FINITE MATRICES FOR QUASI-CLASSICAL MODAL LOGICS

S. K. THOMASON

ABSTRACT

It is shown that every finite matrix which determines a quasi-classical modal logic is equivalent to one based on a finite Boolean algebra, in which the designated elements comprise a filter.

This note adresses a lacuna in recent work on tabularity in modal logic.

A *logic* is a set of propositional formulas, in the connectives \bot , \rightarrow , \Box , containing all classical tautologies and closed under modus ponens and substitution; it is *classical* if it is also closed under RE (from A \leftrightarrow B infer \Box A \leftrightarrow \Box B). The smallest classical logic is called E, and a logic is *quasi-classical* if it contains E.

A matrix is a structure $\mathfrak{M} = (M, 0, \supset, *, D)$ such that $(M, 0, \supset, *)$ is an algebra and $D \subseteq M$; D is a filter if whenever $a \supset b \in D$ and $a \in D$ then $b \in D$; \mathfrak{M} is Boolean if $(M, 0, \supset)$ is a Boolean algebra and D is a filter. A formula A is valid on \mathfrak{M} , $\mathfrak{M} \models A$, if $h(A) \in D$ for every homomorphism h from the algebra \mathfrak{F} of formulas into $(M, 0, \supset, *)$. Two matrices are equivalent if the same formulas are valid on each. A matrix is characteristic for, or determines, a logic if the formulas in the logic are exactly the formulas valid on the matrix. A logic is tabular if it has a finite characteristic matrix.

Every Boolean matrix determines a quasi-classical logic, since $\{A \mid h(A) = 1 \text{ for all } h: \mathfrak{I} \to \mathfrak{M}\}$ is a classical logic. But if \mathfrak{M} is not Boolean then $\{A \mid \mathfrak{M} \models A\}$ may be any set of formulas closed under substitution-let $(M, 0, \supset, *)$ be the algebra of formulas and let D be the desired set. Every quasi-classical logic has (and every matrix determining such a logic is equivalent to) a *countable* Boolean characteristic matrix-let $(M, 0, \supset, *)$ be the algebra of formulas,

modulo equivalence provable in E, and let D be the filter of equivalence classes of formulas in the logic.

The problem is this. Recent discussions of tabularity (for example [1, 2, 6, 7]), in order to utilize methods derived from universal algebra, have limited themselves to (at most) the class of Boolean matrices, without considering the possibility that a logic having no finite Boolean characteristic matrix might yet be tabular in the sense defined above. I shall prove that that cannot happen:

Theorem. Any finite matrix which determines a quasi-classical logic is equivalent to a finite Boolean matrix.

But first, three comments:

- 1. The lacuna is recent. Dugundji [3] proved that S5 is not tabular, in the strict sense. Scroggs [8] proved that every proper extension of S5 is tabular—the matrices he constructed happened to be Boolean.
- 2. In the cases of [1, 6, 7] the lacuna is easily resolved. For those works are limited to classical (indeed, normal) logics. By [4, Lemma 3.2], for any finite matrix \mathfrak{M} there is an equivalent finite matrix \mathfrak{M}' such that every rule "weakly valid" on \mathfrak{M} is "strongly valid" on \mathfrak{M}' . if \mathfrak{M} determines a classical logic then modus ponens and RE are weakly valid on \mathfrak{M} , and hence strongly valid on \mathfrak{M}' , and this means that D' is a filter in \mathfrak{M}' and equivalence modulo D' is a congruence relation. Reducing \mathfrak{M}' modulo this congruence relation yields an equivalent Boolean matrix \mathfrak{M}'' . (And if \mathfrak{M} determines a normal logic then \mathfrak{M}'' is isomorphic to the power-set matrix based on a finite Kripke frame (W, R).)
- 3. The lacuna affects only tabularity, not the finite model property. Indeed the finite model property is vacuous absent some restriction on matrices—if L is any logic and $A \notin L$ then there is a finite matrix on which every formula in L is valid but A is not [5, Theorem 2.4]. (Originally, of course, the finite model property was intended as a property not of "logics" but of "systems" comprising axioms and rules.)

Proof of Theorem. Let $\mathfrak{M}=(M,0,\supset,*,D)$ be a finite matrix, with m=card(M), determining a quasi-classical logic. Let $\mathfrak{I}(m)=(F(m),\bot,\to,\Box)$ be the algebra of formulas all of whose variables are included among p_1,p_2,\ldots,p_m . Let \sim be the smallest equivalence relation on F(m) satisfying

i. if E ⊢ A ↔ B then A ~B,
ii. if h(A) = h(B) for all h: ℑ(m) → ℑ then A ~B.

Thus $A \sim B$ if and only if there is a finite chain $A = A_1 \sim A_2 \sim A_3 \sim \dots \sim A_n = B$ such that $E \vdash A_1 \leftrightarrow A_2$, $h(A_2) = h(A_3)$ for all h, $E \vdash A_3 \leftrightarrow A_4$, etc.

Then \sim is a congruence relation. For suppose $A \sim A'$ and $B \sim B'$, say $E \vdash A \leftrightarrow A'$ and h(B) = h(B') for all h (the more complex cases follow easily); then $h(A \rightarrow B) = h(A) \supset h(B) = h(A) \supset h(B') = h(A \rightarrow B')$ for all h, and $E \vdash (A \rightarrow B') \leftrightarrow (A' \rightarrow B')$, so $(A \rightarrow B) \sim (A' \rightarrow B')$. Similarly, if $A \sim A'$ then $\Box A \sim \Box A'$. Now let $(M', 0, \supset, *)$ be $\mathfrak{J}(m)/\sim$; for $A \in F(m)$ let $[A] \in M'$ be the equivalence class of A; and let $D' = \{[A] \mid \mathfrak{M} \models A\}$. Then $(M', 0, \supset)$ is a Boolean algebra, since [A] = [B] whenever $E \vdash A \leftrightarrow B$. Furthermore, if $A \sim A'$ and $\mathfrak{M} \models A$ then $\mathfrak{M} \models A'$ (use the definition of \sim); hence $[A] \in D' \leftrightarrow \mathfrak{M} \models A$, and it follows that D' is a filter and $\mathfrak{M}' = (M', 0, \supset, *, D')$ is a Boolean matrix.

And \mathfrak{M}' is a finite: if $[A] \neq [B]$ then $h(A) \neq h(B)$ for some $h: \mathfrak{J}(m) \to \mathfrak{M}$; since there are just m^m such homomorphisms h, $card(M') \leq m^{m^m}$. It remains to show that \mathfrak{M} and \mathfrak{M}' are equivalent.

Let $M = \{a_1, \ldots, a_m\}$, and suppose A is a formula, whose variables are q_1, \ldots, q_n , such that $\mathfrak{M} \not\models A$; say $h: \mathfrak{J} \to \mathfrak{M}$ and $h(A) \not\in D$. Let $a_i = h(q_j)$ $(j = 1, \ldots, n)$ and let $A' = A[p_{i_1}, \ldots, p_{i_n}/q_1, \ldots, q_n] \in F(m)$. $(A[B_1, \ldots, B_n/q_1, \ldots, q_n]$ is the result of simultaneously replacing all occurrences of each q_j in A by B_j .) If $h'(p_i) = a_i$ $(i = 1, \ldots, m)$ then $h'(p_{i_j}) = a_{i_j} = h(q_j)$ $(j = 1, \ldots, n)$ and $h'(A') = h(A) \not\in D$. Hence $\mathfrak{M} \not\models A'$, and $[A'] \not\in D'$. Then $\mathfrak{M}' \not\models A'$, since if $k(p_i) = [p_i]$ $(i = 1, \ldots, m)$ then $k(A') = [A'] \not\in D'$. Since A' is a substitution instance of A, it follows that $\mathfrak{M}' \not\models A$.

Conversely, suppose A is a formula in q_1, \ldots, q_n and $\mathfrak{M}' \not\models A$, say $h: \mathfrak{J} \to \mathfrak{M}'$ and $h(A) \not\in D'$. Let $[A_j'] = h(q_j)$ $(j = 1, \ldots, n)$, and let $A' = A[A_1, \ldots, A_n/q_1, \ldots, q_n] \in F(m)$. If $h'(p_i) = [p_i]$ $(i = 1, \ldots, m)$ then [A'] = h'(A'), and since $h'(A_j) = [A_j] = h(q_j)$ $(j = 1, \ldots, n)$, $h'(A') = h(A) \not\in D'$. Since $[A'] \not\in D'$, $\mathfrak{M} \not\models A'$, and since A' is a substitution instance of A, $\mathfrak{M} \not\models A$.

REFERENCES

- [1]Blok, W. J. The lattice of modal logics: an algebraic investigation, *J. Symbolic Logic* 45 (1980), 221-236.
- [2] Blok, W. J., and Kohler, P. Algebraic semantics for modal logics, J. Symbolic Logic, to appear.
- [3] Dugundji, James. Note on a property of matrices for Lewis and Langford's calculi of propositions, J. Symbolic Logic 5 (1940), 150-151.
- [4] Harrop, Ronald. On the existence of finite models and decision procedures for propositional calculi, Proc. Camb. Phil. Soc. 54 (1958), 1-13.
- [5] Harrop, Ronald. On simple, weak and strong models of propositional calculi, Proc. Camb. Phil. Soc. 74 (1973), 1-9.
- [6] Maksimova, L. L. Pretabular extensions of Lewis S4, Algebra i Logika 14 (1974), 28-55.
- [7] Rautenberg, Wolfgang. Der Verband der normalen verzweigten Modallogiken, Mathematische Zeitschrift 156 (1977), 123-140.
- [8] Scroggs, Schiller Joe. Extensions of the Lewis system S5, J. Symbolic Logic 16 (1951), 112-120.