ON THE GENERALISED CONVERSE IN RELATIONAL
LOGIC

Alfons GRIEDER

1. Basic Properties of the g-Converse

In a paper (') which recently appeared I introduced the concept of a
relation schema of dimension n and order m and showed that the logic
of relations, if based upon this concept, displays some interesting
analogies with both linear algebra and syllogistics. I also explained,
among other things, what is meant by the generalised converse (or
g-converse for short) of a relation schema. In the present paper I shall
analyse this notion of the g-converse further. I shall, however, confine
myself from the start to relation schemata of order 2, that is, to
relation schemata whose basic relations are binary relations.

Let R and R’ be two relations of a relation schema R2 (of order 2 and
dimension n), and let them be decomposed into their components.
These are defined as the basic relations R; whose coefficients §;, in the
representation

R = vOR, ()

differ from 0. The g-converse can then be defined by the following
conditions: (1) for any R = R,, R’ = C(R) holds if, and only if,
R’(y,x) holds whenever R(x,y) holds, and R’ is the relation with the
smallest number of components for which this is so; (2) C(R,) = R,. x
and y are elements belonging to the set of individuals associated with
the relation schema R2. R, is the void relation.

It is easy to show that C is a ‘linear’ correspondence in the sense
that for any two elements R, R’ of R2 we have

() ‘On the Logic of Relations', Dialectica, vol. 34, No. 3 (1980), pp. 167-182.
(Abbreviated reference: LR).
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C(RvR”) = C(R)v C(R™) . 2)

Applying (1) and (2), we find

n

C(R) = C( vV dR) = v dCR) = v &

n

i
' i i=1

The coefficients ¢; (i=1, ..., n;j=1, ..., n) form a quadratic
matrix C which may be taken to represent the correspondence C:

Cit Ci2 Cy3 cees Cpp
Ca1 Gz Cp3 cees Cop

C = 3 (4)
Cn1 Cn2 Cn3 «ooe Cpp

its ith column contains the coefficients of the representation of the
basic relation R;.(?) As the coefficients can only assume the values 1
or 0, the elements of C are either 1 or 0. It follows further that C must
be symmetric. For, if R; is a component of C(R;), then R; must be a
component of C(R;). Since the g-converse of each basic relation must
contain at least one basic relation as a component, each column of C
must contain at least one digit 1; and because of the symmetric of C
this must also apply to each row of C. Finally, there must be at least
one basic relation which applies to couples (x,x) and which is
therefore a component of its own g-converse; this implies that the
diagonal elements of C cannot all vanish.

(*) C(R) is calculated by using the following ‘multiplication’ and ‘addition’ rules:

0.0 = 0,0.1 = 0,1.0 = 0,1.1 = 1 in order to simplify the notation, the dot is omitted :
e.g. instead of 0;.c;; we simply write d;c;,
O0v0o=00vi=1L1v0=11vI = 1:e.g. the expression

n - . . . -
vV 0ic; in (3) is supposed to be calculated in accordance with this
i=1

*addition” rule.
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2. Powers of the g-Converse

The correspondence C can be' applied to itself as follows. Let
R’ = C(R;). We now exchange the elements in all the ordered couples
to which R’ applies. Let R;,, R;,, ... be the basic relations which
apply to this set of ordered couples; then R; v Rj, v
... = CC(Rj) = CX(R)). Similarly, by carrying out the correspondence
C m times in succession, we obtain C™ which shares with C the
following basic properties:

a) C™is ‘linear’ in the sense C is.

Proof: If C™ ™ lis a ‘linear’ correspondence, then C™is ‘linear’. For,
C™"RvA)=CC" Y (RvR)=C(C™" YR) vC™ (R’))=CC™"!
(R) v CC™ " ' (R”) = C™(R) v C"(R’). Therefore as C is ‘linear’ C™
must also be, for any integer m > 1.

b) For any positive integer m, C™is symmetric in the following sense :
if R; is a component of C™(R;), then R; is a component of C"(R;);
and if Ry is not a component of C™(R;), then R; is not a component
of C™(Ry). Hence C™ is a symmetric matrix.

Proof: Let R; be a component of C™(R;). Then there exist couples
(X1,X1)5 (X2,X3), (X3,X"3), ..., (Xq,Xp) such that

Ri(x1,X1)- Ry (x1,x1). Ry (x2,%3). Ry (x3,X3). ... . )

Rim - l(xm i lsxn',l— l)- RirrI — l(xmaxn,l)' Rj(xn,uxm)’
with suitably chosen basic relations R;, R; pRiy oo R Ry isa
component of C(R;) a component of C%(R;) and, by assumption, R;
a component of C™(R;). However, according to (5) R;,_,mustbea
component of C(R), R; _, a component of C*(R;), and so on. We
thus arrive after m steps at R; which must be a component of
C™R;). On the other hand, if R; is not a component of C™(R;), then
R; cannot be a component of C™(R;) either; this follows immedia-
tely from the result just established.

But (b) may also be proved by making use of its matrix representa-
tion. C™ is symmetric if, and only if, the matrix C™ is symmetric.
We merely have to show that (C™7T = C™, i.e. that the transpose of
C™equals C™. As C" = C we have

(Cm)l — (Ccm— 1)'I = (Cm = i)'IC = (CmﬁZ)']‘ Cl=...= cm,
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¢) The matrix C™ must contain at least one digit 1 in each column and
in each row.

Proof: C(R;) cannot be the void relation, for any basic relation R;,
but must have at least one component.(*) Now, if, for any basic
relation R;, C™~Y(R;) cannot be the void relation R,, then
C™R;) # R,, for any basic relation R;. Indeed, let R; be a compo-
nent of C™~(R;), then CC™~(R)) = CR;v...) #R,.

Hence each column of C™ must contain at least one digit 1; and
because of the symmetry of C™ this must also apply to each of its
rows.

d) The matrix C™ must contain at least one digit 1 in its diagonal.
Proof: There exists at least one basic relation R; which applies to
couples (x, x), i.e. to couples consisting of two identical elements.
Each exchange of these elements produces again the same couple
to which R; applies. Hence R, is a component of C™R,), for all
positive integers m; and the ith digit of the diagonal of C™ equals 1.

According to theorems a) to d) the basic properties of C are preserved
under multiplication of C with itself or any of its powers. The
following propositions €) to m) show that the powers of C have a
number of additional features which are worth mentioning.

e) For any basic relation R; and any positive integer m, R; is a
component of C2™(R)).
Proof: The theorem is fulfilled for m = 1; for, if Ri(x,y) holds and
if x and y are exchanged twice, we are back to (x,y) and hence to
Ri(x,y). But if the theorem is fulfilled for m— 1, then it must also
hold for m: if C2™~ 1 (R,) = R;v ... then C2™(R,) = C2C2m~1)
R)=C*Riv..)=Rv...

f) For any basic relation R; and any positive integer m, each of the
components of C™(R;) is also a component of C™**R,).
Proof: According to theorem e) we have C3(R,) = Ryv...
Hence C™*(R)).
Proof: According to theorem e) we have C3R;) = R, v ...
Hence C"**R;) = C"C3(R;) = C™(R; v ...) = C™R,) v . ..

(®) This is obvious from the definitions of a g-converse and of a relation schema. See
LR, pp. 168 and 171.
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For any non-asymmetric basic relation R; and any positive inte-
gers m,k, each of the components of C™(R;) is also a component of
Cm+k(Ri)- :

Proof: If R; is non-asymmetric, then R; is a component of C(R;).
Therefore C"*'(R;) = C"C(R)) = C™(R;v...)=C"R) v...;
that is, the components of C™R,;) are also components of
C™*'(R,).

If C'(R;) = C™*'(R)), for some basic relation R; and some positive
integer m, then C™(R;) = C™*%(R)), for all positive integers k.
Proof: Ik CXR;) = C*"'(R)), then C**'(R;) = C**(R;), for any
positive integer k; for, C*''(R) = CCNR;) = CC**Y(R, =
C***(R)). Hence, if C"(R;) = C™* (R,), then C™(R;) = C™*%(R,), for
all positive integers k.

If C™(R;) = C"**(R;), for some basic relation R; and some positive
integer m, then C™(R;) = C"**(R,), for all positive integers k.
Proof: We merely to show that if C"***-(R,) = C™**(R;), then
Cm+2k(Ri) -, Cm+2(k+t)_ But Cm+2(k+l)(Ri) — Czcm+2k(Ri) —
Czcm+2(k—l](Ri) — Cm+2k(Ri).

To any basic relation R; of a relation schema R2 there exists a
positive integer N; such that either C®(R;) = C"*%(R;) or C™(R,) +
C"*'(R;) and C™(R;) = C™**, for all positive integers k and all
integers m = N;.

Proof: (1) Let R; be non-asymmetric, and let us consider the series
CR;), h = 0,1,2,3,...,n, where C°R)) is by definition R, itself.
According to theorem g) each of the components of C%R,),

h=1,23,...,n-1,1is also a component of its immediate succes-
sor. Now either at least two of these elements CWYR,),
h=0,1,2,...,n-1, are identical; then all the successors of the

first of these two elements must be identical with it, according to
theorems g) and h). Or all the CR;), h = 0,1,2,3,..., n—1, differ
from each other; then C"(R;), where n is the dimension of the
schema, must be identical with its immediate predecessor; be-
cause there are at most n different components available, for a
given R;, to make up the series ending with C"(R;). In any case,
then, we can find a number N; <n (the dimension of the schema)
such that C"**[R;) = C™R;) form=N;and k = 1,2,3, ...

(2) LetR; be an asymmetric relation, and let us consider the series
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of even powers: C%R,;), ..., C*"*R,)), and the series of odd
powers: C(R), C¥R;), ..., C™'(R)). Each series contains n

members; and each member, except the first, involves all the
components of its predecessors belonging to the same series, as is
evident from theorem f). But as there exist, for any given R;, at
most n elements to make up the series, then C2"(R;) must be
identical with some of its predecessors, indeed with its immediate
predecessor in the first series; while C*"*(R;) must be identical
with C*-'(R,). Hence there exists a number N, of the required
kind.

Let R; be a basic relation of a relation schema of dimension n, then
N;<n-1, if R; is non-asymmetric; and N;<2(n-1), if R; is
asymmetric.

Proof: The proof for the first part of the theorem follows at once
from paragraph (1) of the proof for theorem j). Let R; be
asymmetric; then C(R;) cannot include R; as a component. Now
consider the series C%(R;), C3(R)), ..., C*"(R)). If two subsequent
elements in this series are equal, then all the following elements of
the series are equal, according to theorem i). Moreover, if
CHR;) = C'**R;), then C'M'(R,) = C"**R,); for we have
C"*(R)) = CCYR;) = CC*"**R;) = C"**(R;). Using theorem e)
we find that at most n elements in C°(R;), CXR)), ..., C*(R,) can
be different from each other. Hence C2"(R;) must be equal to
C*-*(R;). Consequently, in the series consisting of all odd powers
of C(R;) repetition must occur at the latest after C*"~'(R;).(%)

If a basic relation R; is a component of some odd power h of C(R)),
then C"**R;) = C™(R;), for m = N; and all positive integers k.
Proof: C"**(R;)) = C*CHR;) = C2(R;) v ... that is, all the
components of any given even power of C(R;) are also compo-
nents of some odd powers of C(R)). If h = N;, then C"* *(R,) must
involve all the components of any even power of C(R;). On the
other hand, we have, for q = 1,3,5, ..., C"*9R,) = CICHR;) =
CYR;) v ... ; all the components of any given odd power of C(R;)

() Ishall use ‘power of C(R;)’ as a convenient general term for C(R;), CX(R,), C}(R;),

.., instead of using the more clumsy term ‘power of C applied to R;'. (Strictly
speaking, the nth power of C(R;) would be the nth power of the relation C(R;); but as
there is no danger of a confusion here, this simplification may be permissible).
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must also be components of some even power of C(R;). If h = N;,
then C"*%(R;) involves all the components of any odd power of
C(R;). It follows that the set of components of the odd powers
CP(R;), p = N, is identical with the set of components of the even
powers CAR;), p = N;, and hence C"*%(R;) = C™(R,), for m = N;
and all positive integers k.

m) If there exists a basic relation R; which is a component of both
C"(R;) and C"*'(R;) for a suitably chosen exponent h, then C™(R,)
= C™*XR,), for all m = N; and all positive integers k.

Proof: Because of the symmetry of C and its powers, CX(R,) =
R;v ... implies CXR;) = R;v..., and therefore C**'(R;,) =
C"C"*'(R) = CR;) v... = Ryv.... Thus there exists an odd
power of C(R;) which involves R; as a component. Using theorem
1) we conclude that C"*%R;) = C™(R;), form = N, and k = 1,2,3,

3. The Index of a Relation Schema; Stable, Alternating and Regular
Relation Schemata

With each of the basic relations R; of a relation schema is associated
a positive integer N;, as we have seen above; C(R,), for n > N;, is
either constant or shows an alternating pattern. Let us now define the
index of a relation schema as the smallest positive integer N which is
equal to, or larger than, each of the numbers N, associated with the
basic relations of the schema. Evidently, N is the index of a given
relation schema only if we have, for all positive integers k, either
CN = CN**, or CN = CN** and CN*! = CN*%*+! with (in the second
case) CN ++ CN*'. Since the correspondence C is represented by the
matrix C, it follows that either CN = CN*¥, for all positive integers k,
or CN #CN*!, CN = CN** and CV*' = CN***!| for all positive
integers k. We may thus classify relation schemata further depending
upon whether C™ is constant or alternating for m = N. We call a
relation schema, its g-converse C and the corresponding matrix C
stable if, and only if, CN = CN*¥, for all positive integers k ; otherwise
we call the schema, C and the matrix Cunstable or alternating.
a) If all the basic relations of a relation schema are non-asymmetric,

then the schema is stable.
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The proof follows at once from 2j) and the first paragraph of its
proof.

If a relation schema contains at least one pair of basic relations R;,
R; (R; # R)) which are asymmetric and for which C(R;) = R; and
C(R;) = R;, then the schema is alternating.

Proof: We have C¥(R;) = CC(R;)= C(R;) = R;. If C*™(R;) = R;,then
C*™*%R)) = R;; for C*™**(R,) = C2™(R,). On the other hand, C(R;)
= Ry; and if C*"*'(R) = R;, then C*"**(R;) = R; as is easily
verified. Thus there is no positive integer h such that CYR;) =
C"*%(R,), for all positive integers k, which is sufficient to establish
that the relation schema cannot be stable and must therefore be
alternating.

However, a relation schema may include asymmetric basic rela-
tions without being alternating, as the following simple example
shows. Let X be the set of natural numbers, and let the first basic
relation R; be the relation ‘larger than’ and the second basic
relation R,‘smaller than or equal to’. We obtain a relation schema
of dimension 2 whose g-converse is given by the matrix

e [0 1]
1 1
Although R, is an asymmetric relation, the schema is stable and its
index is 2. For we have

c? = [1 1] —C3=C*'=...=C"=....

A relation schema is alternating if, and only if, there exist at least
two proper and non-empty subsets S and S’ of the basis such that
(i) S and S’ are disjoint and (ii)) C(R)e S’, for any R;¢ S, and
C(R;) e §’, for any R; € §°.

Proof: Let us first show that if (i) and (ii) hold, then the relation
schema is alternating. Under the conditions stated R; & S implies
C(R)) € S, and C*(R;) € S. Furthermore, for any positive integer
m, if C*"'(R)) € S, then C*™(R;) = CC*™ '(R) = C(R;), where
Rje 8’ and C(R;) € S. Thus C*™'(R;) = C*™R;), for all m; and
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from this we derive that the schema cannot be stable. On the other
hand, if the schema is an alternating one, there exists at least one
basic relation R; for which it is not the case that C™(R;) = C™*?(R,),
form = N, and p = 1,2,3,... . Then, according to theorem 2m),
C"(R;) and C"*'(R) cannot have any common components, for any
positive integer r. Hence there exist two disjoint sets T and T’ of
basic relations, T containing the basic relations which are compo-
nents of C2™(R;), and T those which are components of C*™* (R,).
Moreover, if C is applied to any of the basic relations in T, then we
obtain a basic relation in T’ and vice versa. That is, Tand T’
satisfy the conditions for the sets S and S, as stated above.

The three preceding theorems suggest the following distinction : an
asymmetric relation R is called fully asymmetric with regard to a
g-converse C, if, and only if, none of the components of R are
components of any odd power of C(R). Otherwise R is said to be
partially asymmetric with regard to C.

The same relation R may be fully asymmetric or partially asym-
metric depending upon the g-converse under consideration. Thus
the relation ‘larger than’ (R,), defined on the domain of natural
numbers, say, is fully asymmetric with regard to the relation
schema of linear order whose g-converse is given by the matrix

0 01
C = 010 ;
1 00
for C(Rt) = R3 == C3(R|) = CS(RI) = L = sz_l(Rl) = e g and
C(R)=R,=CR)=CR))=...=C™R)=.... However,

in the relation schema mentioned under ¢) above, R, is a partially
asymmetric relation. The reader will readily confirm, using theo-
rem d), that a relation schema is alternating if, and only if, it
contains at least two fully asymmetric basic relations.

If C is a one-one-correspondence of the basis onto itself, then, and
only then, C? equals the identity I, and C equals its inverse C'.
Proof: If C is a one-one-correspondence of the basis onto itself,
then there is to each basic relation R, one, and only one, basic
relation R; (which may or may not be identical with R;) such that
C(R;) = R;. As the same applies to R; and as C3(R,) must involve
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R;, we conclude that C*(R;) = C(R;) = R;. Conversely, if C2 = [
then C%(R;) = R;. Given there exists a basic relation R, such that

C(R)) = RjvR¢ v..., (so that R; # R, and at least one of the
components is not identical with R;, then we have on the one hand
CHR;) = C(R;)) vC*Ry) v... = R; vRy v ..., on the other hand

C%(R;) = R;, which is impossible.

Let us call a relation schema regular if, and only if, the second
power of its g-converse equals the identity correspondence I:; in
this case we shall call both its g-converse C and the matrix C
regular. (To avoid confusions let us term a matrix whose determi-
nant is not zero non-singular). Obviously, every regular g-converse
is its own inverse, i.e. C!' = C.

If all basic relations of a schema are symmetric, then C = I, and
vice-versa.

Proof: R, is symmetric if, and only if, for all w,y, R(x,y) implies
Ri(y,x). Hence, R; must be a component of C(R;). If C(R;) had an
additional component R;, then there would exist a pair (x,y) such
that the conjunction Ri(x,y).R;(y,x) holds, which contradicts the
assumption that R; is symmetric. Hence C must be a one-one-cor-
respondence of the basis onto itself, with C = 1.

Conversely, if C = I, then C(R;) = R, for all basic relations R;. If
C =1, then C? = I; hence all symmetric relation schemata are
regular,

The index of a regular relation schema equals 1. Furthermore, a
regular relation schema is stable if, and only if, it is symmetric.
Proof: A regular schema C must fulfil the condition

Ct=1=C*=Cl=...=C¥™= ... Now, either C=1, or
C -+ 1. In the first case the schema is stable with index 1. In the
second case wehave C=C*=C5= ... =C™'= ..., ie. an

alternating schema with index 1. Clearly, the schema can only be
stable if C = I, that is, if the schema is symmetric.

If C is regular, then the determinant of C is either 1 or — 1. For
regular stable schemata we have det C = 1; butifdetC = -1 and
the schema is regular, then it is also alternating.

Proof: The determinant of C is defined as a sum of n! terms (where
n is the dimension of the schema) each of which is the product of n
elements of C, one from each row and one from each column. But
if C is regular, then C has exactly one digit 1 in each row and one
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digit 1 in each column. Therefore only one of the n! terms is not
zero, and this term equals 1. Hence the determinant must be
either 1 or — 1, depending upon the sign of the permutation.

If C is regular and stable, then
C=I=C=C*=C*=...=C"= ..., according to 3g) and
3i). But det I = 1. From this we deduce that any regular relation
schema with det C = -1 cannot be stable and must therefore be an

alternating schema.

k) The schema of linear order mentioned under e) is regular and
alternating; the determinant of its g-converse equals — 1. But there
are, of course, regular alternating relation schemata with det
C = 1. Of this type are, for instance, schemata whose g-cinverses
are given by

0001 01000
0010 10000

g= 0100 yorby € = 00010
1000 00100
00001

1) Let us introduce another definition which often useful: a relation
schema (or its g-converse C, or the matrix C) is sais to be bounded
if, and only if, for all basic relations of the schema and all positive
integers m, C™(R;) + R,, where R, is the universal relation.
Obviuosly, all regular and all alternating schemata are bounded.
Furthermore, if C™(R;) = R,, for some basic relation R;, and some
positive integer m, then the schema is not bounded. Indeed,
because of the symmetry of C™, R; must be a component of C™(R;)
for every basic relation R; of the schema; and we have C2™(R;) =
C"C™R;) = C™R) v ... = R,. Thus eitherCKR;) = R,, for all
positive integers k = N and all basic relations R;, or the schema is
bounded.

4. Similar Matrices C

One and the same correspondence C can be represented by
different matrices depending upon the numeration of the basic rela-
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tions of the relation schema in question. For instance, in the relation
schema of lattice order mentioned under c) the g-inverse is represen-
ted by

0 1

However, if we denote the relation ‘larger than’ with R, and ‘smaller
than or equal to’ with R; we obtain the matrix

1 0

Two matrices which represent one and the same correspondence C
are said to be similar.

When we speak of the basis of a relation schema of dimension n we
mean an ordered set of n relations: Ry, R,, ..., R,. Consequently, we
can change the basis by changing the order of the basic relations. A
relation schema of dimension n thus admits of n! different bases, n!
being the number of permutations of n elements. The transition from
one such basis to another is a one-one-correspondence U of the set of
basic relations onto itself. This transition is defined if each R; is
represented by means of the basic relations R;, R,, ..., R,:

R} = k\_/l iR,

where each of the numbers u,; is either 0 or 1. The transition from one
basis to another may thus be given by a quadratic transformation
matrix
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the i-th column of which is the representation of the basic relation R} ;
each of its rows and each of its columns contain exactly one digit 1
while all the other digits are zeros. The elements of U/ and the
elements t;;, of the transpose of U satisfy the condition
| 1ifi=k
uij . t]k - Ui]- . ukj = l
0ifi+Kk.

That is, U is ‘othogonal’, and its inverse equals its transpose:
U-1=UT,

Let C = (c;) represent the g-converse with regard to the basis B,,.
The matrix C’ representing the same g-converse with regard to the
basis B, then fulfils the equation

C = U'cUy

Proof: C(R)) = \{Cini, CR)) = \qc‘in!i; and R} = . V tii Ry,
i= i= =1

Therefore

n
C(R],) = h\—/| uthh = h\_/l iyl l.lhjCihRi.

On the other hand

Comparing these expressions we obtain
n n

n n
VoV miemRe = VOV cjugR

and CU = UC’ or C = UTCU.

Similarity is an equivalence relation as is obvious from its defini-
tion. Moreover, if C is similar to C’, then C™ is similar to C’™, for any
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positive integer m. For, let us suppose that UTC*'U = C’*"', then
UTCUU™C*'U = C¢’C*' and UTCHU = C’%, Stability, alternating
character, the index N and boundedness of a matrix C are all
properties which are invariant under transformations U of the type
considered above; this should be evident as these properties have

been defined in terms of the correspondences C rather than the
matrices C representing them.
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