A COMPLETENESS PROOF FOR PORTE’S S; AND §,

Charles F. KIELKOPF

Section I: Background

Motivation for the systems discussed in this note presupposes some
familiarity with Jean Porte’s [1] and [2]. However, these directions for
constructing a completeness proof for systems S2 and S, are accessi-
ble prior to a reading of Porte’s paper to those familiar with modal
logics. In [1] Porte investigated several weak modal logics. Two such
systems, S3 and S, are presented below. A basic theorem of [1] was
numbered 2.3 and stated: S, — L(X) iff. PC+X.

In this note X.,Y,Z are variables ranging over formulas of a modal
sentential language whose primitive operators are: — (material impli-
cation), ~ (negation), L() (it is necessary that). The operators: &
(and), v (or), and « (material equivalence) are defined as usual in
classical sententical logic. Throughout this note standard conventions
are used in the presentation of formulas and schemas. If S names a
system of logic, S—X says that X is a theorem of S. PC names a
system for getting exactly the theorems of classical sentential logic. A
PC-tautology is any formula in the modal language which is a
substitution instance of a tautology in the language of classical
sentential logic.

Porte admitted that he failed to prove his Theorem 2.3 of [1]. He
wrote that a major goal of his [2] was to present a correct proof of 2.3
of [1] which is numbered Corollary 2.8 in [2]. Unfortunately, Porte’s
proof of 2.8 of [2] is flawed by a confusion of soundness with
completeness. In his argument for Corollary 2.8 he states two theses
which he correctly calls completness theorems. They are according to
the numbering of [2]:
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Lemma 2.4: If X is E-valid, then SS+—X
Theorem 2.7: If X is E-valid, then S, —X.

In effect, Theorem 2.7 is a corollary of Lemma 2.4. It is the proof of
Lemma 2.4, which is seriously flawed. Porte does not prove Lemma
2.4. Instead he proves the converse of Lemma 2.4 which is soundness
rather than completeness! Fortunately, for Porte’s correction of his
original error soundness for S2 and S, suffice for his proof of: If
S, —L(X) then PC — X. Nevertheless, his confusion of soundness with
completeness is not a mere typographical misstatement of the theo-
rem. He does think that he has proved the completeness of S and S,
with respect to so-called E-validity. He thinks that he can state in a
theorem numbered 4.3 that S, is complete with respect to a certain
kind of Kripke model structure on the basis of his putative complete-
ness proofs with respect to E-validity. Hence, his confusion of
soundness with completeness robs his paper of having established
completeness for these systems and of having found Kripke semantics
for them.

The goals of this paper are to prove Porte’s Lemma 2.4 and
Theorem 2.7 of his [2] and then to justify his claim that he has found
Kripke semantics for S,. To reach these goals systems S and S, are
presented in Section II, the notion of E-validity is presented in
Section III, directions for a ‘“‘normal form’® completeness proof are
given in Section IV, and in Section V Porte’s claim to have found
Kripke semantics for S, is vindicated.

Section II: The Systems SS and S,

The system S3 has axiom schemas for classical sentential logic (PC)
plus the normalization (necessitation) of these axioms.

Pl: X.Y->X

P2: X (Y5 2Z)» . X5Y)» . X Z
P3: ~Xs~Y5 . Y5 X

rP1: L(PI)

rP2: L(P2)

rP3: L(P3)
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The rules of proof are: D(modus ponens) X— Y, XY, and the
so-called normalized modus ponens nD: L(X— Y), L(X) —L(Y).

System S, is S3 plus the rule of weakening W: L(X)—X. The first
three PC axioms together with rule D suffice to give all PC-tautologies
as S, theorems. The normalized PC axioms show us that if X has the
form of a PC axiom then S,+~X. This observation suffices for the
basis step in an induction of the length of a PC proof to establish what
I will call Lemma II.1 which is Porte’s Theorem 2.1 of his [1].

Lemma II.1: If X is a PC-tautology, then S, —X.

Before leaving this syntactic section let us take note of initially
placed L()s. An initially placed L() in a formula X is an L() which
does not occur in the scope of any other L() in X. If we need to
emphasize that an L() is initially placed we will designate it with L*().

Section III: The notion of E-validity

The following is an adaptation of Porte’s notion of E-validity. Let
e() denote the following translation of formulas of S;’s language into a
language S,e. S,e is the language of S, extended to include denumera-
bly many new sentential variables q; which are in one-one correspon-
dence with S, formulas of the form L;(), where the subscript i
indicates some ordering of the L () formulas.

i) e(X) = X if X is a sentential variable.
i) eX-=Y) = e(X)—e(Y)
iii) e(X&Y) = e(X)&e(Y)
iv) e(XvY)=eX)ve(Y)
v) e(X < Y) = eX)—e(Y)
vi) e(~X) = ~e(X)
vil) e(L(X)) = X if X is a PC tautology
viii) e(Li(X)) = q; if X is not a PC tautology.

Note that the translation of a formula does not *‘pass beyond’’ an
initially placed L(). For instance, e(p—L(L(p— p)—.p—p)) is a
formula such as p— q;. But e(p— L((p— p)— . p— p)) is the PC-tauto-
logy: p— ((p— p)— . p— p). Call the result of applying the e() transla-
tion to a formula its e-transformation. A formula is E-valid if its
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e-transformation is a PC-tautology.

The difference between the notion of E-validity used here and
Porte’s notion stems from translation rule (vii) above. Porte specifies:
If X is a PC tautology, then e(L(X)) = t, where t is the truth value
True. Porte then specifies that a formula is E-valid of its e-transfor-
mation is t under all classical valuations, viz., is a PC-tautology. We
get the same E-valid formulas. But I differ from Porte because I want
to show that in certain crucial cases we can prove L(X) with
tautologous X by first proving its e-translation ; hence we do not want
to “‘lose track’’ of formulas L(X) with tautologous X by mapping them
all to the same tautology or fixed t.

In his Lemma 2.4 and Theorem 2.8 of [2] Porte establishes that S2
and S, are sound. Porte’s soundness result provides the main premiss
for proving the following lemma.

Lemma III.1: If S, X <Y, then X is E-valid iff. Y is E-valid.

Section IV: The completeness of S and S, with respect to E-validity

Porte also uses his soundness result to establish in his Lemma 2.6 of
(2] that rule W is admissible in S3. Hence, we can prove the
completeness of S and S, by focusing on S,. The strategy of this
completeness proof is based on having S, —X «— C(X), and hence,
S, =X iff. S, = C(X) where C(X) is a certain conjunctive normal form
of X. If Ci(X) represents a conjunct of C(X), we have S, —C(X) iff.
S, —Ci(X) for each i where i “‘counts’ the conjuncts in C(X). Also
C(X) is E-valid iff. C;(X) is E-valid for each i. Directions will be given
for showing that if a conjunct C;(X) is E-valid then S, —C;(X). So, we
will get: If C(X) is E-valid, then S,+~C(X), which with standard
logical techniques along with Lemma III.1 will give us completeness
of S, with respect to E-validity. So, the crucial tasks for this section
are to present a third lemma on normal forms and then to give
directions for proving a crucial lemma on developing proofs for
certain simple disjunctions which comprise the conjuncts of the
conjunctive normal forms.

A C-conjunctive normal form of X, C(X), is a conjunction of
disjunctions of atoms of X. An atom in X is a sentential variable in X,
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the negation of a sentential variable in X, a subformula of X of the
form L*(Y), or the negation of a subformula L*(Y) where L*() is an
initially placed L().

By use of PC techniques such as replacing (X— Y) with (~X vY),
DeMorgan’s equivalences, and judicious use of distribution we can
reduce any formula X of the S, language to an equivalent C-conjunc-
tive normal form of it. Since PC is included in S, we can present
Lemma IV.1.

Lemma IV.1: If X is a formula in the language of S,, there is a
C-conjunctive normal form C(X) such that S, — X iff.
Sa —C(X).

We now need to show that if a C(X) is E-valid it is provable in S,.
And, as noted earlier, the crucial phase of showing the provability of
an E-valid C(X) is showing that a E-valid C;(X) is S, provable. Before
establishing the crucial lemma about the provability of E-valid C;(X) it
is useful to establish a sublemma about the conditions for the

E-validity of a disjunction of atoms because the C;(X) are such
disjunctions.

Sublemma: If only the e-transformation of an E-valid G(X) is a
PC-tautology, then C;(X) has an atom of the form L*(Y)
where Y is a PC-tautology.

Proof: If E-valid Ci(X) is not a PC-tautology prior to taking its
e-transformation, then C;(X) contains as disjuncts no pair of atoms (a,
~a;); and, in particular C;(X) contains no pair of disjuncts (P;, ~P)
where P; is a sentential variable in X. Now taking the e-transformation
of Ci(X) will only disjoin sentential variables and formulas to a
disjunction of the sentential variables and their negations from X
already occurring in Cy(X). If Y is not a PC-tautology, then e(L*(Y))
gives us only a new g; to disjoin with the other sentential variable
atoms and such a disjunct will not be the negation of any other atom;
so it won’t give us a PC-tautology. If Y is a PC-tautology but the atom
is ~L*(Y), then e(~L*(Y)) gives us a PC-contradiction, ~Y, to
disjoin with the other atoms and sentential variables. But the disjunc-
tion of a PC-contradiction with a formula which is not already a
PC-tautology is not going to give us a PC-tautology. Hence, only if we
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have an atom of the form L*(Y) where Y is a PC-tautology will we
disjoin a formula with the other atoms and formulas which turns the
formula into a PC-tautology.

With this sublemma we have arrived at the stage where we can

establish our crucial lemma about the provability of E-valid C;(X).
Lemma IV.2: If Ci(X) is an E-valid disjunction of atoms, then
S. - Gi(X).
Proof: There are two cases. E-valid C;(X) is a PC-tautology before
taking its e-transformation or only the e-transformation of C;(X) is a
PC-tautology. In the first case we have S,+—C;(X) because PC is
included in S,. In the second case the sublemma tells us there is an
atom L*(Y) in Gi(X) where Y is a PC-tautology. My Lemma 11.1 tells
us that by PC procedures we can get an S, proof of L*(Y) and then by
PC procedures we can disjoin formulas to L*(Y) to get C;(X) and,
thereby, S, —Ci(X).

On the basis of Lemma 1V.2 and the interspersed remarks we are
justified in asserting the following completeness theorem.

Theorem 1: If X is E-valid, then S§+—X and S, —X.

Let us note some connections between E-validity and Kripke
semantics.

Section V: E-validity as validity in certain Kripke model structures

This section presupposes familiarity with the techniques for eva-
luating formulas in model structures or systems of worlds ordered in
some way by an accessibility relation R. Worlds are characterized as
normal, semi-normal, and non-normal on the basis of restrictions on
assigning the truth-values (t,f) to L(X) formulas. If world w is normal,
v(L(X),w) = t requires that v(X,w') = t for all worlds w’ accessible
from w, viz., all w' such that wRw’. Furthermore, if w is normal
v(L(X),w) = frequires that there be a w', wRw', such that v(~X,w’)
= t. If w is semi-normal, v(L.(X),w) = f requires that there be a w’',
wRw’, such that v(~X,w’) = t; but there are no restrictions on having
v(L(X),w) = t. For our purposes, the interest of semi-normal worlds
lies in the fact that in a semi-normal world G we cannot set v(L*(X),G)
= fif X is a PC tautology because in no type of world can we have
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v(~X, w) = tif X is a PC-tautology. But in a semi-normal world we
can treat L(X) with non-tautologous X as if it were a sentential
variable. If w is non-normal, we can set v(L(X),w) as t or f regardless
of the character of X because no worlds are accessible from a
non-normal world. In a non-normal world, any L(X) can be treated as
if it were a sentential variable.

Consider now the model structures (G,K,R) in which G, the actual
world, is normal or semi-normal, K contains G and other worlds
normal, semi-normal, or non-normal, and R is an accessibility relation
on K. Call these S, model structures. Let us say that a formula X is
Sa-valid if there is no G in an S, model structure such that v(X,G) = f.

Reconsider the notion of E-validity which Porte reminds us *‘is but
a disguise” of S,-validity. If X is not E-valid then there is a way of
assigning (t,f) to positive atoms of X so that v(X) = f as long as we set
v(L*(Y)) = t for subformulas L*(Y) where Y is a PC-tautology. Such
an assignment showing that X is not E-valid can be re-expressed as an
assignment falsifying X in a semi-normal G. On the other hand, if X is
not S,-valid there is a way of assigning (t,f) in a G to positive atoms of
X so that v(X,G) = f as long as we set v(L*(Y),G) = t where Y is a
PC-tautology. Such a falsification of X in a G can be re-expressed as
an assignment showing that X is not E-valid. So we have the following
lemma.

Lemma V.1: X is E-valid iff. X is S,-valid.

Now Lemma V.1 provides the crucial premiss for a proof of Porte’s
Theorem 4.3 of [2] which gives Kripke semantics for S, and which 1
offer, in closing, as a second completeness theorem in this paper for
S, and S3.

Theorem 2: If X is S,-valid, then S, —X.
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