DEDUCTION SYSTEMS AND VALUATION SPACES

Michael KATZ

§ 1.Introduction

This paper is a brief summary of two technical reports by the author
(Katz [1,2]), where detailed proofs of the various lemmas and
theorems given here, as well as some additionel concepts and results,
can be found. Priestley’s [3] representation theory for distributive
lattices is extended to generalized deduction systems satisfying the
structural pre-connective rules (as given in, e.g., Scott [4]) which are
common to all conventional deductive logics. A complete duality
theory is developed and some of the machinery built in the process is
then applied to the study of distributive lattices and generic structures
following the ideas of Simmons [5].

§ 2. Deduction Systems

Definition 2.1: The pair (¥, ) is a deduction system if + is a binary
relation on the collection P,(W) of finite subsets of the non-empty set
W, satisfying, forally €% and all T, A, ', A’ €P, (W), the following
reflexive, monotone and transitive rules:

[R] wEY
I'—A
M —
I', "=A, A

T, ATy, A

T
(1] '—A
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Here I' = A stands for ', A) €, T, ' for ' UT"" and  for {y}. The
rule [R] is said to be linear, or unconditional, or an axiom. The other
two read: if the deduction(s) above the line hold(s) so does the one
below the line.

Definition 2.2: A deduction algebra is a deduction system (W,+) in
which ¢ = © for all y, © €W s.t. YO and © 1.

From every deduction system (¥,+) a deduction algebra can be
obtained by factoring over the relation ~ defined for every ¢, © €W
by

Y~O iff Y0 & Oy ,

since it can be shown that ~ is an equivalence relation on ¥ and a
congruence w.r.t. — in the obvious sense.

The following are some conventional examples of deduction sys-
tems and algebras. Note that in each of these examples, as indeed in
general, the converse of a deduction is also a deduction.

Ex. 2.3: Let(¥,=) be a quasi-order. The relation - defined on P, (W)
by
I'—Aiff el IBEA. y<O
forms a deduction system (W,+). If (W,=<) is a partial order then
(¥, ) is a deduction algebra.
Ex. 2.4: Let (W*, A, V) be a distributive lattice (with corresponding
ordering <), and let W CW*. The relation + defined on P, (¥) by
TrA iff AT<VA

forms a deduction algebra (¥,+). Such deductions, called lattice
deductions, show how our deduction systems generalize the notion of
a distributive lattice.

In particular if W is a collection of sets then the relation — defined
on P,(¥) by

I'—A iff TS UA

forms a deduction which we shall call set-deduction.
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Ex.2.5: Let X<{0,1}" for some set W. The relation — defined on
P,(¥) by

FHA iff VxeEX(VyeT (x()=1) - IO €AX(O) = 1)

forms a deduction system (¥, ).

This deduction is equivalently defined as follows. For each y €W
let

i) = {x=X : x(y) = 1}.
Then for all T, A €P (¥)

[ A iff wgr W) U,i©) .

On the right side we have here a set-deduction on
§' = {i(p) : 9w} .

Whereas S' with its set-deduction is obviously a deduction algebra,

(W, +) will in general become a deduction algebra only after factoring
over the relation

Y ~0 iff VxeXx() = x(©) .

Ex.2.6: Let T be a theory based on a certain propositional or
predicate logic (classical, intuitionistic, modal or almost any other
logic we may wish to consider). Let W be a set of formulae in the
language of T. The relation + defined on P_(¥) by

I'-A iff A,

where I' ;A has its usual meaning, forms a deduction system (¥, ).
Obviously we shall be concerned with this kind of deduction, explici-
tly or implicitly, throughout this paper. A deduction algebra is
obtained from a deduction system of this type through the usual
procedure of constructing the appropriate Lindenbaum algebra.

Definition 2.7 : Let (¥, +) and (2,|+) be two deduction algebras and
let h be a map of ¥ into Q.

(1) h is said to be a homomorphism (of W into Q) if for every T,
A E€P, (W)
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I'~A - h()| —h(A)

where

h@) = {h(y) : yeT}
h(A) = {h(®) : 6 A}

(ii) h is said to be a--homomorphism (of ¥ into Q) if for every I,
A €P,(¥)

IHA - h(l) Hh(A)

with h(I') and h(A) as in (i) .

(iii) h is said to be an isomorphism (of W onto Q) if it is a
homomorphism, a--homomorphism and onto.

Note that if h is a--homomorphism then in particular it is 1-1. So if
in addition h is onto (and in particular if it is an isomorphism) then the
inverse h™': Q W is well-defined.

Clearly if h is an isomorphism of ¥ onto Q then h™ is an
isomorphism of Q onto ¥. So if such an isomorphism h exists we say
that W is isomorphic to Q (and Q is isomorphic to W), or simply that ¥
and Q are isomorphic. It is obvious that being isomorphic is an
equivalence relation on the class of deduction algebras.

Note that all three parts of the above definition are so formulated
that they (and hence the representation theorem and the dual cons-
tructions involved in it) can apply also to deduction systems which are
not algebras. However, in this case a+ -homomorphism is not
necessarily 1-1 and the isomorphism relation is not necessarily
symmetric.

§ 3. Valuation Spaces

Let X be a non-empty set and let S’ be a subset of P(X). Define a
binary relation < on X, and three additional subsets S¢, S, T of P(X) as
follows:

X<y iff VYES x€Y > yeEY

S4={YcX: :X\Y€ES}

5= Stusd

T is the topology on X for which S is an open subbase.
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Note that < is reflexive and transitive (i.e., a quasi-ordering on X),
and that it could equivalently be defined by

x=y iff VYeSlyeyY Sxey.

Definition 3.1: Let S' be a subset of P(X) for some non empty set X,
and define <, S%, S, T as above. The sequence (X, T, <, S) is said to
be a valuation space if

(i) (X,T)is compact,

(ii) = is anti-symmetric.

The following theorem whose proof is straightforward provides
some interesting properties of valuation spaces.

Theorem 3.2: If (X, T, <, S) is a valuation space then:

(1) (X, T) is a Stone space,

(2) (X,=) is a partial order,

(3) the elements of S are clopen in T,

(4) (a) the elements os S' are increasing, i.e., for all Y €S' and all
X, VEX

XEYAX=Sy->yEY

(b) the elements of S are decreasing, i.e., for all Y €S9 and all
X,y €X

XEYAy=x->yEY

(5) S is a =-separation set for X, i.e., whenever x,y €X and x £y
there is a subset Y of X s.t.

XEYES and yeX \YES? .

Definition 3.3: Let (X, T, <;, S;) and Xz, T, =5, S,) be two
valuation spaces and let f be a map of X, into X,.

(i) fis said to be s-continuous if for every Y < X,
YeS - f4Y)es
YESy- FYY)esd

(i) f is said to be s-open if for every YCX,
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YES - f(Y)ES
YesiAY)ess

(iii) f is said to be an s-homeomorphism if it is 1-1, onto, s-conti-
nuous and s-open.

It is clear again that if f is an s-homeomorphism (of X, onto X,) then
f~'is also an s-homeomoerphism (of X, onto X,). So if such an f exists
we say that X, is s-homeomorphic to X, (and X, is a s-homeomorphic to
X,), or simply that X; and X, are s-homeomorphic. Obviously being
s-homeomorphic is an equivalence relation on the class of valuation
spaces.

Lemma 3.4: Let (X;, Ty, <4, Sy) and (X;, T,, <,, S,) be two
valuation spaces and let f be a map of X, into X,

(1) If f is s-continuous then f is continuous.
(2) If fis 1-1 and s-open then f is open.
(3) If f is an s-homeomorphism then f is a homeomorphism.

Note that in fact s-continuity (etc.) is much stronger than continuity
(etc.), since ordinary continuity does not at all require that the inverse
image of a subbasic set is also subbasic.

Lemma 3.5: Let (X;, Ty, <;, Sy) and (X;, T,, <,, S,;) be two
valuation spaces and let f be a map of X, into X,.
(1) Iffis s-continuous then f is <-preserving, i.e., for all x, y X,
X<y - f(x) s, f(y)

(2) Iffis 1-1 and s-open then fis £-preserving (and £~ : f(X,) = X,
is <-preserving), i.e., for all x,y €X,

x££,y - f(x) £, f(y).
Equivalenty, for all x,y€X,
f(x)=<,f(y) - x=,y.

(3) If fis an s-homeomorphism then f is a <-isomorphism, i.e., for
all x,y€X,

x=1y < f(x) = f(y).
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Proof: For (1) suppose x =<,y and f(x) €Y for some Y €Si.
Then x €f~ ' (Y) €S since f is s-continuous. But elements of Si are
increasing, so y €f ' (Y), i.e., f(y) €Y. Thus by the definition of <,
f(x) =, f(y). _

For (2) suppose f(x)=<,f(y) and x €Y for some Y =S..
Then f(x) Ef(Y)ES;] since f is s-open. But elements of S are
increasing, so f(y)€f(Y), and since f is 1-1 y€Y. Thus by the
definition of <, x <.

Clearly (3) follows from (1) + (2) and so the proof is complete.

§ 4. Dual constructions

Definition 4.1 : The dual algebra of the valuation space (X, T, <, S) is
the set-deduction algebra whose domain is S'.

Now, denote by (2, ) (or just by 2) the deduction algebra whose
domain is 2 = {0,1} and whose deduction is defined by

'—A iff Iﬁ}lél" Y= éné)h o
where < is the natural ordering on 2 (and min and max are taken w.r.t.
this <), and where for the empty set ¢ we let

ming = 1 and max ¢ = 0.

Definition 4.2: A valuation of a deduction algebra (¥, ) is a homo-
morphism of W into 2.

Definition 4.3: Let X be the collection of valuations of the deduction
algebra (¥, ), and let ¢ €W. The truth set for v is

i) = {xEX : x@) = 1}
and the collection of truth-sets for W is
§' = {i(y) : y=W¥}.

Definition 4.4: The dual space of the deduction algebra (¥, ) is the
sequence (X, T, =, S), where X is the collection of valuations of W,
and T, =, S are defined as in the previous section by means of the
collection S' of truth sets for W.
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Lemme 4.5: Let T * be the product topology on 2¥, S * be the natural
subbase of T*, and for each x, y 2" set (where < is the natural
ordering on 2):

x=*y iff Yy EW. x(y)=<y).

Then (2¥, T*, <*, S*) is a valuation space.

Proof: The lemma follows from the fact that

() (% T*) is compact,
(2) (2% =%) is a partial order,
3) i = g ] 8w
where
S* = {i*(y) : =W}
S* = {d*(y) :peEW} = {Yc2¥ :2¥ \YeSsH}
and for every y €W

i*() = {x€2¥ : x@y) = 1}
d*(y) = {x€2¥ : x(y) = 0},
4) x<*yiff VYES*  xeY -5 yeY.

for all x,y =2%.

Lemma 4.6: Let (X, T, =, S) be a valuation space, and let X, be a
subset of X closed in (X, T). (X;, Ty, =<, S;) is a valuation space,
where Ty, =,, S; are the restrictions to X, of T, <, S.

Proof: The lemma follows from the fact that
(1) (X4, T) is compact,
2) (X4, =4) is a partial order,
(3) S, is a subbase for T, and
8= 8 Usd
where
Si = {YNX, : YES§'}
S!I = {Y ﬂxl :YESd} = {YQXI :XI\YESE} ’
4 x=<,yiff VYeS . x€Y > yEY

for all x, y €X,.
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Theorem 4.7: The dual space of a deduction algebra is a valuation
space.

Proof: Check that the topology T in Definition 4.4 is in fact the
restriction to X of the product topology T * on 2* and that (X, T) is
closed in (2%, T*). Thus the theorem follows from the last two
lemmas.

§ 5. Duality Theory

A complete duality theory for deduction algebras and valuation
spaces is developed in this section starting with the representation
theorem for deduction algebras. Theorems 5.1 and 5.5 are parts of the
representation theorem (5.6), but we bring them separately because of
their logical significance.

Theorem 5.1 (Correctness): For every deduction algebra (W, ) the
map i : W — S’ of Definition 4.3 is a homomorphism.
Proof: It is obvious that for every ', A €P,(¥)
I'—A— N i(y) U ie).
wer Y - ©)
Definition 5.2: A prime-filter in the deduction algebra (W,+) is a
subset @ of ¥ s.t. forall T, AP, (¥) if [ —A then

either ' @
or AdW @

The set W @ is then said to be a prime-ideal of (¥, ).

Lemma 5.3: If (¥, ) is a deduction algebra and ', A EP,_ (W) are s.t.
IH A, then there is a prime-filter ® of W s.t.

rco
ACY D |
Proof: (We assume the axiom of choice and hence impose no

restrictions on the size of ¥).
Note first that by [R] and [M] IHA implies
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@ TNA=¢
b)) T'SET AA'CA STHA'.

Now let {,}, 5 be an enumeration of W (where «,  denote ordinals)
and define transfinite sequences I', and A, (for a <p) as follows:

g)r():r and A0=A
() Ly =T, U{y,} and A,,, =A
if (*) for every I'', A’ €P_(¥)
'S, U{y,} AA'CA, ST = A’
() Iy, =TandA,., = A U{y}
iff (*) of (ii) is not the case

vy I, = U T, and A, = U A
de y<k ' : y<ih

Y

if A is a limit ordinal.

That for every a <P and every I'', A’ €P,(¥) we now have
(b), 'S, AN CA, »T' A’

is provable by induction, using (b) above for the 0-stage, [M] + [T for
the successor stages and the definitions of I, and A, for the limit
stages. Now let @ = T, '

Then by (a) and (i) - (ivV)¥ ~® = 4& by (b), ® is a prime filter of ¥,
and by (i) — (iv) again, ® satisfies the assertion of the lemma.

Lemma 5.4: If (W, ) is a deduction algebra then for each prime-filter
@ of W there is a valuation x of ¥, and for each valuation x of W there
is a prime-filter @ of W, s.t. for all y EW

* x(W) = 1iff yed .

Proof: If ® is a prime-filter of W define x : W — 2 by * and check that
it is a valuation of W. If x is a valuation of W define a subset ® of W
by* and check that it is a prime-filter of W.

Theorem 5.5 (Completeness): For every deduction algebra (W, ) the
map i : ¥ — S' of Definition 4.3 is a-thomomorphism.

Proof: LetT', A €P (W) be s.t. [HA and let ® be the prime-filter of W
satisfying lemma 5.3 for these I' and A. Then let x be the valuation on
W defined from this prime-filter ® by * of Lemma 5.4. It is obvious
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that

Ypel.x(W) =1
VOEAXO®) =0

and thus we have

.
ver ‘W< g

gA i©)
Theorem 5.6 (Representation): Every deduction algebra is isomor-

phic to a set-deduction algebra, namely to the dual algebra of its dual
space.

Proof: If (W,+) is a deduction algebra then the map i: ¥ —S! of
Definition 4.3 is the required isomorphism.

This follows immediately from Theorems 5.1 and 5.5, together with
the obvious fact that i is onto by deninitionm

We now turn to the duality theorem for valuation spaces.

Theorem 5.7: Every valuation space is s-homeomorphic (hence, in
particular, homeomorphic and order-isomorphic) to the dual space of
its dual algebra.

Proof: Let(X;, T,, <5, S,) be the dual space of the dual algebra of the
valuation space (X;, Ty, =i, S;), and define a map f: X, - X, by

fx)(Y) =1 iff xeY

for each x €X; and each Y €85]. It is easy to check that for any x €X,
f(x) is a valuation of S{, so that it is indeed an element of X,. The proof
that f is s-continuous, s-open, onto and 1-1 is in Katz [1].

In the same paper the reader can find detailed proofs of the
remaining results of this section, dealing with duality for morphisms.
In the sequel -

X, is the dual space of the deduction algebra W,
X, is the dual space of the deduction algebra Q,
h is a map of W into Q,
f is a map of X, into X;.

(We note that for the following results to hold Q@ must be a
deduction algebra, while W may be a deduction system).
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Definition 5.8: If h and f are s.t. for all x€X, and all y €W

f)) = x(h(y))

then h said to be dual to f, f is said to be dual to h, and (h, f) is said to
be a dual pair.

It is easy to prove that if a dual to f (or to h) exists then it is unique.
Thus we may speak of the dual of f (or h), and deduce that the dual of
the dual of f (of h) is f itself (h itself). Conditions for the existence of
duals are given in the following duality theorem for morphisms.

Theorem 5.9 (i) If his a homomorphism then there is a dual f to h. (ii)
If f is s-continuous then there is a dual h to f. (iii) If (h, f) is a dual pair
then h is a homomorphism and f is s-continuous.

In the next theorem we provide some connections between various
properties of the components of a dual pair.

Theorem 5.10: If (h,f) is a dual pair then (i) f is onto iff h is a
F~-homomorphism. (ii) f is <-preserving if h is onto. (iii) h is onto if f is
1-1 and s-open. (iv) f is s-open if h and f are onto.

Note that (iii) might be considered a partial converse of (ii) since if f
is 1-1 and s-open then in particular it is =-preserving. We conclude
with an important corollary which follows immediately from the last
two theorems.

Corollary 5.11: Let (h,f) be a dual pair. Then h is an isomorphism iff f
is an s-homeomorphism.

§ 6 The Case of a Distributive Lattice

Let (W, A, V) be a distributive lattice with a unit 1 and a zero
element 0 s.t. 0= 1, and let - be the lattice deduction of Example 2.4.
If we exclude the trivial valuations (which map all elements of W on 0
or all elements of W on 1) it is easy to see that the valuations of (¥, )
are exactly the 0,1-preserving lattice homomorphisms of (W, A, V)
onto 2, where the natural lattice operations are defined on 2. It is also
easy to see that if on the set X of valuations of ¥ we define S' (and S%)
as in Definition 4.3 then, since W is closed under A and V, each of Si
and S° is closed under finite unions and finite intersections.
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Now for a given valuation space (X, T, <, S) denote by C the set of
clopen elements of T, by I the set of increasing subsets of X (w.r.t. =),
and by D the set of decreasing subsets of X (w.r.t. <). That is

I = {YSX: Vx,yeX.yEY Ay=x->Xx€EY}
D= {YSX: Vx,yeX.yEY Ax<y->XxEY}.

Theorem 6.1: Let (¥, A, V), 1, X, S', S be as in the first paragraph of
this section and let (X, T, <, S) be the valuation space obtained from
X and S' in the usual way (i.e., the dual space of (W, +-)). Define C, I, D
as above for this space. Then:

§$ =CnI
§* = CND,

The proof of this theorem (Katz [1]) follows, more or less, the
relevant steps in Priestley’s [3] proof of the representation theorem for
distributive lattices.

It follows that for spaces corresponding to distributive lattices
instead of starting with S' and constructing T and < from it, we can
start with T and < and define S' to be the collection of clopen
increasing subsets. Thus Priestley’s duality theory for distributive
lattices and what she calls ‘compact totally-order-disconnected spa-
ces’ (X, T,=) is a special case of our duality theory for deduction
algebras and valuation spaces. (And in this special case we can also
prove a full converse of Theorem 5.10 (ii) using the closure of S' (and
S%) under finite unions and intersections). Furthermore the duality
theory for Boolean algebras and Stone spaces is the special case of
Priestley’s theory where < reduces to equality.

We now turn to another type of deduction which can be defined on a
distributive lattice.

Definition 6.2 : Let (¥, A, V) be a distributive lattice with (0 and) 1.
The complementation deduction on W is the binary relation |+~
defined on P, (W) by

['|+—A iff (AD)* S (VA)*
where for y €W
Y = {6¥: yVve = 1}
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Theorem 6.3: Let (W, A, V) and | - be as above, let i~ be the lattice
deduction an W, and let (X, T,<,S) be the dual space of (W,+).
Denote by uX the collection of elements of X which are minimal w.r.t.
=. Then we have:

(i) VxeXy=uX.y=x

(i) VxEX(xEpX« Yy eW. x@") = {1} - x(p) = 0)
(iii) Y, 0 EWED " « VxeEpuX. . x() = 0 5x(O) = 1)
(iv) Yy, O EW(p| O < YxepX. x(}) = x(O)).

This powerful theorem is the amalgamation of several results
proved in Simmons [3].

Corollary 6.4: Let W and | - be as in Definition 6.2. Then (¥, } F)isa
deduction system.

Proof: From Theorem 6.3 (iv) we deduce that for all ', A €P, (W)
[|~A iff YxeuX.x(AT) = x(VA) .
Hence, since deduction valuations preserve lattice operations,

* H i =

(*) [|-A iff YxepX. wménr x(p) = emg‘(A x(©)

and thus the complementation deduction |+ is a special case of
Example 2.5 above.

Now that we know that (¥, | ) is a deduction system the natural
question to ask is what is the dual space of (W, | ). This question is
sound, in view of the remarks in the last paragraph of §2. Only later in
this section, when we apply our duality theorems for morphisms, we
shall have to make sure that one of the systems involved is an algebra.

Theorem 6.5: Let (W, A, V), |+, and (X, T,=, S) be as in Theorem
6.3. The dual space of (¥, | ) is the sequence (CAuX), T1, =<1, Sy),
where Ch(uX) is the closure in (X, T) of the set uX of minimal
elements of X w.r.t. <, and Ty, <,, S, are the restrictions of T, <, S to
ChvuX) .

Proof: By Lemmas 4.5 and 4.6 above it is enough to show that
CA (uX) coincides with the collection Y of valuations of (W, | ).
From (*) in the proof of Corollary 6.4 we deduce that uX <Y, and



DEDUCTION SYSTEMS AND VALUATION SPACES 171

hence, since Y is closed,

(%) CLEXDEY -

This, together with (*) again, implies

o '|—=A iff VxeChpX). min x(P)< max x(O
(***) | (u)wEF () eeA()

forany I', A €P,(W¥). Thus (¥, | ) is isomorphic to the dual system of
CX (uX). The dual system of CA (uX), being a set-deduction system
(whose domain is S}), is a deduction algebra. This allows us to use
Corollary 5.11, to deduce that the dual space Y * of S} is s-homeomor-
phic to the dual space Y of (W, |+-). On the other hand, by the duality
theorem for valuation spaces, Y* is s-homeomorphic to Ch(uX). Since
being s-homeomorphic is an equivalence relation (i.e., in particular it
is transitive) we conclude that Y is s-homeomorphic to Ci(uX).
Together with (**) this implies

ChuX) = Y

as required.
The diagram below is intended to clarify the main points of this proof.

The lines connecting objects in this diagram read as follows
d; : Y is the dual space of (W, )

d; : Y*is the dual space of S}

d; : S is the dual algebra of Ch(uX)

1 : (¥,|r)is isomorphic to S (by (***))

$1 Y is s-homeomorphic to Y * (by d,,d,, i)

$2 : Y*is s-homeomorphic to CA(uX) (by d,,d,)
s @ Y is s-homeomorphic to CA(uX) (by s, s,)
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Let us now use the relation ~ (see the remarks following Definition
2.2) to obtain a deduction algebra (¥°, |~) from the system (W, |+).
Using Theorem 6.3 we can show that ~ is a congruence w.r.t. the
lattice operations on W and thus lattice operations and a lattice
deduction +— can be defined on the domain W° of the factor algebra
(¥°, | ) in the obvious way. The following theorem shows that on this
factor algebra the complementation deduction coincides with the
lattice deduction.

Theorem 6.6: Let (W%, |+) be the factor algebra of (W,|+) and let
be the lattice deduction on W°. Then

(i) for all y,0 €W°
|0 iff YO .

(ii) uX°is dense in (X°, T%, where (X°, T?, <%, S”) is the dual space of
(w0, ).

Proof: (i) That y +© implies y | —© if obvious. To prve the converse
let y|+©, which means y*<©*. Therefor y* NO* = y*. But this
implies for any ¢ €W°:

pVy=1
iff

eVy =1 and p VO = 1
iff

@ V) A@VO) = 1
iff

pV@pAO) = 1.

So we have (y A©)" = y*, Which implies Y A© = 1 since we are
working here within W°. (Note that all the operations and relations in
this proof, i.e., -, |-, ¥, V, A, 1, <, are those relating to ¥°). Now we
conclude that ¢ <© which is the same as Y 6.

(ii) It follows from (i) that the dual spaces of (¥°,+) and (W°,|+)
coincide. But by Theorem 6.5 the dual space of (W, +) is (CAuX°),
T9, <9, S9), where T, <9, S are the restrictions of T?, <%, S° to
CMuX°). So CA(uX®) = X° (and TY = T°, < = =, 8¢ = §9).

In the proof of (ii) we used Theorem 6.5 whose own proof rests on
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Theorem 6.3 (iv), via Corollary 6.4. We can provide another, slightly
less immediate, proof of (ii), applying directly Theorem 6.3 (iv)
instead of Theorem 6.5.

For pX° to be dense in (X°, T°) 1t must intersect every non-empty
basic subset § of (X°, T%. Such a subset would be of the form

B={xeX x(yy) =...= x(p,) = 1 and
X©) = ... =x©,) = 0},
where m,n€w and Yq,... Py, 04,...,0, €W, But since W° is

closed under its lattice operations A, V, we can write
B={xeX’ x(y) =1 and x(©) = 0},
where

V=P Ay
0=0,V...VO, .

(We may identify sub-basic sets with those f’s where either 1 is the
unit of W° or © is the zero of WY).

Now, if § is to be non-empty it must be the case that y+#©. But then
by (i) ¥ |#© and by Theorem 6.3 (iv)

JyepX® . y(p) =1 and y(©) = 0.

Corollary 6.7: The space (CMuX),T,,<,,S,) of Theorem 6.5 is
s-homeomorphic to the space (X°, T°, <°, 8°) of Theorem 6.6.

Proof: This corollary follows from Corollary 5.11 using the fact that
(¥, |+) is isomrophic to (¥, | -) which by the last theorem coincides
with (¥°, ). Note that (P, |+), which plays here the role of (Q, )
of Corollary 5.11 is a deduction algebra and not just a deduction
system.

Corollary 6.8: The spaces (uX, T,) and (uX°, T9) obtained from those
in the previous corollary by restricting T, and T® to pX and nXx°
respectively, are homeomorphic.

Proof: The s-homeomorphism f of the previous corollary is the
required homeomorphism for this corollary. To see that this is so
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check that

xeuX® - f(x) EpuX
xEpX »f1(x) EpuX°.

We conclude by briefly noting how Simmons [5] applied the
machinery described in this section to the study of generic structures.
Detailed proofs of the claims made here can also be found in Katz [2].

Let K be a theory in a first-order language L and let V be the set of
sentences of L whose prenex normal forms contain only universal
quantifiers. Denote by | V| the lattice ¥ mod K, and by |y| the
element of | V| corresponding to the sentence y of V. The dual space
of | V| with the lattice deduction is as usual (X, T, <, S).

Denote by Gk and Fg the classes of g-generic and f-generic
structures for K and by Sk the class of submodels of K (i.e., the
models of KN V). Gk and Fg are both included in S¢. Now define a
map k : S —» X by

k(A)=x ,

where A is a submodel of K and x is the element of X such that for all
pev

x(p]) = 1 iff Ap.

Simmons shows that k maps Gg onto pX (the set of minimal
elements of X w.r.t. <) and Fg onto a dense subset of uX (dense w.r.t.
to the restriction of T to uX). In addition, for both Gk and Fy the map
k is 1-1 on equivalence classes modulo the relation of elementary
equivalence. Thus the number of such classes for Fi is smaller than or
equal to the number of these classes for Gg.

Simmons also shows that uX is a Gysubset of X. From this it follows
that if the language L is countable but there are uncountabley many
equivalence classes of Gx modulo elementary equivalence then there
are exactly 2“such classes. The reason is that if L is countable than so
is ¥V and hence so is also the subbase S of (X, T) since S' is isomorphic
to V. Thus (X, T) is second countable and we already know that it is
compact and Hausdorff. This implies that for every Gysubset Y of X,
if Y denotes the cardinality of Y then

Y>u-Y =2v
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Finally we note that a complementation deduction |~ can be
defined on | V| as in Definition 6.2 above and then, using the relation ~
corresponding to |-, a factor lattice | ¥|° can be obtained from | V|.
We can now apply Corollary 6.8 to replace uX by pX° (where X° is the

dual space of | ¥|°) in all the results mentioned in the preceding two
paragraphs.

School of Education, Haifa University Michael KATZ
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