the set of functions from the set of formulas of n into
{0, 1}, such that, for every v €V_, we have:
1) v(A & B) = 1if, and only if, v(A) = 1 and v(B) = 1;
2) v(A VB) = 11if, and only if, v(A) = 1 or v(B) = 1;
3) v(A—B) = 1if, and only if, v(A) = 0 or v(B) = 1;
4) If v(" T 1A) = v(T1A), then v(T1A) = v(A);
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5) If v(A§ B) = v(" A § B)), then v(A) = v("1A) and
v(B) = v("1B), for § € {>, A, V};

6) v A& T1A)) = v(A& TIA);

7) v(" (A VT1A)) = v(A VTIA).

Theorem 5. — The set ¥ is the set of valuations associated with .

Proof. - It is easy to demonstrate that v €% if, and only if, there
exists a set of formulas = U{A}, such that X is A-saturated and v is its
characteristic function.

Remark. — Since every theorem of nt is classically valid, it is easy
to see that every classical vzluation belongs to ¥ _; thus, there are
valuations v for @ such that, for some A, v(A) +v("1A). But there ate
also valuations v of ¥ such that, for some formula A, v(A) = v(T1A);
in this case, we say that A is not ‘semantically well-behaved’.
Otherwise, A is ‘semantically well-behaved’. Our system m has an
interesting property : the semantical behaviour of any given formula A
can be expressed, in a certain sense, by a formula. For example,
A & A" means that A is true and well behaved, in this sense: for
every vEY , if v(A & A?) = 1, then v(A) = 1 and v("1A) = 0. In the
same way: A& ~ |A means ‘A is true but not well-behaved’; “1A & A®
means that A is false and well-behaved; finally, “1A & “A V 1A)
means that A is false and not well-behaved.

With the help of ¥, we can obtain a decision method for the
calculus .

Let {A}, As, ..., A,} be a set of formulas of the language . We say
that A,, A,, ..., A, constitutes a n-sequence if, for I<i <n, we have:

a) If B is a subformula of A, then, for some j<i, B = Aj;

b) If A; ;s (A §B), where § € {—, &, V}, then there are i, k <i
such that A;is "1A and A, is ~1B;

¢) For Isj<i, A; # A;,

Definition 3. — Suppose that A;, A,,..., A, is a n-sequence. The
tableaux for A,, A,,..., A, denoted by t,(A,, A;,..., A,) or simply
by t,, when the formulas A,, A,,..., A, are manifest, is a function

from I, X J(A;, As,..., Ay into {0, 1}, where I, = {1,2,...,n} and
l) J(Al) = {l'az}v [1(11 l) - I! aﬂd tl(lsz) = O;
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2) JAy, Agsel, AL S A, A, ..., Ay and, for J(A,,
A, .., A =1{1,2,..., m}, one has:

2.1) Forl=sisn, 1sj<sm, t;,(i,j) = ty-1(,]j);

2.2) a) If A, is a propositional variable, J(A,, A,,...,
Ay = {1,..., 2m}, and, for j<m, t,(n,j) = 1, and for
J>m, ty(n,j) = 0;

b) IfAjisa Ay& AL J(A, Ay, A) = {1,2,...,m}; for
I<sj=sm, tyn,j) =1 if, and only if, ty(k,j)=1 or
tag,j = 1;

c) If A is AL VA, J(Ay, A,,..., A) = {1,2,..., m}; for
I<j=m, t,n,j)=1 if, and only if, t,(k,j) =1 or
ta(l,j) = 1;

d) If Apis Ag» AL J(A, Ay, ..., A) = {1,2,..., m}; for
I<j<m, t,(n,j) =1 if, and only if, t,(k,j) =0 or
(1,3 = 1;

e) If A, is T1A, then:

e,) If A, is a propositional variable, J(A,, A,,..., A,) = {1,
2,.., 2m} and, for jsm, ty(n,j) # ty(k,j) for j>m,
ta(n, j) = t4(k,j);

ey) Ifa,is AL& 1A, or Agis A, VTIA,, then J(A,, A,,..
Ay ={1,2,...,m}; for I Sism, ty(n, j) + ta(k, j);

e;) If Ay is A& Ajor Ay is A, VA, where A, is different
from "1A,, then let p and g be such that Az is “1A, and A4
is 1Ay, and let J(A;, A,,..., Ay = €A, A,, ...,
Ap): t(p, ) = t.(P, .]) or ty(q, .}) = t,(q, .])}, if J(A,,
Ay ...y Ap) = {m,, m,,..., m,}, then J(A;, A,,...,
A)={1,2,...,m+r};forl<isn-1,1<s<r, t,(,
m+s); for j=<m, t,(n, j) + ty(k, j); for j>n, t,(n,
J) = tn(k’ .]);

es) If Ay is A;— A, everything goes as in case e3) above.

es) If Agis 1A, let J(A,, A,, ..., A = €A, A,,. ..,
Ap_y: ta(pd) = tak,j) }; if_J(AhAz; cenAp) = {my,...,
m.}. then, J(A;, A,,..., Ay) = {1,2,..., m+r}; for

lsisn—1, ISs<r, t,(i, m+s) = t,(i, my); for j<m,
ta(n,J) # ty(k, j); for j=<m, ty(n, j) = t,(k, j).

"

Let t,(A;, Ay, ..., Ay be the tableau for a n-sequence AL AL,
A,. We have:
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Lemma 1. — For every jEJ(Ay, A,,..., A,) there is av €% such
that, for 1 <i<n, v(A) = t,(i, j).

Proof. — Construct the set o as follows:

D IfAE{A;, Az, ..., A,}, then A Eco.if, and only if, t,(i, j) = 0:
2) If A {A,, As,..., A,}, then A €q if, and only if:

a) AisB& Cand BEa or C=a;

b) Ais BVvCand A, BEq;

¢) AisB>Cand A€a and B €a;

d) Ais " (B& 1B)and B& "B Eaq;

e) Ais KBV IB)and BV IBeq;

f) Ais T Band BEa and "B Ea;

g) Ais (B8C),B§C&aand B €q ifand onlyif 1B £a and

C=+aq if and only if "1IC &a, for § ={-, &, V}

Now, it is not difficult to show that the complement of o, with
respect to the set of all formulas of &, is A-saturated relative to every
formula A of the form B& "1B & ~ (B & ~ IB). Thus, its characteristic
function v belongs to ¥, and, by construction, for any AE{A,,
Ay, .oy Al v(AY = t(1, ).

Lemma 2. — For every vEY, there is a jEJ(A,, A,,..., A,
such that, for I<i=<n, t,(i, j) = v(A).

Proof. - By induction on n.

Proof. — + A;if, and only if, = A; by Theorem 1. Now, by lemmas

1 and 2, EA,; if, and only if, for every jEJ(A;, A, ..., Ay, tul,
D=1

On the other hand, we can easily stipulate a canonical way of
associating, to any formula A, a n-sequence A, A,,..., A, such that
A is A,

Therefore, m is decidable by our tableaux, based on the valuation
semantics.

Example : The graphic below presents the tableau for the schematic
m-sequence ‘A, 1A, AV IA, T(AVT1A), A& 1A, TA& TIA),
“KA VTIA) > TA & T1A)Y and shows the validity of the scheme’
KA VTIA) - (A& T1A) as well as the non-validity of ‘A vV 1A’
and ‘" A& T1A).
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A 1A AVIA KAVIA) A& 1A "KA& 1A) KAV 1A) > (A& T1A)

10 1 0 0 1 1
0] 1 1 0 0 1 1
1 1 1 0 1 0 1
0 0 0 1 0 1 1

Using valuation-tableaux we can prove an interesting result: w is
not a finite many-valued logic. The proof runs as follows:

Lemma 3. — Let Ay, A,,..., A, be the n-sequence where A, is the
propositional variable ‘p’ and, for 1<i<n, A; = "1A,_;. Then,
a) J(A,, As..., A)={1, 2,..., 2.}; b) for 1=<i=n, t,
2n—-1) =1, t, (4, 2,) =0; ¢) for n=2, t,(n, 2n—3) = 0 and, for
I<sisn-1,t(,2n-3)=1;d) forn=2, t,(n, 2n —2) = 1 and, for
Isisn—1,t,(i,2n-2) = 0.

Proof. — By induction on n.

Corollary. — a) = kp— ksmpP, for k=0, m>1;
b) ¥ hamp— kp,fork=0,m>1, (where ‘" 1,p’ is
the formula obtained by putting n occurrences of
‘T before ‘p’).

Proof. - Take the m-sequence ‘p, Ip,..., kP,.--» himP'. By
Lemma3, tiymir(k+m+1,2(k+m+1)—3)=0and tyypme (k+1,
2k+m+1) — 3) = 1; thus, by Lemma 1, there is some v €¥_ such
that (" kym p) = Oand v(" kp) = 1, hence v(" kp— k+mp) = 0 and,
by the Theorem 6, = L p—  k+m P, on the other hand, by Lemma 3,
tyemer (K+m+1, 2(k+m+1)—2)=1 and t ne, k+1, 2(k+
m + 1) — 2) = 0; therefore, by lemma 1, there is some v €% such
that v(" ksmp) = 1 and v(" kp) = 0, thus v(" kymp— kp) = 0 and,
by Theorem 6, = L,nP kpP.

Theorem 7. — m has not a finite characteristic matrix ; thus, t is not
a finite many-valued logic.

Proof. — In any finite matrix there is some k =0 and some m> 1
such that, for every value x of the matrix, ~ L(X) = ~ h+m(X). Since
A — A is m-valid, in any adequate matrix for &, and for every value y,
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we should have a distinguished value for — (y, y); thus both
“kp=  kamp and ‘" hinp—  kp' would be valid in the matrix.
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