THE COMPLETENESS OF KW AND K1.1

M.J. CRESSWELL

In this paper I give fairly simple completeness proofs for two
normal modal logics(*), KW and K1.1.
KW is K with the addition of

W L(Lp op)>oLp
and K1.1 is K with the addition of
J1 L(L{p oLp)>p)>p
Both these logics contain the theorem
4 ILp>OLLp
and K 1.1 contains, in addition, the theorem(*)
T Lp>op.

Thus KW is an extension of K4 and K1.1 is an extension of S4.
These systems have been extensively discussed by Boolos, in [2], and
others, who interpret L in KW to mean ‘it is provable that’ and in K1.1
to mean ‘it is provable that and true that’. KW is characterized by
strict finite partial orderings, and K1.1 by finite partial orderings. It is
easy to see that W and J1 are valid on these classes of frames
respectively, but what completeness proofs exist are somewhat
complicated. Segerberg in [7] has completeness proofs via filtrations,

('} This paper assumes familiarity with the standard terminology of modal logic. In
particular I follow [3], but see also [2] and [7].

(*) For the derivation of 4 in KW see [2, p. 20]. Boolos calls this system G after
Godel. Segerberg [7, p. 86] calls it K4W because he treats 4 as an axiom. For the
derivation of T and 4 in K1.1 see [1]. Boolos and Segerberg call J1, Grz and K1.1,
S4Grz. The names J1 and K1.1 are due to Sobocinski, see [6, p. 266].
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and these proofs are reproduced by Boolos in Chapters 7 and 13 of [2].
Gabbay in [5, pp. 124-134] has proofs by the method of ‘selective
filtration’. The only proof I am aware of which does not use filtrations
is one for KW that Boolos presents in Chapter 8 of [2], which is based
on truth trees. The aim of the present paper is to use a technique
developed in [4], involving a special sort of finite canonical model, to
give simple completeness proofs for KW and K 1.1, without appealing
to filtrations. First take the case of KW,

Given a finite set P of propositional variables and a natural number
m, we define the P/m/KW-model ./ as follows. Let @, be the set of all
wif made up from the variables in P and having modal degree no
higher than m. Then ./ is the pair (#,V) in which # = (W,R) is
defined as follows:

W is the class of all maximal KW-consistent (%) sets of wff from ®™.
(By principles of K, W is obviously finite.)

For any x, ye W, we define xRy iff

(i) For every Lagx, both Lo and « are in y
and (i) There is some f such that L3 ¢x and LBey.

Finally xe V(p), for any peP, iff pex.

THEOREM 1 Where # is the P/m/KW-model, then for any o e ®,, and
xeW,

MEa aex

PROOF:

The theorem obviously holds for the variables in P and is preserved
by the truth functors. So consider some Lae®,,.

(a) Suppose La e x. Then for any y such that xRy, by condition (i) in
the definition of R, we have aey. So, by the induction hypothesis,
M | a. Since this is so for every y such that xRy, we have # = La.

(b) Suppose Lo ¢ x. We want to shew that there is some y such that
a¢y and xRy. Suppose there were no such y. This would mean that,
where I' is the set {y:Lyex} U {Ly:Lyex}, then I U{~0,La} is

(*} This means that a subset x of @, is in W iff (i) for any a.¢ @, either a or ~a £x, and
(i) there is no finite subset {a,,...,0,} of x such that ~a, A ... Aa,) is a theorem of KW.
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inconsistent. (For if it were consistent then any maximal consistent
extension y would satisfy conditions (i) and (ii) for xRy.)

But if I' U{~a,La} is inconsistent then there are some Lf,,...,Lf,,
Lyy,...,Ly, such that {p,....0,,.Ly1,....Ly,,~0,La} is inconsistent in
KW.

So
ew B1 A AB, ALy, A... ALy) D (Lo Da)
S0 ew LB1 A AR, ALy AL ALy, D L(La Da)

50, since KW contains 4,

ew P ALLALR, ALy, AL ALy) D L(La D)
so, by W,

ew (L1 Ao ALB, ALyy A... ALy)  La

but LB,,...,LB,,LY1,...,Ly, are all in x. So La € x, which contradicts the
fact that Lo ¢ x.
This proves the theorem.

We have now simply to shew that # is a strict partial ordering, since
we know that W is finite. This means we must shew that R is transitive
and irreflexive. Condition (ii) ensures that R is irreflexive, since it
requires a B such that LB¢x and LBey.

For transitivity, it is easy to see that if xRy and yRz, then if Laex,
Lo ey and so La and a.£z. So condition (i) holds. And if there is some
LB e®y, such that LB¢x and LB ey, then, by condition (i), LBez, and
so condition (ii) holds.

THEOREM 2 KW is complete for strict finite partial orderings.

PROOF:

Let a be any non-theorem of KW. Then, where m is the modal
degree of o and P the set of variables in o, by Theorem 1, o fails in
some world in the P/m/KW-model .#. But the frame of # is a finite
strict partial ordering.

For K1.1 the proof is analogous except that we use the P/m+1/K1.1
model when aiming to falsify a given non-theorem a of degree m. This
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means that W is the set of all maximal K1.1-consistent sets x of wff
from®, . ,. As before V(p), for p e P, is defined so that xe V(p) iff pe x.
The main difference is the definition of R:

xRy iff either x=y or xZy,
where xZy iff
(i) Forall Lag®,,,, if Laex then Laey, and
(i) There is some LB e ®,, such that LB ¢x and fex and
LB oLB)ey.

THEOREM 3 If ae®,, then # K a iffaex
(Note that the theorem is stated for a e ®,,, not @, . ,.)

PROOF:

The proof is by induction on the construction of o. The theorem
obviously holds for the variables and is preserved by the truth
functors. So consider Lo d,,.

(a) Suppose Laex. Then, for any y such that xRy, by condition (i)
in the definition of R, Laey. But K1.1 contains T and so aey. So by
induction hypothesis # 5 a. Since this is so for every y such that xRy
then # 5 La.

(b) Suppose Lo.¢x. Then, if agx, M=o and xRx, and so # - La.
If Lo ¢ x and a € x, then we shew that there is some y such that x2y and
agy. Let I'={LB :LBex}. We shew that T U{~a,L(a DLa)} is
K1.1-consistent; for if so any maximal consistent extension y will
satisfy conditions (i) and (ii) for x£y, and will have o ¢ y.

So suppose I' U{~u,L(e ©La)} is not K1.1-consistent. Then, for
some LB;,....LB,ex we have

g (LB1 Ao ALB,) D (L(a DLa) Da)
So, since K1.1 contains S4,

ey (LB AL ALB,) S L(L(o DLa) Da)
and so, by J1 and S4

i LB AL ALB) D La
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But LPy4,....LB, ex and so La ex, which contradicts the assumption
that it is not. So there is some y such thatxZy anda¢y. So # |5 o and
xRy, so # = La. ‘

This proves Theorem 3.

It is easy to see that & is a finite partial ordering. For W is finite and
R can be seen to be reflexive, transitive and antisymmetrical:
Reflexiveness obtains by definition ; for transitivity, if either x =y or
y =z the result is trivial, so suppose xXy and yXz. (i) If Laex then
Laey and so Lagz. (ii) If there is some L3 e ®,, such that LB ¢x and
Bex and L(B>LB)ey, then, by (i), LB >LP)ez. So xZz. For
antisymmetry, if xZy, then there is some Lfg¢x, Bex and
LB oLP)ey; so if yZx then LB DLP)ex and so fp DL ex, contra-
dicting the consistency of x. So, if xRy and yRx, we must have x = y.

The completeness of K1.1 then follows as for KW.
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