S5 AND THE PREDICATE CALCULUS

Jean PORTE

1. It has often been remarked that there is a formal similarity between
modalities and quantification (possibility, M, corresponding to 3,
while necessity, L, corresponds to V), and more especially between
S5 and the first-order predicate calculus. See for instances Von
Wright[21], Montague[7], Prior[12], (pp. 185-193), Thomas[20] or
Kuhn[5]. This paper aims to point at several precise relationships
between S5 and the (first-order) predicate calculus. (The words
‘first-order’ will be dropped in what follows).

2. A WELL KNOWN RESULT - The following theorem may be
considered ‘folklore’, for practically every logician knows it, but it is
seldom clearly stated in the literature — although it was actually the
chief point of Wajsberg[22] and of Parry[9]. See, however, Feys-
Dopp[3] (sections 21-23 and 73) or Prior[13] (p. 25).

Theorem 1 — Let us consider the restriction of the predicate calculus
to unary (or ‘monadic’) predicates and to only one individual variable,
and let us suppress every occurrence of the variable ; then we obtain a
system which is isomorphic to S5, predicates becoming propositional
variables, V becoming L, 3 becoming M, and the usual propositional
connectives being unchanged.

Proof: Compare the decision method for S5 in Carnap[2], and the
decision method for the ‘monadic’ predicate calculus in Quine[16].

An alternetive proof consists in looking for what an axiomatization
of the predicate calculus reduces to, when we consider only the said
restricted class of formulas. A key point is that, when there is only one
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individual variable, v,, (and no propositional variable) the only means
for a formula not to contain any free occurrence of v, is to be closed.

3. THE NOTION OF ‘CLOSURE’ - In Quine[17] the closure of a
formula of the predicate calculus is the formula which is obtained by
prefixing to the given formula, X, a row of universal quantifiers in the
anti-alphabetic order (which suppose that an ‘alphabetic order’ of the
variables is given in the definition of the formal system), these
quantifiers corresponding to all the variables which have at least one
free occurrence within X. Of course, when X is a closed formula, its
closure is X itself.

In what follows, the closure of X will be denoted by ‘€X°.

Remark: Quine[17] (as well as Quine[15]) considers ‘well-formed’
only closed formulas. This feature allows him to write ‘X’ instead of
‘—%X’. That will not be possible in what follows, where we consider
‘well-formed’ such a formula as

Vv, P(vy) > P(vy)

(where P is a unary predicate, and v, and v, are different variables).

It is easy to prove that the classical predicate calculus (with
non-closed formulas) is obtained by adding to Quine’s system the
axiom schema

YxA—> A

(where x is an arbitrary individual variable, and A is an arbitrary
formula).
Then it is very easy to prove that, in this system, we have

Al: €T, if T is a substitution instance of a classical tautology
A2: € (¥ (A->B)— (¥A— %B))
I Ad: € (6A-A)
AS5: €A A
Rl: A,A-B /B

(where A, B are arbitrary formulas).
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4. Theorem 2 — Let every instance of ¢ be replaced by L, and every
formula of the predicate calculus (such as A, B, etc... be replaced by a
formula of a modal propositional system - i.e. by a formula construc-
ted with —, —» and L, where L replaces €, and an infinite denumerable
list of propositional variables: p;, p,, etc... — And let us consider a
formula of this modal system to be ‘acceptable’ iff all the formulas it
replaces are theses of the predicate calculus — Then, this modal
system is S5.

On one hand it is obvious from A1-A5 and R1 that the theses of the
modal system contain all the theses of S5.

On the other hand, let us suppose that the new system contains an
‘acceptable’ formula, X, which is not an S5-thesis. Let us translate it
into a thesis X' of the predicate calculus by replacing the different
propositional variables by different subformulas, all containing only
unary predicates and one individual variable, v, and by replacing L by
¥v. Then the modal translation of X’ defined in Theorem 1 (dropping
every occurrence of v, and the predicates becoming propositional
variables) is a substitution instance of X. But, by Theorem 1, this
translation of X’ should be an S5 — thesis — which contradicts the
hypothesis.

Intuitively speaking we can say that the meaning of Theorem 2 is
that S5 says all we can say about the predicate calculus when we use
only the propositional connectives and the notion of ‘closure’.

In a more abstract way, we can express Theorem 2 as follows :

Let us consider the mathematical structure

M=<ZF T, % 5% L*¥>
where

F is the set of formulas of the predicate calculus
@ is the set of theses of the predicate calculus
—* = X —X

>*=X, N X>Y

L*=Xp X

Then # is a characteristic matrix for S5 (% being the set of
designated elements).
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5. In what precedes, I have used the definition of ‘closure’ given in
Quine[17] (who had borrowed it from Berry[1]).

There are other kinds of ‘closures’. One is original Quine’s notion
(see Quine[15]): the variables of the prefix are put into alphabetic
order rather than into anti-alphabetic order. Berry’s closure is more
useful than original Quine’s one in order to obtain a simple axiomati-
zation of the predicate calculus. But it would play exactly the same
role in the proof of system (I) and in Theorem 2.

Another kind of ‘closure’ is the one of Fitch[4] - which indeed
offers the same advantages than Berry’s in order to get a simple
axiomatization of the predicate calculus.

Fitch’s closure is constructed in a way similar to Berry’s but taking
into account the order in which the free occurrence of the variables
appears within the formula under study, rather than their alphabetic
order within the system — Indeed Fitch’s work does not need that any
‘alphabetic order’ be defined.

Fitch’s closure could be used in place of Berry’s in system (I) and
Theorem 2 would stay true.

There are other possible definitions of ‘closure’ — indeed an infinity.
If we substitute any of these definitions to the one of Berry, does
Theorem 2 remain true ? A necessary and sufficient condition is that
the results expressed in system (I) (A1-AS5, R1) remain true.

6. Reasoning exactly as in § 4 we can prove

Theorem 3 — Let us consider the mathematical structure
M =<ZF, C, =% ->*% L*>
where everything is defined as in .#, except that now
L*=Xp WX

— Then #,is a characteristic matrix for §5.

It is obvious by symmetry that v, does not play any special role and
that using other variables will yield other characteristic matrices for
S5 - all being isomorphic.
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7. The foregoing results suggest generalizations leading to open
problems.

If, in a way similar to the line which led to Theorem 1 let us
consider the part of predicate calculus whose atomic formulas are of
the form P (v,, v,), where P is any binary predicate while v, and v, are
particular individual variables. Then again, by the transformation
which consists of suppressing every occurrence of v; and v,, and
replacing Vv, by L, and Vv, by L,, we obtain a propositional calculus,
whose connectives are —, —, and two unary ones, L, and L, (the
predicates becoming propositional variables).

Let 285 be that new system. Starting from an axiomatization of the
predicat e calculus with rules of modus ponens and necessitation, and
proceeding as in the second proof of Theorem 1, we are led to the
following axiomatization of 2S5 — where i = 1 or 2, A and B being any
formulas:

Ax 1 - T,if T is a subsitution instance of a classical tautology
Ax2 -L(A->B)> (L,A->LB)

Ax3 - LASA

Ax 4 - A-» LA, if A is fully L.-modalized

Rl -A,A-B/B

R2 -A/LA

— A formula, such as A, is fully Lrmodalized (i = 1 or 2) if every
occurrence of a propositional variable is within the scope of an
occurrence of L; in A.

A few open problems are the following ones:

(i) Is 2S5 a conservative extension of S5? (Conjecture: yes.
Suggestion: use the results of Scroggs[18]).

(ii) Is 2S5 decidable ? (Conjecture : yes).

(iii) Is there a finite standard axiomatization of 2S5? i.e. an
axiomatization by a finite number of sequential rules (see Lo$ and
Suszko[6] - those rules are called ‘connective rules’ in [10] or [11]),
and a finite number of axiom schemas ? (Conjecture: no).

2S5 will be a kind of ‘bidimensional modal system’, but different
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from those which have been studied by Prior (the ‘tense logics’ of
[12]) or Segerberg[19].
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