KG""™" AND THE EFMP

Brian F. CHELLAS

Introduction

For natural numbers &, {, m, and n, KG*" ™" is the smallest normal
modal logic containing

Gk. 1, m.n. <>k Dlp - Dm Onp
The formula G* """ embraces such familiar formulas as:
Op— <p
Up-p
p—»>0O <>p

Op—-0O0p
Cp->0OCp

wAESD

These figure prominently in such well-known logics as the Feys-von
Wright “‘logique t*’ or system M, Kripke’s ‘‘Brouwersche system’’,
and Lewis’s S4 and S5.

Less well known, but important in what follows, is the instance

G. <0Op-0OCp

of G ™" This is the characteristic theorem of the modal logic $4.2,
i.e. KT4G.

A logic is said to have the finite model property (fmp) just in case
each non-theorem of the logic is false in some finite model of the logic.
Alternatively, a logic has the fmp exactly when each formula consis-
tent in the logic is true somewhere in a finite model of the logic. We
say of a normal modal logic that it has the finite model property
essentially (efmp) if and only if each of its normal extensions has the
fmp.

The point of this paper is to examine the question: For what values
k, I, m, n does KG* "™ " have the efmp? It turns out that a single
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theorem, essentially due to Kit Fine, provides an answer for all but a
handful of quadruples of natural numbers. This is the main result of
the paper. Except for one (or, perversely, two) the remaining cases
can also be resolved. So a secondary purpose here is to state a
problem for future research.

Background

A normal modal logic is based on propositional logic and may be
characterized by the presence of the theorems

Df <. <>p4—>*—|[:| —p
K. Up—-q - (Tp-0Oq)

and rules of modus ponens, substitution, and necessitation

RN, A

OA~

Models and frames for normal modal logics are structures /4 =
<W, R, P> and & = <W, R> in which W is a set (of ‘“‘possible
worlds™’), R is a binary relation in W, and P associates truth values
with pairs of atomic formulas and worlds. /# is a model on % ; % is the
frame of #. Models and frames are finite iff their sets of worlds are.
Truth conditions for modalities are given by :

LA is true at x in J# iff A holds at every y in 4 such that xRy.
< Ads true at x in 4/ iff A holds at some y in . such that xRy.

A is a model of a logic iff the logic’s theorems are true at every world
in /. % is a frame for a logic iff every model on .Z is a model for the
logic. A logic is determined by a class of models (frames) iff every
member of the class is a model of (frame for) the logic and each
non-theorem of the logic is rejected by some member of the class.

For each k, |, m, and n, KG*" ™" is determined by the class of k, I,
m, n-incestual models and frames — i.e. those in which the relation R
satisfies the condition that for every x, y, and z in W

if xR"y and xR™z then there is aw in W such that yR'w and zR"w.
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For KD, KT, KB, K4, and K5 this boils down to the familiar
properties of seriality, reflexivity, symmetry, transitivity, and eucli-
deanness. In the case of KG the condition is called simply incestuali-
ty.(")

$4.2 and the efmp
We begin with a lemma.
LEMMA. KT4G*" ™" = KT4G (54.2) for all k, |, m, n=1.

Proof. Simply note that every extension of KT4 ($§4) contains the
“‘reduction laws”’ OA — O'A and OA « OIA, for every i= 1.

THEOREM 1. §4.2 — and therefore KG* "™ " forany k, I, m, n=1 - has
a normal extension that lacks the fmp.

Proof. In his *‘Logics containing S4 without the finite model pro-
perty’’ [3] Kit Fine defines an extension KT4X of S4 and shows that it
does not have the fmp. It turns out that an almost exact copy of Fine’s
proof yields the result that the extension KT4GX of S4.2 lacks the
fmp.

Fine’s formula X is the conditional Y —Z, where Z is the formula

O(Cp A Cq A=),

and Y is a conjunction of these formulas:

1 s

2) O(s » O(—s A $s))
3 <p

4 <Oq

5 Or

(6) O - (—<gqg A =<r)

(*) For more background material and information on KG* ™ " logics see [1], [4], or
7.
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7 0(q = (—=<p A =<r)
®) O - (—<Cp A —=<q)

To show that K74GX lacks the fmp it is enough to establish two
lemmas.

Consistency lemma. Y is consistent in KT4GX.

Infinity lemma. Y holds at a world in a model / of KT4GX only if /#
is infinite.

For the infinity iemma it will do simply to remark that Fine proves
the corresponding proposition for the logic KT4X —i.e. that any model
of this logic is infinite if as much as one of its worlds verifies Y. Thus
since KT4GX extends KT4X the result holds here as well.

To prove the consistency lemma it suffices to construct a model of
KT4GX at one of the worlds of which Y holds. This may be
accomplished by minutely modifying the model Fine employs for the
analogous purpose in his proof.

Specifically, we consider /# = <W, R, P> in which the worlds are
arranged as in the diagram in figure 1. In the diagram the arrows
indicating R are meant to be transitive; the fat arrows mean that
worlds 0 and —1 go by R to every world below them ; and for the sake
of readability self-directed arrows indicating reflexivity are eve-
rywhere omitted. As the diagram shows, the worlds other than 4, 0,
and — 1 are divided by levels, three worlds to a level. Thus worlds 1, 2,
and 3 are on the lowest level, and so on.

The model # is exactly like Fine’s except for the addition of the
world 4.

Note two features of ./ : First, a world located on a level goes by R
to all but one of the worlds on every level below it. Second, distinct
worlds on the same level between them go by R to every world on
every level below them. It follows that within the levels three distinct
worlds are on the same level if none is an R-alternative of any of the
others. This is important shortly.

The following two propositions will secure the consistency lemma.
(A) Y is true at 0 in /.
(B) 4 is a model of KT4GX.
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For (A) we verify by inspection that Y's eight conjuncts hold at 0 in
A. Thus s holds at 0 by construction, and since s holds only at 0 and
OR—1 and — 1RO the formula O (s - <(—s A <s)) is true at 0. That
takes care of (1) and (2). For (3) we note that OR1 and p is true at 1;
similarly for (4) and (5). Finally, since p holds at 1 alone and none of
1's R-alternatives verifies g orr, d(p —» (—<q A —<1)) holds at 0.
This settles (6), and the reasoning for (7) and (8) is similar.

For (B), note first that the relation R is reflexive, transitive, and
incestual. So # is a model of KT4G, and we need to show only that
the frame % = <W, R> of / is a frame for KT4GX —i.e. that X is true
at every world in every model on #.

Suppose that X's antecedent Y is true at a world w in some model
on %. Then Y’s first two conjuncts hold at w. This means that the
formula &(—s A <) holds at w, and hence this world begins an
unending R-chain of worlds in % at which s and —s hold alternately.
Thus w is either 0 or —1, since otherwise both s and —s hold at 4.
Note that w is R-related to every world in #.

Because conjuncts (3)-(5) hold at w this world has R-alternatives x,
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¥, and z that verify p, g, and r respectively. We argue now that these
worlds are all on the same level in .

Conjunct (6) holds at w. Hence < q and <r are false at x, and so
neither y nor z is an R-alternative of x. Using (7) and (8) we conclude
in general that none of x, y, and z is an R-alternative of any of the
others. R’s reflexivity entails moreover that these worlds are distinct.
World 4 is an R-alternative to every world in %, and every world is an
R-alternative to 0 and —1. So none of x, y, and z is 4, 0, or —1 ;eachis
on some level in #. It follows at once that x, y, and z are all on the
same level.

Now we can show that X's consequent Z holds at w. Let us
designate by xy the world immediately R-above worlds x and yin &,
Clearly < p and <q hold at xy. But <r is false at all R-alternatives to
xy. So Cp, <g, and —<r are all true at xy. Therefore, since wRxy,
C(Op A Oq A —<Or)is true at w. This ends the proof of (B) and so
too the consistency lemma and the theorem. (%)

The remaining cases

Theorem I thus resolves, negatively, the question of the efmp for all
but at most fifteen of the KG* ' ™ = logics — to wit those in which , /,
m, and n are either 0 or 1 and at least one is 0. Eliminating by duality,
and discounting alternative axiomatizations, this number reduces to
eight:

KGO, 0, 0,0 K
KG® % 10 = KT,
KG™ % b1 = KB
KG% %0 =KT
KG™L %1 = KD
KG® L 11
KG:% %0 =KD,
KG“ %11 = Ks

- where T, and D, are the converses p - O p and Op — Op of T and
D.

(3) 1am very indebted to Alasdair Urquhart, who suggested to me that Fine’s proof
could be thus adapted to show that §4.2 lacks the efmp [9).
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Four of these logics — K, KT, KD, and KG* " ! — are sublogics of
§4.2. So by theorem 1 these all lack the efmp.
The case of K5 has been resolved affirmatively.

THEOREM 2. K5 has the efmp.

This was proved by Michael Nagle in his doctoral dissertation [6]
and reported in the Journal of symbolic logic [5).

The question of the efmp and the logic KD, was open until recently.

THEOREM 3. KD, has the efmp.

Krister Segerberg presented a proof of this in a paper read at the
1983 Conference of the Australasian Association for Logic[8].

The logic KT, is an extension of both K5 and KD,. So Nagle’s and
Segerberg’s results entail that KT, has the efmp. But the result is easy
to see directly, since generated models for extensions of KT, have at
most one world (0, 0, 1, 0-incestuality is the condition that xRy only if
x =y).¢) '

There remains thus the question of KG® % % 1: Is there a normal
logic containing the ‘‘Brouwersche axiom™’, B, that fails to have the

finite model property? I do not know, and so I conclude the paper
with this query. (%)

University of Calgary Brian F. CHELLAS

(*) Tne extensions of KT, are interesting in their own right. Note that they are always
normal: for if A is a theorem so is 0 A by modus ponens and T.. By examining the
generated frames for KT,, moreover, one can see that its consistent proper extensions
are but two in number. One is K O L, also known as ABS or VERUM. It is determined
by the one-element frame in which the relation is empty. The other is KTT,, also known
as TRIV (since necessity is equated with truth). This logic is determined by the other
one-element frame, in which the relation is total.

(*) The results reported here were included in [2]. The research was supported by a
Leave Fellowship from the Social Sciences and Humanities Research Council of
Canada and by a Sabbatical Leave Research Grant from the University of Calgary, both
of which are gratefully acknowledged. Further subventions from these institutions
enabled me twice to travel to New Zealand during my sabbatical leave to work at the
University of Auckland. I wish especially to thank my host in Auckland, Professor
Krister Segerberg, for our many profitable discussions, and in particular for his
resolution of the efmp question for KD,..
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