RELEVANT IMPLICATION AND PROJECTIVE GEOMETRY

Alasdair URQUHART

In this paper I give an exposition of the recently discovered
connections between relevant implication and projective geometry.
One of the consequences of this connection is a simple proof that the
propositional logic KR (an extension of the logic R) is undecidable.
This proof can be generalized to a proof that any logic between the
positive system T, of ticket entailment and KR is undecidable [17].
The proof of this result, however, is of necessity long, complex and
formal. I present here a separate proof of the undecidability of KR,
which is intuitively easy to grasp. An understanding of the paper is
excellent preparation for reading [17]. A more important motivation
for the paper is to point out the great wealth of ideas, problems and
constructions that flow from the connection between geometry and
relevant logics, which turns out to be surprisingly intimate.

To avoid cluttering the paper with repetitive material, I assume that
the reader is familiar with the basic system R of relevant implication
and the fundamentals of its model theory, due to Routley and Meyer
[12).

1. Models for relevant logics

The present advances in the understanding of R came about (like
many advances in logic) by the discovery of a new method for
constructing models. Although the basic semantical analysis of R has
been around for over a decade, until quite recently disappointingly
few examples of R model structures were known. If you omit
negation, then you can use semilattices to model R, [16]. However,
semilattice models fail in the worst possible way to extend to the full
system R ; only the one element semilattice can be used to validate all
of R. In the early 1970’s only the following models for R were known:
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the Sugihara matrix and its finite versions ([1] pp. 335-338) and
various small matrices derived by fiddling with many-valued truth-ta-
bles, one of which is generalized. to an infinite family of models in
Belnap [2]. The list of small models was enormously extended by a
computer search using some remarkable programs written by Slaney,
Meyer, Pritchard, Abraham and Thistlewaite (for an early progress
report on this research effort the reader is referred to Slaney’s thesis
[14]). These programs churned out huge quantities of R matrices and
model structures of all shapes and sizes. Clearly, there are lots and
lots of R model structures out there ! But what are they like ? Can we
classify them in some intelligent fashion ? Are there general construc-
tions that produce interesting examples? The answer to the first two
questions is still obscure, though clearer than it was. The answer to
the last question is an emphatic “‘yes!".

I confess here to an old antipathy (now abandoned) to the Rou-
tlev/Meyer semantics. My dislike of the model theory was based on
the unexamined prejudice that it was impossible to “‘get a picture’” of
R model structures, in seeming contrast to the case of semilattice
models and Kripke-style modal semantics. The main purpose of this
paper is to convince you that it is extremely easy to ‘‘get a picture’’ of
R model structures. In a literal sense, these models have been staring
us in the face for a long time.

2. The logic KR

To those who have taken the trouble to read the literature on
relevant logic rather than fulminate against it, it has been a familiar
fact since the early 70°s that there are two conceptually distinct
classes of “*paradoxes of material implication’’. The archetype of the
first class (paradox of consistency) is (A & —A) — B. The archetype
of the second (paradox of relevance) is A — (B— A). It is easy to
devise systems of entailment which omit one but not the other.
Thinking about the system R, we can see immediately that if we add
A — (B— A) then the result is classical logic with paradoxes of both
types. However, the consequences of adding (A & —A) - Bto R are
not so clear. Here we have a system of relevant logic with regular
classical Boolean negation, satisfying all the natural postulates of
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R-style negation, including contraposition. The credit for investiga-
ting the resulting system KR belongs to Adrian Abraham, R. K.
Meyer and R. Routley (see [13] for details of their investigations).

Parenthetically it should be noted that KR is not the same as the
classical relevant logic CR investigated by Meyer and Routley [9].
This system adds a classical negation operator to R, which is distinct
from the negation proper to R. In KR, classical negation and relevant
negation are identified. One’s initial reaction to KR is that it is
probably a trivial system, if it doesn’t simply collapse into. classical
logic. As we shall see, this reaction could hardly be wider of the mark.
The first indication that KR is indeed non-trivial came from the
computer, which churned out reams of interesting KR matrices. In
retrospect, this is hardly surprising, because we now know that KR
models can be manufactured ad lib from projective geometries.

First, though, some definitions. A KR model structure (krms) is a
3-place relation Rabc on a set containing a distinguished element 0,
satisfying the postulates:

1. R0ab a=>b

2. Raaa

3. Rabc = (Rbac & Racb) (total symmetry)

4. (Rabc & Rcde) = 3f (Radf & Rfbe) (Pasch’s postulate).

Note that a krms is just an rms in the sense of Routley and Meyer,
except that we have imposed total symmetry by setting a* = a for all
a. We define truth and falsity with respect to a krms exactly as for an
rms, except for negation. Writing ‘A is true at a’” as ‘“‘aE=A"’, the
crucial clauses are:

aE—A @ﬂﬁ:A
aEA—-B o Vbe((b=A & Rabc) = ¢ =B).

A slight modification of the usual completeness proof for R shows
that KR is complete with respect to the class of all KR model
structures.

The total symmetry condition seems especially odd on first ac-
quaintance. To explain how we can construct such strange models in
profusion we turn to the theory of projective geometry.
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3. Projective spaces

In this section, I give a summary of standard material on projective
spaces. There are numerous good textbooks on projective geometry. I
found the books of Garner [4], Hartshorne [6] and Mihalek [10]
helpful; also, the classic by Veblen and Young [18] is very inspiring
reading. For the lattice-theoretic approach to projective geometry
Birkhoff [3) and Griétzer [5] should be consulted.

DEF. 3.1. A projective space consists of a set of peints P and a
collection of subsets of P called lines, satisfying the two conditions:

P1. Two distinct points a,b lie on (i.e. belong to) exactly one
line a + b.

P2. If a,b,d,e are distinct points such that some point ¢ lies on
both a + b and d + e, then there is a point f lying on both a + d
and b + e (see Fig. 1).

a d \ f~

Figure 1

A projective space is said to be irreducible if it satisfies:
P3. No line contains exactly two points.
We shall also make use of the additional postulate :

P4. No line contains exactly three points.



RELEVANT IMPLICATION AND PROJECTIVE GEOMETRY 349

The most familiar example of a projective space is ordinary
Euclidean 3-space, enriched by the addition of a point at infinity for
each parallelism class in ordinary 3-space, together with the plane and
lines at infinity. This is real projective 3-space.

We now define the notion of collinearity. Various ways of doing this
are possible. The method adopted by most texts is to define points
a,b,c to be collinear if they all lie on a single line. This definition,
however, is not suitable for our purposes, because it is ‘‘too fat>’; it
counts as collinear any triple containing repeated points. Instead we
use:

DEF. 3.2. If Pis a projective space, the collinearity relation Cabc in
P is defined by:
Cabc iff (a) a = b = ¢ or (b) a,b,c are distinct and lie on a common
line.

Note that if we define a + a = {a}, Cabc can be given the symmetric
definition: Cabc @ (a+b=b+c = a+ c).

LEMMA 3.3 Let P be a projective space satlsfym;, P4. Then the
collinearity relation on P satisfies

1. Cabc = (Cbac & Cacb)

2. Cabb a=5>b

3. (Cabc & Ccde & a +d) = 3f (Cadf & Cfbe)
4. (Cabc & Cbed & a +d) = Cabd.

Proof: A straightforward calculation. The postulate P4 is needed to
validate the instances of 3. where a=b=c, [J

A set of points X in a projective space P is a (linear) subspace of P
if :

a,beX & Cabc = cEX.

The family of all linear subspaces of P forms a complete lattice,
ordered by containment, in which the lattice join of two subspaces X
and Y is

X+Y=Ua+b:aeX&beY).

Projective spaces can be characterized by means of their linear
subspaces.
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DEF. 3.4 A modular geometric lattice is a complete lattice <L, A, v>
satisfying:

l.a=c =>aa(bvc)=(anb)vc;

2. Every element of L is a join of atoms in L;

3. Every atom in L is compact; thatis,a< V X impliesa< VY
for some finite YZ X.

FACT 3.5 The subspace lattices of projective spaces are exactly the
modular geometric lattices (up to isomorphism).

For these and other classical results on projective spaces, see
Gratzer Chapter IV and Birkhoff Chapter IV.

Given a modular geometric lattice, a projective space can be defined
by taking the points as the atoms and the lines all sets of atoms of the
form {x :x€a+ b}, where a=+b. The concepts of projective space
and modular geometric lattice are thus completely equivalent.

An enormous variety of projective spaces can be constructed from
vector spaces. Let V be a vector space over a division ring (= skew
field). Define a point to be one-dimensional subspace and a line to be a
2-dimensional subspace of V. The result is a projective space. This
construction applied to the space of 4-vectors over the real numbers
produces real projective 3-space.

The language of pure lattice theory is the equational language
containing variables x,, x,,..., constants 0 and 1 and symbols for
lattice meet x Ay and lattice join x vy. If K is a class of lattices, the
word problem for K is the problem of determining whether or not a
given equation can be deduced from a given finite set of equations in
the equational theory determined by K.

The undecidability result for KR is based on the following impor-
tant result proved independently by Hutchinson [7] and Lipshitz [8].

FACT 3.5 Let K be a class of modular lattices which contains the

subspace lattice of an infinite-dimensional projective space. Then the
word problem for K is unsolvable.

4. Model structures constructed from projective spaces

With the notion of collinearity in a projective space to hand, it is not
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hard to see how we can construct examples of KR model structures.
The following construction is general enough for our needs.

LEMMA 4.1 Let C be the collinearity relation in an irreducible
projective space satisfying P4. Add a new element 0 and define R to be
the smallest totally symmetric relation on PU{0} containing
f. Then <P U{0}, R> is a krms.

Proof: An easy verification, using Lemma 3.3. O

We now have a copious supply of highly non-trivial KR model
structures. But how general is the construction ? The following lemma
answers this question to some extent by showing that the connection
between KR and projective geometry is very intimate. It is from the
following simple but powerful lemma that all the undecidability results
flow.

The definition of linear subspace used in the previous section
carries over directly to KR model structures, substituting Rabc for
Cabc in the definition.

LEMMA 4.2 Let M be a KR model structure. The non-empty linear
subspaces of M form a modular lattice. If M satisfies the condition:
(*) Rabb = a = 0 or a = b then the subspace lattice is geometric.

Proof: Before proceeding to the proof proper, we pause to note that
the lattice join and meet can be expressed in the language of KR.
Lattice meet corresponds to conjunction A A B, join corresponds to
AoB = —(A - —B).

This last formula is the definition of the fusion connective, which as
Meyer observed some time ago is the key connective in relevant
logics, rather than —. Here it turns up as a lattice join operation; a
somewhat surprising role for the connective to play, since the
definition above is the classical definition of conjunction.

Now for modularity. Let A, B and C be subsets of M, with C< A
and A a linear subspace of M. If x€AA(BoC), then x€A and
x&€BoC. Thus there exist y,z such that Rxyz, y€B, z&C, hence
z€A. Since XEA, z€A and Rxyz, yEAo A = A (remember, A is a
linear subspace). Thus y €A A B, so that x (A AB)oC.
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The second part of the lemma follows easily from the fact that if M
satisfies (*) then any set of the form {0,a} is a linear subspace. O

Let’s take stock ! At this point we have shown that every KR model
structure has associated with it in a natural way a modular lattice,
which in an important special case is the lattice of subspaces of a
projective space. This is enough to give us undecidability. To state the
result precisely we need to specify the translation of lattice equations
into the language of KR. The translation (¢ = )" of a lattice equation
(¢ = ) is defined as follows:
X)' =pps (@A) =" &Y', (@ vy) =g@loy', 0 =1, 1" = T. Now let
I'= (g =yy) & ... &{p, = Py)) =0 = Ebe an implicational formula
of pure lattice theory. The translation of I is:

I'= (Lp) & ... & L(pm) & (1 = ) & ... & (@ = ) = (0 = &)
where L(A) abbreviates (Ao A)— A)&t— A) and p,...., p, contain
all the variables in the translation of the lattice equations.

5. Undecidability

Now all we have to do is put together Fact 3.5 and Lemma 4.1 and
we have proved the undecidability of KR. Actually, we've proved a
good deal more. Let P be an irreducible projective space satisfying P4
and L(P) the logic determined by the model structure constructed
from P using the procedure of Lemma 4.1.

THEOREM 5.1 Let L be a logic intermediate between KR and L(P),
where P is an infinite-dimensional irreducible projective space satis-
fying P4. Then L is undecidable.

Proof Let M be a krms constructed from a projective space P. It is
easy to see that the lattice of linear subspaces of M is isomorphic to
the lattice of linear subspaces of P. Furthermore, an implication I
holds in this lattice if and only if its translation I' is valid in the model
structure. The undecidability of L now follows immediately from
Fact 3.5. O

This theorem is a powerful result. It suggests that we can easily get
an undecidability proof for R by some little trick, like embedding KR
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into R. Originally I thought I had such an embedding, but Bob Meyer
soon disabused me of that idea. The basic trouble is that the
conditions A& —A <+ F —~ B& —B do not extend inductively to
(Ao B), so that there is apparently no simple way to embed KR in R.

To get an undecidability result for R, we have to pull aside the rug
which conceals the trap door leading to the hidden treasures on a
lower level. In Theorem 5.1 we have simply used the Hutchin-
son/Lipshitz result without examining its proof. To deal with R, we
need to dig a bit deeper and look at their actual construction, which
turns out to be very interesting. They used the von Neumann
coordinatization theorem for modular lattices, a powerful technique
whose history we now briefly sketch.

Let P be any projective space satistying the Desargues theorem.
Then the lattice of subspaces of P is isomorphic to the subspace lattice
of a vector space over a division ring D. This classical result was
proved by von Staudt by the ‘‘algebra of throws’’. To coordinatize
the space P we single out a fixed line in the space and choose three
distinct points on the line as the zero, unit and point at infinity. We
can then define multiplication and addition for points on the line using
purely geometrical constructions (see Veblen and Young Vol. 1
Chapter 6 and Gritzer pp. 208-210 for details). The resulting algebra
is the division ring D. Thus we have constructed an algebra from
purely geometrical material; to those familiar with the history of
geometry it should come as no surprise that the ancestry of the von
Staudt constructions can be traced to the Eudoxan theory of
proportion. Figure 2 illustrates the definition of multiplication.

0 1 x Yy x.y o
Figure 2
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A far-reaching generalization of the von Staudt construction was
introduced by von Neumann in the 1930’s. He observed that the use of
the Desargues theorem could be avoided by postulating the existence
of an appropriate coordinate frame. With this modification we can
construct a ring with which we can coordinatize any complemented
modular lattice containing a 3-dimensional coordinate frame satisfying
certain added conditions; for a detailed account of this result the
reader is referred to the classic [19].

Von Neumann’s proof that the ring multiplication is well-defined
and associative uses only the modularity of the given lattice. This
observation leads directly to the proof of Fact 3.5, because the
existence of a coordinate frame can be expressed in terms of pure
lattice equations, and any countable semigroup can be imbedded in
the multiplicative semigroup of the von Neumann ring constructed
from an infinite-dimensional projective space.

To prove undecidability for R, we have to generalize the construc-
tion still farther. First, let’s go back and examine the proof of
modularity in Lemma 4.2. We can extend the proof to R in a simple
way to derive the following result: in an R model structure if A is a
linear subspace satisfying (A & —A) = @, and CS A then for any B,
ArBoC) = (ArB)oC, that is, A is modular. Now if we turn to the
multiplication operation in the von Neumann construction, we find
that the proof that the operation is well-defined and associative uses
only a finite number of instances of modularity ; to be precise, von
Neumann needs modularity only for elements of the coordinate frame.
The combination of these two observations gives us undecidability for
R.

The extension to E, T and the positive systems is a messy business
which employs the Glivenko double negation construction. The
unpleasant details are all to be found in [17]. This particular mix of
ingredients is enough to give us the general result:

THEOREM 5.2 Let L be a positive logic (expressed in terms of &, v,
—) intermediate between T, and the positive part of L(P), where P is
an infinite-dimensional projective space satisfying P3 and P4. Then L
is undecidable.

This theorem seems to be just about the best that can be done using
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these geometrical techniques. Any farther advance on the decision
problems for relevant logics (such as the still open decision problem
for the semilattice system of [16]) would seem to require some new
ideas.

6. More geometrical ruminations

As I said at the beginning, one of my main aims in writing this paper
was to make logicians aware of the rich possibilities offered by the
techniques of classical synthetic geometry in the field of relevant
logics. As far as decidability goes, the techniques are probably close
to exhaustion; but elsewhere the surface has hardly been scratched.
For example, how can we axiomatize the logic determined by the
class of all models constructed from projective spaces ?

In conclusion, I give one more small result which shows the kind of
theorems which can be proved by simply adapting known techniques
from geometry and lattice theory.

THEOREM 6.1 There are continuum many logics intermediate
between KR and classical logic.

Proof: For p a prime number let L(p) be the subspace lattice of the
projective plane coordinatized by the p-element field. By a result of
Baker (see Gratzer [5] pp. 239-240), distinct subsets of {L(p):p a
prime, p>2} generate distinct equational classes. It follows that the
logics determined by the classes of model structures constructed from
such distinct subsets are distinct extensions of KR. O

The connection between projective geometry and relevant logics is
both simple and natural and it makes sense to ask why it was not
investigated earlier. The connection with geometry was clear to Dunn
in the early 1970’s; it was Dunn who christened the crucial condition
“Pasch’s postulate”. It is puzzling that the geometrical insight
was not exploited until over a decade had expired. Unfortunately the
penetrating remarks of Toohey [15] were not followed up, perhaps
because of his obscure expository style. I can, however, give a reason
in my own case which has to do with the vagaries of geometrical
terminology. The postulate we have been calling ‘‘Pasch’s postulate’’



356 A. URQUHART

is in fact due to Peano [11]. The original Pasch axiom on which Peano
improved says that if a line passes through one side of a triangle it
either passes through another side or through a vertex. A large
number of geometry books attribute the Peano axiom to Pasch. When
I went to look up Pasch’s postulate in a textbook, however, I found
the original Pasch axiom which looks so little like the Peano version
that I immediately abandoned geometrical interpretations as hopeless.
With only a little more effort 1 would have discovered that the
bloodthirsty troll barring my way could be overcome with the
greatest of ease.

There are lots of other possibilities for constructing interesting
model structures out of geometries. For example, by using two copies
of a geometry, we can construct rms’s which are not krms’s. In
another direction, we can construct rms’s from geometrical spaces
satisfying the classical axioms of betweenness.

However, I hope that by this time the reader is inspired to explore
these possibilities independently, and hence discover some of the
wide unexplored territory lying between relevant logics and classical
geometry.

Department of Philosophy
University of Toronto Alasdair URQUHART
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