PROBABILISTIC SEMANTICS FOR ORTHOLOGIC AND
QUANTUM LOGIC

Charles G. MORGAN

In [3], Goldblatt gives an axiomatic characterization of conse-
quence relations defining two propositional logics; one he calls
“‘orthologic’’, and the other he calls *‘quantum logic’’. His characteri-
zation of the consequence relation may conveniently be thought of as
a natural deduction system for the two logics. Goldblatt sketches a
proof that orthologic is characterized by the class of ortholattices, and
he claims a similar result holds for quantum logic and orthomodular
lattices. He then goes on to provide a semantics of the possible worlds
sort for each of the logics. In this paper we provide an alternative
semantics based on conditional probability theory, and we prove
soundness and completeness results for both logics. The probability
theories are shown to be non-trivial (i.e., not restricted to a finite
number of values). We discuss an application of the probability
functions to bets on theorems provable from an unknown set of
assumptions.

1. Syntax

We assuvme expressions of our formal language are built up in the
usual way from a denumerable number of sentence letters p,, pa, .. .,
and the sentence connectives ‘A’ for conjunction and *‘~" for
negation. We use left and right parentheses for punctuatioq; \:vher'e
parentheses are omitted from a conjunctive string, association 1s
assumed to be to the left. We will use A, B, C, and D, with
connectives and parentheses, as metalinguistic entities to stand for
object language expressions. We will use I’ with standard set theore.tic
notation to stand for sets of expressions. We adopt the following
definitions:
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(D.1) AVB =4 ~(~A A~B)
(D.2) A>B =4 ~AV(AAB)

(The **-’" notation is not used in [3].)

In the framework of [3], a logic L is defined as a set of ordered pairs
of expressions from the language. To say ‘‘(A, B)€L.” is to indicate
that B can be inferred from A, i.e., that B is a consequence of A. We
will use the notation ‘A +— B’ instead of (A, BYL"’ to indicate that
B is a consequence of A. The following axioms and rules governing
the consequence relation are taken from [3].

(# 1) A-A

(#2) AABHA

(#3) AAB+—B

(#F4) A-~~A

(# 5) ~~AA

(#6) AAN~A-B

(# 7) If A—B and B+~C, then A+~C.

(# 8) If A-B and A—C, then A-B AC.
(# 9) If A-B, then ~B—~A.

(3#10) AA(A-B)—B

The system orthologic is defined as the smallest logic satisfying
conditions (3#1-#9), while quantum logic is defined as the smallest
logic satisfying conditions (#1-310).

An expression A is said to be derivable from a set of expressions T,
written as I' — A, if and only if for some finite number n of members of
I',say By, ...,B,, wehave By A... AB,—A. An expression A is said
to be a theorem, written —A, if and only if {AV~A} — A. We say
that a set " of expressions is deductively closed if and only if for every
expression A, if A, A €Il'. Obviously these notions are relative to
the particular logic under consideration.

2. Semantics

For the purposes of comparison, we will briefly sketch the probabi-
listic semantics for classical logic before presenting the new material.
When doing probabilistic semantics, it has been usual to consider
functions defined on the set of ordered pairs of expressions of the
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language. The usual notation is “‘Pr(A, B) = r”’, which is read ‘‘the
probability of A, given B, is r’’, where r is a real number such that
0=r= 1. The following constraints can be shown to exactly characte-
rize classical propositional logic (see [4]):

(PR.1) 0=Pr(A, B)=1

(PR.2) Pr(A, A) = 1

(PR.3) If Pr(B, D) = Pr(C, D) for every expression D, then
Pr(A, B) = Pr(A, C) for every expression A.

(PR.4) If there is at least one expression C such that
Pr(C, B) = 1, then for every expression A,
Pr(~A, B) = 1-Pr(A, B).

(PR.5) Pr(AAB,C) = Pr(A, C) « Pr(B, AAC)

(PR.6) Pr(AAB, C) = Pr(BAA, Q)

A given probability function is said to certity an expression A just in
case for every expression B, Pr(A, B) = 1. An expression is said to
be p-valid if and only if it is certified by every probability function.
One can show (as is done in [4]) that the theorems of classical
propositional logic are exactly the p-valid expressions, as long as the
probability functions satisfy (PR.1-6). We will use the term ‘‘classi-
cal”” to refer to restrictions (PR.1-6) and to the functions satisfying
those restrictions.

For our purposes, it will be convenient to consider a slightly more
general type of function. Instead of defining our probability functions
on ordered pairs of expressions, we will define our functions on
ordered pairs whose first element is an expression and whose second
element is a set of expressions. Let EX be the set of all expressions of
our language. Our probability functions, designated by *‘Ps”’, will be
maps from EX x Z(EX) into the closed interval [0,1]. We will use
“Ps(A,T') = r”’ to mean *‘the probability of A, given the assumptions
inl,isr”.

Using the set formulation yields several advantages. For one thing,
the set representation of the ‘‘given’ information follows actual
practice more closely. It also allows for the explicit representation of
an infinite number of background assumptions.And as we will see
below, use of this form allows the formulation of general constraints
characteristic of conditional probability, without consideration of the
sentential connectives.
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In order to have a reasonable conditional probability theory, we
must impose the following constraints:

(PS.1) 0=Ps(A, D=1
(PS.2) If A€T, then Ps(A, T) = 1.

(PS.3) Ps(A,T) « Ps(B, I U{A}) = Ps(B,T) » Ps(A, " U{B})

Condition (PS.1) sets the usual range, and corresponds directly tp
(PR.1). (PS.2) is a slight generalization of (PR.2); if A is one of the
assumptions given, then its conditional probability must be 1. (PS.3) is
Just a version of a classical theorem. In the more familiar form, the
theorem follows directly from (PR.5) and (PR.6).

We have not imposed a condition parallel to (PR.3), which says any
two expressions which are equally supported by every conceivable
piece of evidence must support every conceivable hypothesis equally.
The desired condition is just a simple consequence of (PS.2-3).

Theorem [: If Ps(B, I') = Ps(C, T) for every set ', then
Ps(A, T U{B}) = Ps(A, I U{C}) for every set T. _
Proof: Let B and C be arbitrary expressions such that:
(1.1) Ps(B,I') = Ps(C, T') for every set T’

LetT” be an arbitrary set of expressions. Then by (1.1) and (PS.2) we
have:

(1.2) PS(C, " U{B}) =1
Let A be an arbitrary expression. Then from (1.2) we know:

(1.3) PS(A. T U{B} U{C}) = Ps(C. T" U{B})
*« PS(A, T U{B} U{C})

Applying (PS.3) to the right side of (1.3) gives:

(1.4) Ps(A, [ U{B} U{C}) = Ps(A, " U{B})
* Ps(C, " U{B} U{A})

But by (1.1) and (PS.2) we know:
(1.5) Ps(C, T U{B} U{A}) = 1
Putting (1.4) and (1.5) together gives:
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(1.6) Ps(A, T U{B} U{C}) = Ps(A, " U{B})
Exchanging B and C in the above steps gives:

(1.7) Ps(A, T" U{B} U{C}) = Ps(A, " U{C})
Hence from (1.6) and (1.7) we have the desired result:

(1.8) Ps(A, " U{B}) = Ps(A, I"" U{C})

Thus the proof of Theorem 1 is complete.

Conditions (PS.1-3) set up a framework for conditional probability
functions which is independent of the connectives employed in the
object language. We must now turn our attention to the restrictions
appropriate for each of the connectives of the language.

In both logics, conjunction is treated in a Boolean way. Thus there
seems to be no reason to deviate from the classical constraint (PR.5),
so we require the following:

(PS.4) Ps(AAB,T') = Ps(A,T') » Ps(B, T U{A})

Note that given our constraint (PS.3), we can derive the semantic
commutativity of conjunction from (PS.4). Hence we do not require
an additional constraint corresponding to (PR.6).

Negation is slightly more problematic. Both logics under conside-
ration require only that negation act as orthocomplement. Thus we
cannot make the very strong restriction parallel to the classical
requirement (PR.4). Instead we impose restrictions corresponding to
those for orthocomplements (see [1] and [2]).

(PS.5) Ps(~~A,TI') = Ps(A, I

(PS.6) Ps(AA~A,T) =PSB, I

(PS.7) If Ps(A, T') = PS(B, I') for every set I', then
Ps(~B, ') = Ps(~A, T') for every set I'.

Note that these conditions can be derived from the classical cons-
traints. We will discuss negation in greater detail below.

We now turn our attention to the conditional of quantum logic.
Given (PR.1-6), one can derive the following condition for the material
conditional of classical logic (see [6]):

(MI) Pr(A =B, C)=1-Pr(A, C)+ Pr(A AB, C)
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The conditional of quantum logic is known to be stronger than the
material conditional, in the sense that all theorems of the quantum
conditional are theorems of the material conditional,while the reverse
is not true. Semantically speaking, it should require more evidence to
support a quantum conditional than what is required to support a
material conditional. Or to put the matter a bit differently, a given
body of evidence should support a material conditional to at least as
high a degree as that evidence supports a quantum conditional. Thus,
for the quantum conditional we require the following:

(PS.8) Ps(A—>B,T) < | - Ps(A, I")
+ Ps(A, ) » Ps(B, T U{A})

We will say that a probability function is an O function just in case it
staisfies all of (PS.1-7). We will say that a probability function is a Q
function just in case it satisfies all of (PS.1-8). We will say that an
inference from a set I' of expressions to an expression A is O
probabilistically valid, O valid, or valid in the sense of orthologic just in
case for every O probability function Ps and every set of expressions
I'', Ps(A, T UI’) = 1. Intuitively, an inference from T to A is
probabilistically valid in this sense just in case there is no information
which could be added to that in I' which would make us have any
doubt about A. We will say ‘T’ semantically entails A in the sense of
orthologic’’ to indicate that the inference from I to A is O valid. We
will use similar terminology for the Q system. If it is clear in the
context which logic is under discussion, we may drop explicit
reference to O and Q. We will use the notation ‘I’ =A"" to indicate
that the inference from I to A is valid in the appropriate sense.

3. Soundness

There are several different ways one could prove soundness. One
approach is algebraic. We could show that the equivalence classes of
expressions determined by an arbitrary O function (Q function) form
an ortholattice (orthomodular lattice). For each O function (Q func-
tion) Ps and each set I', the valuation function defined on equivalence
classes [A] by V ([A]) = Ps(A, I') is then a valuation on an ortholattice.
Goldblatt indicates in [3] that if A~ B in orthologic (quantum logic),
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than V([A]) = V([B]) for every valuation V on the ortholattice
(orthomodular lattice) of equivalence classes of expressions. We
could than make use of this relationship to prove the soundness result.

There is an alternative approach which does not make direct use of
any algebraic arguments. Since is seems much simpler, we use it here.
We first state and prove two elementary theorems, and then we prove
two versions of the soundness result.

Theorem 2: 1f By, ..., B, are members of the set I, then for every O
or Q function Ps, Ps(B; A... AB,, "' Ul'") = 1, for every set I".

Proof': The proof is by a simple induction on n. Forn = 1, the result
follows immediately from (PS.2). For the induction step, the result
follows from the induction hypothesis, (PS.2), and (PS.4).

Theorem 3 1f B -~ A in orthologic (or quantum logic), then for every
O function (or Q function), Ps(B, I') < Ps(A, I'), for every set I'.

Proof: We only need to show that the proeprty holds for pairs of
expressions given by (#I1-#6) and (#10), and that the property is
preserved by (#7-#9). In all cases the result is straightforward, if not
entirely trivial. For example, we will consider (410). By (PS.4) we
know:

(3.1) Ps(AA(A—B), ') = Ps(A,T) » Ps(A-B, T U{A})
From (PS.2) and (PS.8), we have:

(3.2) Ps(A—B, T U{A}) < Ps(B, T U{A})
Then (3.1) and (3.2) together yield:

(3.3) PsSCAA(A—-B), T) = Ps(A,T) « Ps(B, " U{A})
Applying (PS.3) to the right side of (3.3) gives:

(3.4) Ps(AA(A-B), IN= Ps(B, ') » Ps(A, T U{B})
Finally, (3.4) with (PS.1) gives the required result:

(3.5) Ps(CAA(A-B), N = Ps(B, TN

Thus any pair of expressions given by (310) has the desired property.
The other cases are similar.
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We are now ready to prove our first soundness theorem. Note that
given the present characterization of both orthologic and quantum
logic, the consequence relation I'—A is not defined for I' empty.
However, the definition of our probability theory allows for the empty
set of assumptions. Our first theorem deals with the usual case in
which I is not empty. The second theorem deals with the special case
in which the assumption set may be empty.

Theorem 4: If T — A in orthologic (or quantum logic), thenT" = A in
the sense of orthologic (or quantum logic).

Proof: Suppose I' — A. Then by definition, for some finite number
of members of I', say By, ..., B,, A is derivable from the conjunction
of the B;. For notational simplicity, let CB denote the conjunction of
the B;. Then we have CB+ A. Then by Theorem 3, we know that for
every O-(or Q) function, Ps(CB, I'") = Ps(A, "), for every setI"". So
in particular, Ps(CB, T UT") =< Ps(A, " UT™), for every setI"*. Then by
Theorem 2 and (PS.1), we have Ps(A, ' U") = 1, for every setI"*, as
required. Thus the proof of Theorem 4 is complete.

Theorem 5 : Suppose + A, in orthologic (or in quantum logic). Then
for every O (or Q) function: (a) Ps(B, I') < Ps(A, I'), for every
expression B and every setI"; and (b) Ps(A, ") = 1,if T is not empty.

Proof Suppose —A in orthologic (or in quantum logic). Then by
definition:

5.1) AV~A+A

Then from (5.1) we know by Theorem 3 that for every set I':
(5.2) PsCAV~A,T) = Ps(A. TN

By (PS.6) we have for every set I':
(5.3) Ps(~AA~~A.T) = Ps(~B,IN.

Applying (PS.7), (PS.5), and (D.1) to (5.3), we know that for every set
I

(5.4) Ps(B.,I) = PstAV~A.T)

Thus part (a) is proved. In order to prove part (b}, simply note that if [
is not empty, then the B in (5.4) may be taken to be a member of T.
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Then the desired result follows from (PS.1-2). That completes the
proof of Theorem 5.

Unlike the classical situation, we cannot identify the theorems of
either of the two logics with those expressions which take probability
1 on all evidence. Our constraints are compatible with the assignment
of 0 to every expression when given only the empty set of information.
However, as Theorem 5 shows, the probability of any theorem is
maximal, even on empty evidence. Of course it would be a trivial
matter to rule out functions which assign 0 to every expression on
empty evidence, but there seems to be no need to do so. We still have
the result that the theorems of the logics are just those expressions
which are maximally probable no matter what the evidence.

4. Completeness

We now turn to some completeness results. The first theorem is the
standard strong completeness result,

Theorem 6: For every expression A and every set of expressions I',
if T=A in the sense of orthologic (quantum logic), then T'—A in
orthologic (quantum logic).

Proof: We will argue for the contrapositive of the theorem. Let A’
be some particular expression and let I'" be some particular set of
expressions, and suppose that it is not the case that I'—A" in
orthologic (quantum logic). We must show that it is not the case that
I'"E=A’ in the sense of othologic (quantum logic). It will be sufficient
to define an O function (a Q function) Ps such that ps(A’, ") # 1. We
can define the required function as follows:

Ps(A,T) = 1 if and only if ' A
= 0, otherwise

Clearly Ps(A’, I'") = 0. So to complete the proof, we only need to
show that Ps satisfies (PS.1-7) for orthologic and additionally (PS.8)
for quantum logic. (PS.1) is trivially satisfied by definition. (PS.2)
corresponds to (#1). (PS.5) corresponds to (#4-35). (PS.6) corres-
ponds to (#6). And (PS.7) corresponds to (#9). The only conditions
which call for any comment are (PS.3), (PS.4), and (PS.8). In each
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case, the proof that hte condition is satisfied is easy, but a bit tedious.
To see that (PS.3) is satisfied, first suppose that the left side is 1,
i.e., suppose both of the following hold:

(6.1) Ps(A, I') =1
(6.2) Ps(B,TU{A}) =1

By the definition of Ps we know immediately that:

6.3) T—A
(6.4) T U{A} B

The definition of “‘I'— A’ assures that if ['; — A, then ', UI'; — A, for
any two sets I'; and I',. Hence (6.3) assures that:

6.5 TU{B} A
So by the definition of Ps we have;
(6.6) Ps(A, T U{B}H =1

The definition of *‘I'=A"" and (6.3) assure that for some finite
conjunction C;of members of I', we have:

6.7) Ci—A

Similarity from (6.4) we know that for some finite conjunction C, of
members of ' U{A}:

6.8) C,—B

From (#1-43) and (3#7-3#8) we may derive the commutativity and
associativity of conjunction on the left of “‘+"". These facts with (42),
(#7), and (6.8) guarantee that for some finite conjunction C; of
members of I', we have:

(6.9) C; AA-B
But (6.7) and (6.9) with (32-#3) and (3#7-#8) yield:
(6.10) C; AC5+—B

But by commutativity and associativity, C, AC; is equivalent to the
conjunction of a finite number of members of I'. Hence we have:

6.11) '—B
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So by the definition of Ps, we know:

(6.12) Ps(B, I =1
From (6.6) and (6.12) we know the right side of (PS.3) must be 1.
Consequently, if the left side of (PS.3) is 1, then the right side must be
1. But interchanging A and B in the above argument shows that if the
right side of (PS.3) is 1, then the left side must be 1. Since each side
must be either 1 or 0 by the definition of Ps, we know (PS.3) must be
satisfied.

To see that (PS.4) is satisfied, first suppose the left side is 1, i.e.,

suppose :

(6.13) Ps(AAB, I =1
Then by the definition of Ps, we have:

6.149) THAAB
Using (#2) and (#7) with (6.14) yields:

6.15 T—A
The definition of Ps with (6.15) assures that:

(6.16) Ps(A,I) =1
Using (#3) and (37) with (6.14) yields:

6.17) T'—B
But by definition of *“T'—B"’, (6.17) assures that:

(6.18) TU{A} -B
Hence by definition of Ps, (6.18) yields:

(6.19) Ps(B, " U{ADh =1

So (6.16) and (6.19) assure that the right side of (PS.4) must be 1.
Next, suppose the right side of (PS.4) is 1. Then (6.16) and (6.19) must
hold. But (6.16) guarantees (6.15), and (6.19)guarantees (6.18). But by
moves parallel to those used to obtain (6.11) from (6.3) and (6.4), we
know that (6.15) and (6.18) guarantee (6.17). Then (6.15) and (6.17)
with (3#8) guarantee (6.14). By definition of Ps, (6.14) guarantees
(6.13), so the left side of (PS.4) is 1. Since each side must be either 0 or
1, (PS.4) must be satisfied.



334 CH. G. MORGAN

For the case of quantum logic, we must assure that our definition of
Ps satisfies (PS.8). If Ps(A, I') = 0, then the inequality is trivially
satistied, since the right side will be 1. Similarly, if Ps(A UB, ') = 0,
then the inequality is trivially satisfied, since the left side will be 0. So
we consider the case when the following hold:

(6.20) Ps(A, T) =1
(6.21) PstA—-B, ') =1

Then (6.20) and the definition of Ps give:
(6.22) THA

And (6.21) and the definition of Ps give:
623) T'—A-B

But (6.22) and (6.23) with (3#8) yield:
(6.24) T-AA(A=B)

Then (6.24) and (#10) give:
(625 I'+—B

Given the definition of “T'—B’", (6.25) assures that;
(6.26) TU{A}+—B

The definition of Ps and (6.26) assure that:
(6.27) Ps(B, T U{A}) =1

But given (6.27), the right side of (PS.8) is 1, and the inequality is
satisfied.

We can conclude that Ps defined as above is a genuine O function
(Q function). Since Ps(A’, I"") = 0, we know it cannot be the case that
I =A’. This our strong completeness theorem is proved.

We now turn our attention to weak completeness. Recall that in our
discussion of Theorem 5, we indicated that the theorems of the two
logics are maximally probable, regardless of the evidence. But recall
that being maximally probable does not necessarily mean having a
probability of 1. Our weak completeness result simply says that
maximally probable expressions are theorems.
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Theorem 7: 1f for every O function (Q function) Ps, every expres-
sion B, and every set of expressions I', Ps(B, I') < Ps(A, I'), then — A
in orthologic (quantum logic).

Proof: Assume the hypothesis of the theorem to be true. Simply
take B to be AV ~A, and take I to be {A V ~A}. The hypothesis of
the theorem with (PS.1-2) then guarantees that Ps(A, {A V~A}) = 1.
From Theorem 6, we can then conclude that {A V ~A} ~ A, which by
definition means — A. Thus, Theorem 7 is proved.

5. Non-triviality and examples

It is easy to show that our O and Q probability functions are not
limited to a finite range of values, because in a sense the constraints
are weaker than the classical constraints. Consider a classical lan-
guage built up from only a finite number of sentence letters. Any set I’
of expressions from the language is then deductively equivalent to
some expression, which we will designate by E(T"). There will be
infinitely many classical probability functions Pr definable on the
language. To each such function, there corresponds a function of the
sort discussed here ; simply set Ps(A, I') = Pr(A, E(I)). It is easy to
see in light of our discussion that any function Ps so defined must
satisfy all of (PS.1-8). In a similar fashion, we may obtain examples of
our functions with infinitely many values. Let our language have
infinitely many sentence letters. Then there will be infinite valued
classical functions Pr on the language. We can then define Ps(A, I') as
the limit of Pr(A, C(T', n)), where C(T', n) is the conjunction of the first
n elements (in some alphabetic order) of T.

From a perusal of the conditions (PS.1-7), it should be obvious that
the deviation from the classical theory centers on the treatment of
negation. Given the classical probability theory, one can derive a
single functional expression for the probability of ~A. That is, we can
obtain a result of the form Pr(~A, B)=f. (In fact, f= 1-
Pr(A, B)+ Pr(~B, B); see(7].) It may seem desirable to obtain a
similar expression for the negation(s) of orthologic and quantum logic.
That is, one may wish to have a result of the form Ps(~A, T) = g.
However, recall that orthologic and quantum logic are weaker than
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classical logic, in the sense that they have smaller sets of theorems.
Thus it seems reasonable to expect that the classical probability
functions will be just a subset of those probability functions appro-
priate for orthologic and quantum logic. If we insist on finding a
function g for the negation of the weaker logics, then we must have
g +f, or else the set of classical functions would coincide with the set
of O functions. But if g =f, then at best the classical functions and the
O functions will overlap; neither will be a subset of the other.

There are many functional forms which one could use other than
(PR.4) in order to obtain the orthocomplement conditions. We will say
that a function, designated by ‘“‘¢’’, which maps the closed interval
[0,1] into itself, is a complement function if it satisfies both of the
following:

(c.1) c(c(n)) =n
(c.2) If n=m, then c(m)=<c(n).

It is not difficult to show that if ¢ is an arbitrary complement function,
then the orthocomplement conditions (PS.5-7) would all be satisfied
by the following:

(PSC.1) Ps(~A,I') = c(Ps(A,T"), unless Ps(B, ') = 1 forall B

In fact, for each set I', we could specify a complement function ¢[['],
and satisfy the orthocomplement conditions with the following:

(PSC.2) Ps(~A, I') = ¢[[|(Ps(A, I'), unless Ps(B, I') = 1 for
all B

It would only be necessary to assure that logically equivalent sets use
the same complement function.

It is of course very easy to cook up functions on the closed unit
interval which satisfy (c.1-2). For just one type of example, note that
for each positive real number n, the following defines a complement
function:

(c.3) cy(m) = (-m")'"

There is often a reluctance to consider alternate probability theo-
ries. Part of the reason for that reluctance has to do with a lack of
familiarity with situations to which such theories could be applicable.
We will now consider a family of examples in which it can be shown
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that bets should not be made in accordance with the classical theory;
however, it can be shown that one should not deviate from (PS.1-8).
Thus a probability theory at least as-strong as that for quantum logic,
but weaker than the classical theory, is appropriate. The probability
functions appropriate for the examples will be multi-valued. Hence
the O functions and Q functions are nontrivial, even when they
deviate from classical constraints.

For the examples, we will restrict ourselves to a language with only
finitely many sentence letters, using ““A” and ‘‘~"’ as primitive
sentence connectives. We assume (D.1-2), above. Suppose we are
faced with an ideal computer which is initially given some set I of
expressions, the content of I'" being unknown to us. The computer is
then set up to answer questions of the following sort: Is it the case that
I+~ A in classical logic? That is, the computer responds to input A
with a “‘yes” or *‘no”’, the answer depending on whether or not A is
classically derivable from I'".

Now there will be only a finite number of logically distinct deducti-
vely closed sets, since our logic is classical and we have only finitely
many sentence letters. So, our example is equivalent to supplying the
device with a deductively closed set and asking about membership in
the set. Suppose we know that each logically distinct deductively
closed set is equally likely to be placed in the machine. Our problem is
the following: Given a knowledge of the set I' of expressions already
known to be derivable, what is the probability that a specified
expression A is derivable? (This situation is not the same as that
described in [5].)

It is obvious that correct probabilities are given by a relative
frequency scheme: The probability of A, given I', is the number of
deductively closed sets containing I’ U{A} divided by the number of
deductively closed sets containing I'. Using “‘3T")"’ to stand for ‘‘the
number of deductively closed sets containing I"’", we can represent
the appropriate function as follows:

(P.1) P(A, ') = #I U{A})/#I)
It is a simple matter (left to the reader) to verify that the function P
satisfies all of (PS.1-8).
To clearly see that functions defined by (P.1) are not classical, we
will consider the simplest case. Suppose our language contains only
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one sentence letter, say p. Then there will be only four logically
distinct expressions: p, ~p, pV~p, and p A ~p. There will also be
only four distinct deductively closed sets, which we will represent as
follows:

I, = {pV~p}

I; = {pV~p,p}

I3 = {pV~p, ~p)

Fa = {pV~p,p,~p,pA~p}

Then the function P is defined by the following table:

P(A, T) I I, I; I
pV~p 4/4 2/2 2/2 11
p 2/4 22 172 1/1
~p 2/4 1/2 22 1/1
pA~p 1/4 1/2 1/2 11

Clearly this function deviates drastically from the calssical cons-
traints. In particular, the negation condition (PR.4) is violated. It is
also interesting to note that for no set I is it the case that P(p A ~p, I')
= 0. Some authors take the following condition to be required of all
reasonable probability functions:

P(A,T)+PB, )= P(AAB, T)+P(AVB, I

However, it is easy to see that this condition fails for our example,
even though the probability is derived from a relative frequency.
Quantum logic is supposed to be particularly appropriate for
situations in which quantum mechanical considerations are crucial.
Since our quantum probability theory exactly characterizes quantum
logic, one would think it must be relevant to the statistics of quantum
mechanics. If that is the case, then it would seem that the statistics of
conjunctive events should be classical, while the statistics of comple-
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mentary events should not be. I leave such problems for others to
ponder.

University of Victoria Charles G. MORGAN
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