ON AN APPLICATION OF TRUTH-FUNCTIONS TO THE LO-
GIC OF PREDICATES

Alfons GRIEDER

1. Truth-tables for a predicate with respect to an operator

The reader is familiar, I suppose, with the way truth-tables are used
in the elementary propositional calculus. With basic propositions and
logical constants complex propositions are formed; by means of
truth-tables it is then possible to determine the truth values of a
complex proposition for the various combinations of the truth values
of its constituent propositions. It is useful, in view of the following
analysis, to generalise this notion of truth-function a little. Let us
assume that complex propositions are formed out of certain types of
elementary propositions or propositional functions each of which can
be assigned either of two ‘values’ ; any function which yields the truth
values of the complex proposition for the various combinations of
‘values’ of the constituent propositions or propositional function I
shall call a truth-function. Let us denote the two possible ‘values’ of
the constituents by + and — ; we can then establish truth-tables in a
similar way as is done for ordinary truth-functions in the propositional
calculus.

One type of complex proposition to which this general notion of a
truth-function can be applied is characterised by the form

dA(X),

where x is a variable ranging over a domain X of individuals, A a
one-plece predicate for the individuals of X, and & an operator which
can be applied to the propositional function A(x) and which, when so
applied, produces a proposition in which the variable x is bound. A we
suppose to belong to a class of predicates which contains with every
predicate A also its negation ~A. dA(X) then gives rise to truth tables
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in the following way. A(x) is first given its positive ‘value’, that is, it is
Just left as it is, and & is applied to A(x) and the truth-value of dA(x)
determined ; A(x) is then given its negative ‘value’, it is negated, o
applied to ~A(x) and the truth value of §(~ A(x)) determined. It will
from now on be assumed that the predicates under consideration are
such that A(x;) is either true or false for every individual x; of X and
that ~A(x;) is a false proposition if, and only if, A(x;) is a true one.
Under these conditions every predicate A can be characterised with

respect to & by one of the four truth—functions@ @ @ or in

the table below. (1 stands for ‘true’, 0 for ‘false’).
w | 0|

0
0

For instance, let X be the domain of natural numbers, & the operator
‘For some numbers larger than ten —°, and let the predicates include

A : ‘even number’ (or: ‘— is an even number’),
A’ : ‘successor of some natural number’,
A" : ‘even prime’.

Then@ ,@ ,@ are the truth-functions characterising A, A’ and
A" respectively.

It is useful to draw the distinction between ordinary and non-ordi-
nary predicates. I shall call a predicate A ordinary with regard to the
domain X if, and only if, there are some individuals of X to which A
applies and some to which A does not apply. A predicate is said to be
non-ordinary if, and only if, it applies either to some individuals of X
whereas its negation applies to none, or it applies to none while its
negation applies to some of them. In the light of what was said above,
it follows that a non-ordinary predicate applies either to all or to none
of the individuals of the domain. If a predicate is an ordinary one with
respect to the domain X, then@ is its characteristic truth-function
with regard to the operator ‘For some individuals of X —’. Non-ordi-
nary predicates are characterised either by the truth-function@ or
by@ with respect to this operator.
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2. Truth-functions for binary relations between predicates

Let us now consider ordered pairs (A,A’) of predicates on X and the
corresponding conjunctions A(x).B(x) of propositional functions to
which the operator & is applied. A and B are assigned their positive or
negative ‘values’ as before and for each ordered pair of ‘values’ we
determine the truth-value of the proposition 8(A(x). B(x)). There are
now 16 possibilities in all for the resulting truth-functions, as is shown
in the table below.
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We are particularly interested in the operator ‘For some individuals of
X =" and in the truth values of the proposition

For some x of X: A(x).B(x).

Provided the predicates A and B satisfy the conditions set out above
each ordered pair of predicates on X will have as its characteristic
truth-function one of the functions@ -@ . If X is a sufficiently rich
domain (it would have to comprise at least four individuals, if for
simplicity we assume that to each sub-class of individuals corresponds
at least one predicate), then each function will be the caracteristic
truth-function of at least one pair of predicates. No pair of predicates
can be assigned two different truth-functions of the table; and@ is
assigned to none.

There exist 15 fundamental configurations for ordered pairs of predi-
cates over a domain X.(*) Each of these fundamental configurations
is characterised by exactly one of the truth—functions@ -@ , as can
easily be verified. That is, a one-one-correspondence can be establis-
hed between the fundamental configurations for ordered pairs of
predicates and the set of the first fifteen truth-functions of the above

(*) Given the domain is sufficiently rich, as we shall assume.

coooc @
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table. Let us denote this set by F, and the total set, including@ , by

F*. The fundamental configurations are listed below and represented
by means of the well-known Euler diagrams. (%)

B—]

A0 B AQ) B

@ B (void) A (void) E=B—)

A@B A@B @B

A, B

A1) B

A (void, B (void)

A, B (void)

—A (void), B—

() See e.g. O. Bird, Syllogistic and its Extensions, Englewood Cliffs N.J., 1964, " 37,
where these configurations are discussed.
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These configurations fall into three major categories. The first of them
comprises the configurations I - VII, which include ordinary predica-
tes only. Their truth-functions involve either four values 1 (in the case
of the first function), or three values 1 (functions@ —@ ), or two
values 1 (functions@ and@ ).

Configurations VI and VII differ from the others of this group in
that each consists of a pair of predicates which are not genuinely
different — in VI they are co-extensive, in VII complements of each
other. To the second category belong the configurations VIII - XI
each of which consists of one ordinary and one non-ordinary predicate
(a void or a universal predicate). Their truth-functions involve two
values 1.

Finally, there is the third category consisting of the configurations
XII - XV each of which links two non-ordinary predicates (a universal
with a universal, a universal with a void, a void with a universal, or a
void with a void predicate). Their truth-functions contain a single
value 1. It is in order to emphasise this natural grouping that I have
deviated from the usual lexicographical order of the 16 functions.

3. Linear correspondences on the set of truth-functions (*)

The four truth-functions of the third category, Le.@ @ , and
@ , from a basis by means of which the truth-functions of F can be

represented. For instance,@ can be written as@ +® + +@,

@ as@ +® + ,@ as@ +@ +® , and so on. In short, any

function f of F can be represented as a linear combination

f = ﬁ gf;, 8]
1=1

where f; = @, f, = @ f, = @ and f, = @ (a notation which will
from now on be strictly adhered to}, and where the coefficients g; take
on the values 1 and 0. I shall refer to the right hand side of the equation

(*) The reader is referred to my paper ‘On the Logic of Relations’, Dialectica, 34
(1980), pp. 176-182, in which some of the techniques applied here are explained in
greater detail.
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as the representation of f with regard to the basis f;, f;, f3, f,. The
basic functions f; whose coefficients equal 1 are called the components
of f. If for two predicates A,A’ f(A,A") holds,

4
then (_Z] g fi)(A,A’) also holds, and vice versa.
1=

4
But it does not follow that igl T (A,A’) is valid; for, as has been

pointed out above, the f; need not apply to the same pairs of predicates
to which f applies.

A linear correspondence H on the set F* of truth-functions is a
correspondence of F' into, or onto, itself such that the following
condition is fulfilled for any fe F*:

4 4
H(f) = H( iz']eifi) = izleiH(fi)- (2)

Trivially, the image of the truth-function@ is@ itself. We shall
therefore 0mit® and work with the set F rather than F*. It is
obvious from (2) that the image H(f) is fully determined for any given
fe F, provided the images of the basic functions are specified. We
therefore introduce the corresponding matrix H whose with column
contains the coefficients of the representation of H(f}):

h] 1 hl 2 h13 h14
H = hy, hy,  hy ha4
hs, hy, hs; hs,

hyy  hey hey hyy

With the help of the ‘column vector’

and the image H(f) is represented by

H(f) = Hf.
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In order to calculate products of this kind we add and multiply the
coefficients in accordance with the rules: 0+0 = 0, 04+1 = 140 =
1+1=1;00=01=10=0, 1.1'= 1.

4. Conversion and counterposition as linear correspondences

Let (A,A’) be an ordered pair of predicates on X; if f is the
truth-function which characterises their configuration, then we say
that A is related to A’ by f, or that f applies to (A,A’), or that f(A,A’)
holds. By exchanging A and A’ we obtain the ordered couple (A’,A),
the ‘mirror image’ of (A,A’). Further, let G be the set of all ordered
couples of predicates to which f applies; and let ' be the function
which applies to all the ‘mirror images’ of the ordered pairs of G ; then
f' is said to be the converse of f. The correspondence which associates
with each truth function of F its converse is the conversion on F; we
denote it by C.

C is a linear correspondence, as can easily be proved. A look at the
table of truth-fuctions shows that in accordance with the definition of
C C(f) and f agree in their first component; but they also agree in
their last component and can only differ with respect to their second
and third components. It is also obvious that the second component of
f equals the third of f', while the third of f equals the second of f'.
Hence

Cleify + e:fy + &3fy + e4fy) = g,f; + e3f, + e.fy + €46,
but
fi = Cfy),. f, = Cfy), f; = C(f), fy, = C(fy).

The conversion matrix C is given by

S — QO

0
0
0
I

o0 o -
o0 —~ o

C is a one-one-correspondence of F* into itself. The product of C
with itself is the unit correspondence E; or, in matrix notation, CC =
E. Applying C to all the functions of F* we obtain the images given
below.
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c® @@@@@@@@.@.@.@@@

first category second category lhll’d category

The functions@ @ @ @ ,@ ,@ ,@ and@ are invariant
under C. Because C(f) merely results in a permutation of the truth
values, for any f the number of its digits 1 remains invariant under C.
This, together with the fact that@ and@ are invariant, shows that
for any fe F, f and C(f) are members of the same category.

Counterpositions too constitue linear correspondences of F into
itself.(®) Let A and A’ be two predicates such that f(A,A"), and
(~A,A’) is the ordered pair which results from (A,A’) by replacing A
by its negation ~ A. The function ' which applies to all those ordered
pairs which are obtained by this operation from an ordered pair to
which f applies, will be called the first counterpositive of f. The first
counterposition K, can then be defined as the correspondence which
assigns to every truth-function of F its first counterpositive function.
Iff" is the counterpositive of f, then f must be the counterpositive of f'.
That the counterpositive of any fe F must be uniquely determined can
be seen at once by going back to the table of truth-functions: As A has
to be replaced by its negation, this simply means that in the table the
first row has to be exchanged with the third, and the second with the
fourth. Thus, K;K, = E ; K, (just as the conversion C) is an involu-
tion. K, is linear, as can readily be shown by utilising the fact that
K,(f) is obtained by exchanging the first value of f with its third, and
the second with its fourth. Hence we obtain K(f,) = f;, K,(f,) = £,
Ki(fy) = fi. and K,(fy) = f,.

(*) For lack of a more suitable term I have introduced the term ‘counterpositive’.
Provided we are prepared to discard the rather baroque traditional terminology
(‘permutation’, ‘obversion’, ‘inversion' etc.) we may then merely talk of the first,
second, and third counterpositions (K,, K,, K;) and refer to L,, L,, and L, as the first,
second, and third contrapositions.
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The second and third counterpositions — we shall denote them by
K, and K; - can be defined in a similar fashion. K, assigns to each
truth-function f of F another such function, f', such that whenever
f(A,A"), then f'(A,~A"); and K; assigns to every f a function ' such
that whenever f(A,A"), then f'(~A, ~A'). Again we have K,K, = E
and K;K; = E, as is evident from the definitions. To any fe F, K,(f)
and K;(f) are uniquely determined. In order to obtain K,(f) the first
value of f has to be exchanged with the second, and the third with the
fourth ; to obtain K;(f) the first value of f is exchanged with the fourth,
the second with the third. The linearity of K, and K, is thus easily
established. f and K;(f) comprise the same number of digits 1. In

addition the counterpositions leave the functions@ and @ invariant
or change them into each other. Hence f and K;(f) belong to the same

of the three categories distinguished above.

The three counterpositions are given by the matrices

001 0 0100 00 0 1
00 01 1 000 0010
Ky = 1000’K2‘0001’K3_0100
0100 001 0 1000

With the help of the matrices C, K,, K, and K3, or simply by making
use of the definitions of the four correspondences, the following
equations may be derived

KiK; = KK, = K;,

K1K3 = K3K1 = K2s
K2K3 = K3K2 = Kla

CK] = ch »
CK; = K,C,
CK3 = KJC 3

and, as has already been pointed out,
CC = K1K1 -= K2K2 - K3K3 = E.

To any of the 15 fundamental configurations, its converse, its coun-
terpositives as well as the result of any sequence of applications of

some of these correspondences can thus be determined at once. To
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this effect we merely have to find its characteristic truth-function and
multiply the latter from the left with the matrices concerned, using
where necessary the above equations in order to simplify the matrix
products.

However, both from a mathematical and from a logical point of
view it would be rather unsatisfactory to confine ourselves to the
traditional four operations represented by C, K,, K,, and K;. The
temptation is irresistable to add (besides E) three additional corres-
pondences, which I denote by L,, L,, and L, such that

L, = KiC = CK,.

LZ = K2C = CK] )
Ly = K;C = CK,;.

Their matrices are

1L3:

S = O 2
oo o~
—_ o o o
oo - o
- o o <
oo o =
o - o 2
= = ==
oo = O
o —- o o
oo o =

The eight correspondences E, C, K,, K,, K;, L, L, and L, form a
structure which is closed under the multiplications considered. In
fact, they form a group whose multiplication table is given below.

E C K, K, Ky L, L, L;

E|E C K, K, K, L, L, L,
C|C E L, L) 13 K, K; K;
Kl K]_ L1 E K3 K2 C L3 Lz

K:|K, L, K; E K, Ly C L,
Ki|Ki Ly K, K, E L, L, C
Li I e 15 C 15 Ks E K
L,|L, K, C L, L, E K, K,
s |1a ¥s Ta 1a € By Ks B
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One interesting feature of this group is that it consists of exactly
those correspondences (i.e. of exactly those eight among the 24
possible permutations of the four basic functions) which either leave
the functions@ and@ invariant or map them upon each other.

5. Bilinear correspondences and syllogisms

For each ordered pair (f;,f;) of basic functions we may consider the
proposition: for all predicates A,A’,A" on F, if fi(A,A").f;(A’,A"), then
f(A,A"). If there exist predicates A,A’,A"” such that the conjunction
holds, and if there is a truth-function fe F which fulfils the condition,
then we shall write S,(f;,f;) = f. However, if there are no predicates
A,A",A" for which the conjunction f;(A,A").f;(A",A”) is true, then we
put S;(f,f;) = e, where e denotes the function. In this way a
function S; can be defined on the set of all ordered pairs of basic
functions; and going back to the fundamental configurations listed in
section 2 it can easily be seen that S, is given by the matrix

S g == € c fl fz
f; £, e e
e e f; f,

That iS, we Obtalﬂ Sl(f] ’fl) = f] N S](fl ,fz) = f2 ) Sl(f] 1f3) =&, etc.

By means of this matrix §; we define a linear correspondence on F,
stipulating that for any ordered pair (f,f") of functions of F the value of
S;(f,f') be calculated on the basis of the equation

St =5 2 eh, Eait)= 2 £ enSG.
i=1 j=1 i=1 j=1

This is equivalent to stipulating that for any two functicns f.f' of F,
S,(f,f") is obtained by multiplying the matrix S, from the left with the
transpose of the ‘column vector’ representing f, and from the right
with the ‘column vector’ representing f':

S,(f,f‘):erlf'.
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Applying this rule(*) we find e.g. that S, (@, @) = @ and

$SD.=0):

f1 fz €
e e f;
(1,0,1,1) £ f e
e e f
fi £, e
e e f)
(1,0,1,1) £ f o
e e f

D

— O

(f1+f3!f2+f$sf39£4)

(fy+15,6+1£5,5,f,)

— — D i

— — -

fi+f+f=(4)

f2+f3+£g= @

In an analogous way we may define bilinear correspondences S,, S,
and S,, using the implications

for all A,A’,A" on F, if fi(A,A").f;(A”,A"), then f(A,A"),

for all A,A",A" on F, if fi(A’,A).f;(A’,A"), then f(A,A"),
for all A,A",A" on F, if fi(A’,A).fi(A",A’), then f(A,A").

We then obtain the matrices

f,
Sz = €
fy

Il

Sa

and the equations

Sz = S]C,
S3 = CSy,
S4 — CS]C.

€
fy
€
f3

o Mmoo g

f,

° o,

o

e f, £
fz s S3 - f3 f4
e e e
fs e e
e

e

f, |’

f

4]

Sshho

(*) Observing that f, + e = e+ f, = f,andoe=e.0=o0,le = el = e.
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In order to determine the value of S;(f',K;(f")) we simply multiply the
matrix S;K; with f'7 from the left and f” from the right. And
S; (Kj(f"),f") is obtained by multiplying K;S; with f'T from the left and
f" from the right. For in the latter case we have

SiK;(E).f) = Kf)'Sf" = fKTSS = fTKSS

What is the logical significance of these correspondences S; ? Their
definition and the two examples mentioned above — that S, (@ ,
) = @ and S,((4), @)= @— suggest a
close link to the syllogisms of the first, second, third and fourth
figures. The connection can be characterised as follows: for any pre-
dicates A,A",A” over X and for any functions f and f’ belonging to the
first seven of the table (see section 2), if f(A,A’) and f'(A’,A"), then A
is related to A’ by a function all of whose components are also com-
ponents of S,(f,f"); and analogous theorems hold for S, and the syl-
logisms of the second, S; and the syllogisms of the fourth, and S, and
those of the fourth figure.(*) In order to sketch out the proof for the case
of S, and the first figure (the proofs for the other three cases follow

4
the same pattern), let us observe that S,(f,f') with f= 3 &f, and

4
f' = ,2‘.1 #ifj, reduces to an expression of four terms:
1=

Siff") = (e tema)fy + (e +en)fy + (Ea%+ea®a)fy +
(es%atE3%4)f,
= )Lgf; G- szz + }\.3f3 + )\.4& .

(*) The only syllogisms considered here are basic ones, that is, syllogisms the premises
of which are of the form f(A,A"), where f is one of the function = ,Aand A’
predicates over X. There exists of course a more comprehensive system of syllogisms,
including those with premises of the form f(A,A’) VF'(A,A) V..., where f.f, ... are
basic functions. This and other comprehensive systems of syllogisms are most elegantly
presented and analysed in terms of relation schemata.
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It is easy to show that if A; = 0, and provided f(A,A’) and f'(A’,A")
hold, then A and A" cannot be related by a function f"¢ F which
contains the component f;. If e.g. &, = 0, then eithere, = %, = 0 or
€, = %; = 0; as we are here concerned with functions@ to@ s €1
and ¢, cannot vanish together, nor can %, and #,. We first consider the
case whereg; =u3 = 0,e, =%, = 1. It follows that there is no xe X to
which both A and A’ apply, and no such x to which both A and ~A’
apply ; on the other hand, there is at least one x to which both A and
~A’, and at least one to which both A" and A" apply. Hence all the
individuals x for which A(x) will also fulfil ~A’'(x), and there is no
individual to which both A and A" apply. Next, let &, = %, = 0 and
€, = %3 = 1. There are no individuals to which both A and ~A’ and no
individuals to which both A’ and A” apply ; but there is at least one x
to which A and A’, and at least one to which A’ and ~A" apply.
Therefore, all individuals x for which A holds are individuals for
which A" holds, and there exist no individuals x to which both A and
A" apply. In either case, then, A is related to A” by a function which
does not contain f; as a component. The remaining coefficients A,, A,
and A4 can be dealt with in a similar way. Thus, since A must be
related to A” by one of the functions@ to@ , but cannot be related
to A” by any function fe F which involves a component which is not
also a component of S,(f,f'), then A must be related to A” by a
function all of whose components are also components of S,(f,f').

It should be obvious, then, that the bilinear function S, gives rise to
a peculiar type of syllogism which we may represent by the schema

f(A,A")
fl(Aﬁ,AH)
A{S(f.f)IA",

to half-way syllogisms as it were, stating that if A is linked to A’ by f,
and A" to A" by f', then A is related to A” by a function whose
representation involves only components of S,(f.f'). Analogous
considerations apply to S, S;, and S,. The half-way syllogisms of the
first figure are given in the table below. Making use of the matrices S,,
§3, and S, all the other half-way syllogisms can easily be derived.
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CPPERPRIE
EPEERELEIE
OEELEEPR|E
cleleielelclele
OEPLPEPIE
ORPEEEEE
EPEEEER|E

elojooeiele

6. Other linear correspondences involving complex predicates

In section 4, when introducing the counterpositions, we had to
correlate predicates A and their negations ~A. Here we shall in
addition consider the union A V A' and the intersection A.A’ of two
predicates on X and by means of them define the following linear
correspondences Q;, Q,, Ry, and R, of F into itself:

Q.(f) = {"if, and only if, whenever f(A,A"), then f'(A VA',A'),
Q.(f) = ' if, and only if, whenever f(A,A’), then f'(A, A VA"),
Ri(f) = f'if, and only if, whenever f(A,A’), then f'(A.A’,A"),
R,(f) = f' if, and only if, whenever f(A,A’), then f'(A,A.A").

The reader will easily verify that these correspondences are given by
the matrices

T 01 0 1100
01 0 0 00 00
Q= 0000’Q2‘0010’
D0 0 00 0 1
1 0 00 1 0 0 0OV
0 0 0 0 01 0 0
By = 0010’R2_0000
01 0 0 1
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They have some obvious common features. Firstly, they are not
one-one correspondences of F onto itself, but in each case two of the
basic functions f; have the same image. Secondly, all four of them are
projections, as the following identities hold:

Q:1Q: = Q1,Q:Q; = Q2. RiR; = Ry, RyR;, = R,,

an obvious consequence of the above definitions of Q;Q,, R;, and R,.
Thirdly,@ is invariant under each of the four correspondences; for
the ordered pair (A,A) is identical to (A V A,A), to (A, AVA), to
(A.A,A), and to (A,A.A).

To indicate briefly the significance of correspondences of this kind
and their interplay with the conversion C and the counterpositions K,
K, and K;, let us start from the identity ~(A.A’) = ~A V~A’, from
which we derive that e.g. the correspondences given by the products
K;R; and K,Q;K; must be identical, or

KR, = K2Q1K3,

and hence

R, = K;K;Q:K;,
but

KK, = K;
and thus

R, = K3Q,K;.

As K; is identical with its transpose K1, the above equation shows
that R, and Q; are similar correspondences. K; here plays the role of a
regular transformation, the change of basis consisting simply in a
permutation of the basic functions. It can easily be shown that R, and
Q. are also similar in this sense:

R, = K;Q:K;,
and so are Q; and Q,, and R; and R, :
Q, = CQ,C, R, = CR,C,

with C as the regular transformation.
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