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An axiom is independent if it cannot be derived from the other
axioms. Such a definition is perfectly in order for systems that do not
employ axiom schemata. For those that do employ such schemata
another definition is advisable if it is to be shown that a particular
schema is, in some sense, indispensable. The system P, originally due
to .ukasiewicz, which I consider below has proved to be a popular
one in logic texts. (') Given in terms of axiom schemata rather than as
three axioms plus substitution rule I show that each axiom can be
proved from the other axioms. Thus in terms of the first definition
given none of the axioms of P is independent. This proof is the main
point of this paper.

Careful definitions of the independence of axiom schemata are
sometimes given in logic texts but often the reader is expected to
construct his own definition from that given in the text for the
independence of axioms.(’) At worst, however, is the conflation of
the two as exemplified by such a text as Copi’s Symbolic Logic.(*) His

(') In its schematic formulation it occurs in A. CHURCH, Introduction to Mathemati-
cal Logic, Princeton 1956, p. 149; B. MATES, Elementary Logic, Oxford 1965, p. 156;
J.N. CrossLey, What Is Mathematical Logic?, Oxford, 1972, p. 19; G. HUNTER,
Metalogic, Berkely, 1971, p. 72. There are of course many other texts that use this
system.

(*) None of the books in footnote 1 defines independence of axiom schemata though
each employs schematic formulations of P and all but Crossley give definitions for the
independence of axioms! A text which does give a definition, coincident with that given
in this paper, is E. MENDELSON, Introduction to Mathematical Logic, New York 1963,
p. 38. The text does not use P.

(*) 1. Copr, Symbolic Logic, New York, 4th ed. 1973. The definition is given on page
182. The proof of independence follows immediately. Copi seems unaware that there is
any discrepancy between his definition and his proof caused by his referring to his
axiom schemata as axioms.

For correcting errors in the typescript I should like to thank my student Neil Marshal.
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system R.S. is an axiom schemata formulation of the propositional
calculus which contains the definition of independence given above
which is only suitable for those systems employing axioms plus
substitution rule. The fault in Copi’s case is that the term ‘axiom’ is
used not only to denote both the true axioms of the system R.S. but
also the schemata. The proof set out below demonstrates the neces-
sity for distinguishing between the independence of axioms and the
independence of axiom schemata. For in the case of the system P it is
well known that the axiom schemata are independent i.e. at least one
instance of an axiom schema is not provable from axioms which are
instances of the other two schema. What is new is that no axiom of the
system is independent.

Further questions can now be considered. Are there any systems
formulated in terms of axiom schemata in which some or all of the
axioms are independent ? Is it possible to formulate a set of schemata
in which each axiom is independent ? The answers will have to await
further investigation.

The system P of propositional calculus contains an infinite list of
propositional variables and the connectives ‘~’ and ‘>’, The usual
recursive definitions of wff, proof and theorem are assumed. The
axioms of P are

A D(B>2A)
(A>B>C) >2((A>B) 2(A>0)
(~A>~B) o(B>oA)

where A, B and C are any wffs of P. The only rule is modus ponens
(m.p.). There are thus an infinite number of axioms. Each proves to
be provable from the others.

The proof utilises in each case another instance of the schema from
that instance whose proof is sought, making essential use of the fact
that ~~A > A and A © ~~A are both provable for any wff A. To
prove any instance of A > (B 2>A) we use ~~A > (B>~~A); to
prove any instance of (A o (B =C)) = ((A 2B) > (A oC)) we use
(~~A>(B>2(Q) > (~~AD>B) > (~~A () and
(A>Bo>~~C) 2 ((A>B) o (A>~~()); to prove any instance
of (~A>~B)>(B>A)) we use (~~~A>D~~~B)>
{~~B > ~~A). Certain particular instances will need specific proofs
to avoid circularity : these will be dealt with as we proceed. The proof
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begins with the standard proofs of several lemmata which are needed
throughout the subsequent proof: transitivity, transposition, identity
and the double negation rules. They are included since the reader can
check that no circularity has been made in the proofs — a constant
danger given that the lemmata are used so often and these lemmata
themselves use many instances of the axioms.

Transitivity (trans)

1. (B2C) 2 (A 2 (B5C) o ((A>B) > (A>C) o (B>C)
> (A 5 (B>C)) 2 ((B>C) S ((ASB) > (A >C))) Axiom'2

2. (A>(B>2C) 2((A>B) > (A>(C)) Axiom 2

3. (AoBo2C)2((A>2B) 2(A2(0) o(B2C) o (A o
(B>(C)) o((A>B) o(A>())) Axiom I

4. BoCO)2(A>2B2C) 2((A>2B) 2 (A>2C) 2.3 m.p.

5. (Bo2C) 2 (A>(B=2(C) 2(B=>C) o ((A>B) 2 (A>2Q)
1,4 m.p.

6. (BoC) oA >(B>C)) Axiom |

7. (BoC)=>((A>B) o(A>() 5,6 m.p.

Therefore, if B >C and - A B then — A ©>C by m.p. on 7 twice.
The only axioms used in this proof are those on lines 1,2, 3 and 6.
Whenever transitivity is used in the proof of the non-independence of
an axiom, inspection of the A, B and C will reveal that no surreptitious
use is made of the particular axiom the non-independence of which is
being proved.

Transposition (transp)

Suppose 8. A o (B =C)
9. (A>(B>20C) o(A>B) o(A>(C)) Axiom?2
10. (A2B) 2 (A>C) 8,9 m.p.
11. (A>B) 2(A>2C)) o(B 2 ((A>B) o (A>()) Axiom |
12. B o ((A>B) o (A>C)) 10,11 m.p.
13. B>((A>B) 2 (A>C)) >((B>(A>B)) (B 2 (ADC))
Axiom 2
14. (B o(A>B)) o(B o(A>C)) 12,13 m.p.
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15. B o (A>B) Axiom |
16. B >(A>C) 14,15 m.p.

Therefore, if —A (B >C) then B D (A>C). The only axioms
used in this proof are those on lines 9, 11, 13 and 15. Whenever
transposition is used, inspection of the proof will again reveal no
circularity.

Identity (id)

17. (A 2 ((ADA) D A)) > ((A D(ADA)) > (ADA)) Axiom 2
18. A>((A>A) > A) Axiom 1

19. (A > (ADA)) D(ADA) 17,18 m.p.

20, A oD (A>A) Axiom 1

21. AoA 19,20 m.p.

The only axioms used in this proof are those on lines 17, 18 and 20.
Whenever identity is used in the proof of the non-independence of an
axiom, inspection of the A will reveal that no surreptitious use is made
of that particular axiom in the identity proff.

Double negation cancellation (dnc)

22, (~~~~A D~~A) D(~A D ~~~A) Axiom 3

23. (~~~~A D ~~A) D (~A D~~~A)) D(~~A O
((~~~~A D ~~A) D(~AD~~~A)) Axiom I

24, ~~A D ((~~~~A D~~A)D(~A D ~~~A)) 22,23 m.p.

25. (~~A S((~~~~A D ~~A) D (~A D ~~~A)) S ((~~A
(~~~~A D ~~A)) D(~~A D(~A > ~~~A))) Axiom 2

26. (~~A D (~~~~A D ~~A)) D(~~A D(~A > ~~~AY)
24,25 m.p.

27. ~~A D(~~~~A D ~~A) Axiom 1

28, ~~A D (~A D ~~~A) 26,27 m.p.

29. (~A D ~~~A) S5 (~~A D A) Axiom 3

30. ~~A D(~~A D A) 28,29 trans

3l. (~~A D (~~A D A) D((~~A D ~~A) D(~~A > A))
Axiom 2
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33. (~~A >o~~A) > (~~A DA 30,31 m.p.
34, (~~A D>~~A) id
35. (~~A D A) 33,34 m.p.

The only axioms used in this proof are those on lines 22, 23, 25, 27,
29, 31 and those, with appropriate A, B and C that occur in the proofs
of trans and id. In this proof the instance of axiom schema 3 at line 29
will cause different proofs to be given for the non-independence of
axioms of the form (~A > ~B) D (B 2 A) depending on whether
B = ~~A.

Double negation introduction (dni)
A similar proof would give instead of 35, mutatis mutandis

36, ~~~A D ~A
37. (~~~A D ~A) D (A D ~~A) Axiom3
38. AD~~A 36,37 m.p.

By using these lemmata we are now in a position to show that any
axiom of the form of axiom schema 1 may be proved from the other
axioms. Each time a lemma is used the reader may check that the
axiom under consideration does not in fact occur in that lemma.

Proof that any axiom of the form A = (B > A) can be proved from the
other axioms

39. A > ~~A (dni)

40. ~~A (B o ~~A) Axiom I

41. A > (B o> ~~A) 39,40 trans

42, ~~A DA (dnc)

43, (~~AD>A)> (B o(~~A 2 A)) Axiom |

44. B o (~~A D A) 42,43 m.p.

45. B o(~~A D A) >(B o~~A) 2 (B>2A)) Axiom 2
46. (B > ~~A) > (BDA) 44,45 m.p.

47. A > (B>A) 41,46 trans
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Proof that any axiom of the Sform
(A 2 (B >2C)) =((A>=B) o (A>Q)) can be proved from the other
axioms

First assume that B is not the same wif. as ~~C.

48. C o ~~C (dmi)

49 (Co~~C)2(B>2(C o ~~(C)) Axiom |

50. Bo(C>~~C) 48,49 m.p.

5. Bo>(C2>2~~C) 2((B>C)>(B > ~~C)) Axiom 2

52.B=2C) > (B o ~~C) 50.51 m.p.

33.(B2C)>2Bo2~~C)>2(A((B>2C) 2B 2>~~Q))
Axiom 1

54. A>(Bo2C) 2B o~~C) 52,53 m.p.

5. (A>2((Bo2C) 2B o>~~0)) > ((A>(B>2C) o
(A>2(B >~~C))) Axiom 2

56. (A > (B>C)) > (A > (B > ~~C)) 54,55 m.p.

57. (A>(B >~~C)) oD((A>B) (A o> ~~(C)) Axiom 2

58. (A>(B>2C) 2((A>B) (A o2 ~~(C)) trans, 56,57

59. ~~C o C (dnc) [See the paragraph following this proof.]

60. (~~C>2C)>(A>(~~C >20C)) Axiom |

6. Ao>(~~C =C) 59,60 m.p.

62. (AD(~~C2(C) oA >2~~C)>(A>(C) Axiom 2
[Note B = ~~C(C]

63. (A > ~~C) > (A>C) 61,62 m.p.

64. (A D ~~C) D(A>C)) > ((A>B) 5 ((A > ~~C) o
(A>C)) Axiom 1

65. (AoB) > ((A 2> ~~C)2(A>C) 63,64 m.p.

66. (ADB) 2 ((A>~~C)>2(A>C()) 2((A>B) >
(A>~~(C)) 2((A>B) 2 (A>C(C)) Axiom 2

67. (A2B) 2 (A>~~C) 2 ((A>B) 2 (ADC)) 65,66 m.p.

68. (AD(B2C)) >((A>B) >2(A>C)) 58,67 trans

The above proof would be circular if B = ~~C for we use this
axiom at line 62. Also, if A and B were both the same wif as ~~C then
59 will also depend on the axiom as can be seen by examining the
proof of ~~C = C at line 31.
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If B = ~~C adifferent proof must be found. This can be constructed
from (~~A 2(B>C)) o ({(~~A 2B) o (~~A 2()) instead of the
crucial 51 and utilising ~~A > A and A > ~~A. The proof runs
along the same lines as the one just given, though it does make use of
more transitivity moves and some transposition moves. The reader
will find, however, that this proof will involve the wff
(~~A>C)>(A > ~~A) 2(A>C(C)) which itself is proved by
using the wif (A > (~~A 2 C)) 2 (A 2 ~~A) 2 (A >2C)) [see li-
nes 2 and 7]. Now, if B = ~~ A the proof is again circular.

In the case where B = ~~A and B = ~~(C, a different but much
simpler proof exists for the form of the axiom must then be
. In this case we can use identity to establish A > A then use Axiom 1
twice over to indroduce first A > ~~A and then A © (~~A D A) as
antecedents. All possible cases are then covered.

Proof that any axiom of the form (~A D ~B) (B 2A) can be
proved from the other axioms

First assume that B is not the same wff as ~~A

69, ~~~A o ~A (dnc)

70. (~A > ~B) D> ({(~~~A D ~A) D(~~~A D ~B) trans

71. (~~~A > ~A) D ((~A 2 ~B) 2 (~~~A 2 ~B)) 70 transp
72. (~A > ~B) > (~~~A 2 ~B) 69,71 m.p.

73. ~B > ~~~B (dni)

74. (~.B o> ~~~B) o> ((~~~A >~B) 2 (~~~A > ~~~B) trans
75. (~~~A D ~B) D (~~~A D ~~~B) 73,74 m.p.

76. (~A > ~B) D (~~~A D ~~~B) 72,75 trans

77. (~~A o2 A) > ((~~B > ~~A) > (~~B > A)) trans

78. ~~A o A (dnc) [see following paragraph]

79. (~~B > ~~A) o (~~B D A) 78,79 m.p.

80. (~~B>A) > ((B > ~~B) o(B>A)) trans

8l. (B o ~~B) o((~~B>A) >(B>A)) 80 transp

82. B o ~~B (dni)

83. (~~B>A)>(B>A) 82,83 m.p.

84. (~~B o ~~A) >(B>A) 79,83 trans

85. (~~~A D ~~~B) D (~~B o ~~A) Axiom 3
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86. (~~~A o ~~~B) D(B>A) 84,85 trans

87.

(~A > ~B) >(B>A) 76,86 trans

If B= ~~A then this proof is circular since the proof of 78 will
have used 29. A different proof is then required for axioms of the form
(~A D> ~~~A) D (~~A D A). I prove this below.

88.
89.

90.

9l.

92.

93.
94.
95.
96.
97.
98.
99.
100.
101.

(~~(ADA) D ~~A)D(~A D ~(ADA)) Axiom 3
(~~(ADA) D> ~~A) D (~A D ~(ADA)) D (~~A D((~~
(ADA) D ~~A) D(~AD~(A>DA)))) Axiom |
~~AD2(~~(ADA) D ~~A) D (~AD~(ADA))

88,89 m.p.

(~~AD((~~(ADA) D ~~A) D (~AD~(ADA))) >
(~~A>(~~(ADA) D ~~A) D (~~A D(~A S>~(A DA))
Axiom 2

(~~AD(~~(ADA) D ~~A)) D(~~AD(~AD~(ADA)))
90,91 m.p.

~~AD(~~(ADA) D ~~A) Axiom |
~~AD(~AD~(ADA) 92,93 m.p.

(~A > ~(ADA) D((ADA) > A) Axiom 3
~~AD((ADA) > A) 94,95 trans

(ADA) D (~~ADA) 96 transp

ADA id

~~A>DA 97,98 m.p.

(~~ADA) D((~AD~~~A) D(~~A>DA)) Axiom I
(~AD~~~A) D (~~ADA) 99,100 m.p.
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